Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Product Distribution from the CFP of MF over ZSM-5 Modified by Different Metal Species
2.2. The Effect of Fe Loading on the Product Distribution from the CFP of MF over Fe-ZSM-5
2.3. The Effect of WHSV on the Product Distribution from the CFP of MF
2.4. The Structure-Reactivity Relationship of Metal-Modified ZSM-5 during the CFP of MF
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. CFP Experiments
3.4. Characterization
3.5. Methods of Data Processing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, N.; You, F.Q. Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition? Appl. Energy 2020, 279, 115889. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Muys, B.; Hermy, M. Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renew. Sustain. Energy Rev. 2019, 102, 139–149. [Google Scholar] [CrossRef]
- Rezaei, P.S.; Shafaghat, H.; Daud, W.M.A.W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Appl. Catal. A: Gen. 2014, 469, 490–511. [Google Scholar] [CrossRef]
- Che, Q.; Yang, M.; Wang, X.; Chen, X.; Chen, W.; Yang, Q.; Yang, H.; Chen, H. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust. Fuel Process. Technol. 2019, 188, 146–152. [Google Scholar] [CrossRef]
- Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew. Sustain. Energy Rev. 2011, 15, 4171–4186. [Google Scholar] [CrossRef] [Green Version]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Z.; Yao, Q.; Zhang, Y.; Fu, Y. Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile. Bioresour. Technol. 2019, 290, 121800. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Triantafyllidis, K.S.; Lappas, A.A. Overview of catalytic upgrading of biomass pyrolysis vapors toward the production of fuels and high-value chemicals. WIREs Energy Environ. 2018, 8, e322. [Google Scholar] [CrossRef] [Green Version]
- Potera, G.T. The Effects of Benzene, Toluene and Ethylbenzene on Several Important Members of the Estuarine Ecosystem; Lehigh University: Bethlehem, PA, USA, 1975. [Google Scholar]
- Sun, R.; Shen, S.; Zhang, D.; Ren, Y.; Fan, J. Hydrofining of coal tar light oil to produce high octane gasoline blending components over γ-Al2O3-and η-Al2O3-supported catalysts. Energy Fuels 2015, 29, 7005–7013. [Google Scholar] [CrossRef]
- Li, X.; Su, L.; Wang, Y.; Yu, Y.; Wang, C.; Li, X.; Wang, Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front. Environ. Sci. Eng. 2012, 6, 295–303. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, J.H.; Park, J.; Kim, J.K.; An, D.; Song, I.K.; Choi, J.W. Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. J. Anal. Appl. Pyrolysis 2015, 114, 273–280. [Google Scholar] [CrossRef]
- Thiyagarajan, S.; Genuino, H.C.; van der Waal, J.C.; de Jong, E.; Weckhuysen, B.M.; van Haveren, J.; Bruijnincx, P.C.; van Es, D.S. A Facile Solid-Phase Route to Renewable Aromatic Chemicals from Biobased Furanics. Angew. Chem. Int. Ed. Engl. 2016, 55, 1368–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Yan, L.; Zhao, R.; Li, F. Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5. Fuel 2014, 130, 154–159. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Chen, L.; Zhao, B.; Yang, S.; Xie, X. Comparision of catalytic fast pyrolysis of biomass to aromatic hydrocarbons over ZSM-5 and Fe/ZSM-5 catalysts. J. Anal. Appl. Pyrolysis 2016, 121, 342–346. [Google Scholar] [CrossRef]
- Fanchiang, W.-L.; Lin, Y.-C. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Appl. Catal. A Gen. 2012, 419–420, 102–110. [Google Scholar] [CrossRef]
- Uslamin, E.A.; Kosinov, N.A.; Pidko, E.A.; Hensen, E.J.M. Catalytic conversion of furanic compounds over Ga-modified ZSM-5 zeolites as a route to biomass-derived aromatics. Green Chem. 2018, 20, 3818–3827. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, D.; Zhu, Y.; Chen, J.; Lu, Y.; Li, S.; Zheng, Y.; Zheng, Z. Efficient ex-situ catalytic upgrading of biomass pyrolysis vapors to produce methylfurans and phenol over bio-based activated carbon. Biomass- Bioenergy 2020, 142, 105794. [Google Scholar] [CrossRef]
- Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Zhao, K.; Wu, H.; Wang, X.; He, F.; Li, H. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production. Green Chem. 2014, 16, 2580–2586. [Google Scholar] [CrossRef]
- Chang, C.-C.; Green, S.K.; Williams, C.L.; Dauenhauer, P.J.; Fan, W. Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem. 2014, 16, 585–588. [Google Scholar] [CrossRef]
- Qi, X.; Fan, W. Selective Production of Aromatics by Catalytic Fast Pyrolysis of Furan with In Situ Dehydrogenation of Propane. ACS Catal. 2019, 9, 2626–2632. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Huber, G.W. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chem. 2012, 14, 3114–3125. [Google Scholar] [CrossRef]
- Ni, L.; Xin, J.; Jiang, K.; Chen, L.; Yan, D.; Lu, X.; Zhang, S. One-Step Conversion of Biomass-Derived Furanics into Aromatics by Brønsted Acid Ionic Liquids at Room Temperature. ACS Sustain. Chem. Eng. 2018, 6, 2541–2551. [Google Scholar] [CrossRef]
- Do, P.T.M.; McAtee, J.R.; Watson, D.A.; Lobo, R.F. Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst. ACS Catal. 2013, 3, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.L.; Chang, C.-C.; Do, P.; Nikbin, N.; Caratzoulas, S.; Vlachos, D.G.; Lobo, R.F.; Fan, W.; Dauenhauer, P.J. Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. ACS Catal. 2012, 2, 935–939. [Google Scholar] [CrossRef]
- Espindola, J.S.; Gilbert, C.J.; Perez-Lopez, O.; Trierweiler, J.O.; Huber, G.W. Conversion of furan over gallium and zinc promoted ZSM-5: The effect of metal and acid sites. Fuel Process. Technol. 2020, 201, 106319. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Huber, G.W. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction. ACS Catal. 2011, 1, 611–628. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.-T.; Jae, J.; Shi, J.; Fan, W.; Huber, G.W. Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angew. Chem. Int. Ed. 2012, 51, 1387–1390. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Si, Z.; Wu, X.; Lv, W.; Bi, K.; Zhang, X.; Chen, L.; Xu, Y.; Zhang, Q.; Ma, L. Mechanism study of aromatics production from furans with methanol over zeolite catalysts. J. Anal. Appl. Pyrolysis 2019, 139, 87–95. [Google Scholar] [CrossRef]
- Teixeira, I.F.; Lo, B.T.W.; Kostetskyy, P.; Stamatakis, M.; Ye, L.; Tang, C.C.; Mpourmpakis, G.; Tsang, S.C.E. From Biomass-Derived Furans to Aromatics with Ethanol over Zeolite. Angew. Chem. Int. Ed. 2016, 55, 13061–13066. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, Y.; Shao, S.; Xiao, R. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural. Combust. Flame 2016, 173, 258–265. [Google Scholar] [CrossRef]
- Wang, B.; Manos, G. Role of strong zeolitic acid sites on hydrocarbon reactions. Ind. Eng. Chem. Res. 2008, 47, 2948–2955. [Google Scholar] [CrossRef]
Catalysts | BET Surface (m2/g) a | Total Pore Volume (cm3/g) b | Average Pore Size (nm) | Micropore Volume (cm3/g) c | Mesopore Volume (cm3/g) | Micropore Surface Area (m2/g) c | External Surface Area (m2/g) |
---|---|---|---|---|---|---|---|
ZSM-5 | 408.0 | 0.34 | 3.4 | 0.14 | 0.20 | 336.0 | 72.0 |
0.5%Fe-ZSM-5 | 367.4 | 0.37 | 4.0 | 0.12 | 0.25 | 291.5 | 75.8 |
1%Fe-ZSM-5 | 380.2 | 0.41 | 4.3 | 0.07 | 0.35 | 113.4 | 266.7 |
2%Fe-ZSM-5 | 423.4 | 0.42 | 4.0 | 0.08 | 0.35 | 160.5 | 262.9 |
3%Fe-ZSM-5 | 393.8 | 0.33 | 3.3 | 0.08 | 0.25 | 172.2 | 221.6 |
4%Fe-ZSM-5 | 352.3 | 0.30 | 3.4 | 0.13 | 0.17 | 309.0 | 43.3 |
Catalysts | The First Peak (°C) | The Second Peak (°C) | Amount of Weak Acid Sites (µmol/g) | Amount of Strong Acid Sites (µmol/g) | Total Acid Amount (µmol/g) |
---|---|---|---|---|---|
ZSM-5 | 182.50 | 445.00 | 827.64 | 189.08 | 1016.72 |
0.5%Fe-ZSM-5 | 191.277 | 418.22 | 783.26 | 539.58 | 1322.84 |
1%Fe-ZSM-5 | 190.89 | 426.25 | 763.26 | 536.78 | 1300.04 |
2%Fe-ZSM-5 | 188.01 | 415.39 | 656.50 | 546.78 | 1203.28 |
3%Fe-ZSM-5 | 184.95 | 389.45 | 614.81 | 535.16 | 1149.97 |
4%Fe-ZSM-5 | 182.9 | 444.7 | 709.90 | 473.41 | 1183.31 |
Zeolite | B/L | Amount of Brønsted Acid Sites (µmol/g) | Amount of Lewis Acid Sites (µmol/g) | |
---|---|---|---|---|
Total (150 °C) | Strong (350 °C) | |||
ZSM-5 | 1.42 | 2.07 | 596.59 | 420.13 |
0.5%Fe-ZSM-5 | 1.62 | 1.87 | 817.94 | 504.90 |
1%Fe-ZSM-5 | 1.04 | 1.17 | 662.77 | 637.27 |
2%Fe-ZSM-5 | 0.85 | 1.07 | 552.86 | 650.42 |
3%Fe-ZSM-5 | 0.61 | 0.73 | 435.70 | 714.27 |
4%Fe-ZSM-5 | 1.05 | 1.36 | 606.09 | 577.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, S.; Wang, C.; Chen, Y.; Kang, S.; Zhao, K.; Zheng, A.; Zhao, Z.; Li, H. Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5. Catalysts 2022, 12, 1483. https://doi.org/10.3390/catal12111483
Xia S, Wang C, Chen Y, Kang S, Zhao K, Zheng A, Zhao Z, Li H. Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5. Catalysts. 2022; 12(11):1483. https://doi.org/10.3390/catal12111483
Chicago/Turabian StyleXia, Shengpeng, Chenyang Wang, Yu Chen, Shunshun Kang, Kun Zhao, Anqing Zheng, Zengli Zhao, and Haibin Li. 2022. "Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5" Catalysts 12, no. 11: 1483. https://doi.org/10.3390/catal12111483
APA StyleXia, S., Wang, C., Chen, Y., Kang, S., Zhao, K., Zheng, A., Zhao, Z., & Li, H. (2022). Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5. Catalysts, 12(11), 1483. https://doi.org/10.3390/catal12111483