Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides
Abstract
:1. Introduction
2. Type of LDH-Derived Catalysts for Hydrogenation and Hydrogenolysis
2.1. LDH-Supported Catalysts
2.2. LDH-Derived Mixed Metal Oxide Catalysts
2.3. Intermetallic Compound Catalysts
3. Hydrogenation of Carbon-Oxygen Unsaturated Bonds
3.1. Hydrogenation of Ketones and Aldehydes
3.2. Hydrogenation of Furfural
3.3. Hydrogenation of Levulinic Acid
3.4. Catalytic Hydrogenation of Monosaccharides
4. Hydrogenation of Carbon-Carbon Unsaturated Bonds
4.1. Partial Hydrogenation of Alkynes
4.2. Hydrogenation of Aromatic Ring
5. Hydrogenolysis of Oxygenated Compounds
5.1. Hydrogenolysis of Esters
5.2. Hydrodeoxygenation of Lignin Derivatives
5.3. Hydrodeoxygenation of Furfural
5.4. 5-Hydroxymethylfurfural Hydrodeoxygenation
6. CO2 Hydrogenation
6.1. CO2 Conversion to Methanol
6.2. CO2 Conversion to Methane
7. Hydrogenation in C-C Coupling Processes
8. Hydrogenation of Nitrites and Nitriles
8.1. Hydrogenation of Organic Nitrites
8.2. Hydrogenation of Nitriles
9. Future and Prospect of LDH-Derived Catalysts for Hydrogenation and Hydrogenolysis
- (1)
- Various facile preparation methods, including co-precipitation, hydrothermal methods, ion exchange, urea hydrolysis, etc., could be used to prepare LDH-derived catalysts. These preparation methods are generally mature and well-established, facilitating the wide application and scale-up production of LDH materials.
- (2)
- The appropriate amount and strength of acidity/basicity are crucial for the design of multifunctional catalysts, and these properties could be achieved with LDH-derived materials. LDHs and MMOs possess high concentrations of acid/base sites, which are key sites for adsorption and reaction. For example, as discussed in this review, acidic sites could catalyze deoxygenation reactions, while basic sites could interact with carbonyl groups or catalyze aldol condensation. More importantly, the acid–base properties of LDHs and their derivative materials can be finely modulated by controlling the main layer element composition, interlayer ion species of the LDH precursor, and other synthesis parameters.
- (3)
- Metal particle size is crucial for the reactivity and selectivity of metal catalysts. In hydrogenation or hydrogenolysis reactions, metal catalysts with high metal dispersion will provide more active sites for dissociative activation of hydrogen and surface reaction to take place, resulting in increased reaction rates and decreased catalyst usages. For LDH-supported metal catalysts, hydroxy groups and interlayer galleries could promote the dispersion of metal particles. For MMO or IMC catalysts, because metal cations are uniformly distributed in the atomic level within LDH layers, the calcination of LDH precursors would generate MMOs with highly dispersed metal atoms. Therefore, LDH-derived materials become ideal catalysts for hydrogenation or hydrogenolysis due to their capability of generating small metal particles.
- (4)
- For MMO or IMC catalysts, when LDHs are calcined at high temperatures, active metal atoms are immobilized in the metal oxide matrix. This interaction between active metals and oxide matrix results in the formation of strong metal–support interactions (SMSI). SMSI is important not only in effectively preventing particle aggregation or sintering of the active metal during reaction but also modifying the electronic properties and catalytic reactivity of active metals.
- (1)
- The synthesis procedures of LDHs were studied thoroughly, but for LDH-derived catalysts more optimization and mechanism research on the preparation methods are still necessary. For example, for MMO catalysts, the relationship between preparation parameters (e.g., metal precursors, precipitation pH, crystallization time, calcination temperature, reduction temperature, etc.) and physiochemical properties is still vague or case-dependent.
- (2)
- The structure of LDH-derived catalysts is also currently unclear, which deserves more characterization efforts or theoretical predictions. The surface composition of LDH-derived catalysts, the electronic and geometric interactions between metal nanoparticles and neighboring components, and the origin of acidity/basicity of LDH-derived materials, are largely unknown, leading to difficulties in studying structure–reactivity relationships and catalyst design.
- (3)
- LDHs show a unique “memory effect” and good reversible topological conversion properties after heat treatment over a wide range of temperatures. Accordingly, how LDH-derived catalysts go through structure transformation during the reaction process also needs in-depth research. For biomass-related hydrogenation or hydrogenolysis research, this issue is important because water is often present either as reactant or product, which might lead to topological transformation of LDH derivates. More research on structure transformation of LDH-derived catalysts before, during, or after reaction will be valuable for a broader application of LDH-derived catalysts.
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramachandran, R.; Menon, R.K. An overview of industrial uses of hydrogen. Int. J. Hydrogen Energy 1998, 23, 593–598. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev. 2012, 41, 1538–1558. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, F.; Yusuf, M.; Kamyab, H.; Vo, D.-V.N.; Chelliapan, S.; Joo, S.-W.; Vasseghian, Y. Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives. Renew. Sustain. Energy Rev. 2022, 168, 112916. [Google Scholar] [CrossRef]
- Yusuf, M.; Farooqi, A.S.; Keong, L.K.; Hellgardt, K.; Abdullah, B. Contemporary trends in composite ni-based catalysts for CO2 reforming of methane. Chem. Eng. Sci. 2021, 229, 116072. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Weinberg, K.; Palkovits, R. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 2012, 51, 2564–2601. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598. [Google Scholar] [CrossRef]
- Fan, G.; Li, F.; Evans, D.G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Feng, J.; He, Y.; Liu, Y.; Du, Y.; Li, D. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291–5319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Wang, Q.; O’Hare, D.; Sun, L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (ldh) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef]
- Yan, K.; Wu, G.; Jin, W. Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution. Energy Technol. 2016, 4, 354–368. [Google Scholar] [CrossRef]
- Zhao, M.-Q.; Zhang, Q.; Huang, J.-Q.; Wei, F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—Properties, synthesis, and applications. Adv. Funct. Mater. 2012, 22, 675–694. [Google Scholar] [CrossRef]
- Xu, Z.P.; Zhang, J.; Adebajo, M.O.; Zhang, H.; Zhou, C. Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci. 2011, 53, 139–150. [Google Scholar] [CrossRef]
- Takehira, K. Recent development of layered double hydroxide-derived catalysts—Rehydration, reconstitution, and supporting, aiming at commercial application−. Appl. Clay Sci. 2017, 136, 112–141. [Google Scholar] [CrossRef]
- Zhang, F.; Xiang, X.; Li, F.; Duan, X. Layered double hydroxides as catalytic materials: Recent development. Catal. Surv. Asia 2008, 12, 253. [Google Scholar] [CrossRef]
- Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943. [Google Scholar] [CrossRef]
- Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catal. Sci. Technol. 2017, 7, 1622–1645. [Google Scholar] [CrossRef]
- Shen, Y.; Yin, K.; An, C.; Xiao, Z. Design of a difunctional Zn-Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl. Surf. Sci. 2018, 456, 1–6. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Q.; Hou, J.; Pei, L.; Li, Y.; Ai, S. Platinum nanocrystals supported on coal mixed metal oxide nanosheets derived from layered double hydroxides as catalysts for selective hydrogenation of cinnamaldehyde. J. Catal. 2015, 331, 193–202. [Google Scholar] [CrossRef]
- Fu, X.; Ren, X.; Shen, J.; Jiang, Y.; Wang, Y.; Orooji, Y.; Xu, W.; Liang, J. Synergistic catalytic hydrogenation of furfural to 1,2-pentanediol and 1,5-pentanediol with LDO derived from CuMgAl hydrotalcite. Mol. Catal. 2021, 499, 111298. [Google Scholar] [CrossRef]
- Wu, J.; Gao, G.; Sun, P.; Long, X.; Li, F. Synergetic catalysis of bimetallic cuco nanocomposites for selective hydrogenation of bioderived esters. ACS Catal. 2017, 7, 7890–7901. [Google Scholar] [CrossRef]
- Zhang, G.; Li, W.; Fan, G.; Yang, L.; Li, F. Controlling product selectivity by surface defects over moox-decorated ni-based nanocatalysts for γ-valerolactone hydrogenolysis. J. Catal. 2019, 379, 100–111. [Google Scholar] [CrossRef]
- Li, C.; Chen, Y.; Zhang, S.; Xu, S.; Zhou, J.; Wang, F.; Wei, M.; Evans, D.G.; Duan, X. Ni–in intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chem. Mater. 2013, 25, 3888–3896. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Y.; Chen, L.; Xu, E.; Xu, J.; Hong, S.; Zhang, X.; Wei, M. Atomically-ordered active sites in nimo intermetallic compound toward low-pressure hydrodeoxygenation of furfural. Appl. Catal. B 2021, 282, 119569. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Zhang, M.; Liu, Y.; Luo, H.; Yan, K. Green fabrication of nickel-iron layered double hydroxides nanosheets efficient for the enhanced capacitive performance. Green Energy Environ. 2022, 7, 1053–1061. [Google Scholar] [CrossRef]
- Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E.K.; Catlow, C.R.A.; Yan, K. Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich nicomn-layered double hydroxides nanosheets. Green Chem. 2021, 23, 4034–4043. [Google Scholar] [CrossRef]
- Bukhtiyarova, M.V. A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem. 2019, 269, 494–506. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Othman, M.R.; Helwani, Z.; Martunus; Fernando, W.J.N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Appl. Organomet. Chem. 2009, 23, 335–346. [Google Scholar] [CrossRef]
- Debecker, D.P.; Gaigneaux, E.M.; Busca, G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem.—Eur. J. 2009, 15, 3920–3935. [Google Scholar] [CrossRef] [PubMed]
- He, S.; An, Z.; Wei, M.; Evans, D.G.; Duan, X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chem. Commun. 2013, 49, 5912–5920. [Google Scholar] [CrossRef]
- Yang, W.; Kim, Y.; Liu, P.K.T.; Sahimi, M.; Tsotsis, T.T. A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chem. Eng. Sci. 2002, 57, 2945–2953. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, F.; Xu, S.; Evans, D.G.; Duan, X. From layered double hydroxides to zno-based mixed metal oxides by thermal decomposition: Transformation mechanism and uv-blocking properties of the product. Chem. Mater. 2010, 22, 3933–3942. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, W.; Liu, P.K.T.; Sahimi, M.; Tsotsis, T.T. Thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide: Sorption reversibility aspects. Ind. Eng. Chem. Res. 2004, 43, 4559–4570. [Google Scholar] [CrossRef]
- Takehira, K.; Shishido, T. Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting “memory effect”. Catal. Surv. Asia 2007, 11, 1–30. [Google Scholar] [CrossRef]
- Dragoi, B.; Ungureanu, A.; Chirieac, A.; Ciotonea, C.; Rudolf, C.; Royer, S.; Dumitriu, E. Structural and catalytic properties of mono- and bimetallic nickel–copper nanoparticles derived from MgNi(Cu)Al-LDHs under reductive conditions. Appl. Catal. A 2015, 504, 92–102. [Google Scholar] [CrossRef]
- Armbrüster, M.; Schlögl, R.; Grin, Y. Intermetallic compounds in heterogeneous catalysis—A quickly developing field. Sci. Technol. Adv. Mater. 2014, 15, 034803. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, M. Intermetallic compound catalysts: Synthetic scheme, structure characterization and catalytic application. J. Mater. Chem. A 2020, 8, 2207–2221. [Google Scholar] [CrossRef]
- Yu, J.; Yang, Y.; Chen, L.; Li, Z.; Liu, W.; Xu, E.; Zhang, Y.; Hong, S.; Zhang, X.; Wei, M. Nibi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Appl. Catal. B 2020, 277, 119273. [Google Scholar] [CrossRef]
- Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Peter, S.C. Synthetically tuned electronic and geometrical properties of intermetallic compounds as effective heterogeneous catalysts. Prog. Solid State Chem. 2018, 52, 1–30. [Google Scholar] [CrossRef]
- Zang, Y.; Wang, Y.; Gao, F.; Gu, J.; Qu, J. Highly active two-dimensional niinalc intermetallic compounds derived from al-substituted layered double hydroxides for CO2 hydrogenation reduction. Fuel 2021, 299, 120929. [Google Scholar] [CrossRef]
- Jayesh, T.B.; Itika, K.; Ramesh Babu, G.V.; Rama Rao, K.S.; Keri, R.S.; Jadhav, A.H.; Nagaraja, B.M. Vapour phase selective hydrogenation of benzaldehyde to benzyl alcohol using Cu supported Mg-Al hydrotalicite catalyst. Catal. Commun. 2018, 106, 73–77. [Google Scholar] [CrossRef]
- Sangeetha, P.; Shanthi, K.; Rao, K.S.R.; Viswanathan, B.; Selvam, P. Hydrogenation of nitrobenzene over palladium-supported catalysts—Effect of support. Appl. Catal. A 2009, 353, 160–165. [Google Scholar] [CrossRef]
- Chaudhari, C.; Sato, K.; Miyahara, S.-i.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kusuda, K.; Kitagawa, H.; Nagaoka, K. The effect of Ru precursor and support on the hydrogenation of aromatic aldehydes/ketones to alcohols. ChemCatChem 2022, 14, e202200241. [Google Scholar] [CrossRef]
- Martínez-Ortiz, M.J.; de la Rosa-Guzmán, M.A.; Vargas-García, J.R.; Flores-Moreno, J.L.; Castillo, N.; Guzmán-Vargas, A.; Morandi, S.; Pérez-Gutiérrez, R.M. Selective hydrogenation of cinnamaldehyde using pd catalysts supported on Mg/Al mixed oxides: Influence of the pd incorporation method. Can. J. Chem. Eng. 2018, 96, 297–306. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chang, C.-T.; Chiang, S.-J.; Liaw, B.-J.; Chen, Y.-Z. Selective hydrogenation of crotonaldehyde in liquid-phase over Au/Mg2AlO hydrotalcite catalysts. Appl. Catal. A 2010, 381, 209–215. [Google Scholar] [CrossRef]
- Duan, J.; Wang, D.; Cui, R.; Zhang, H.; Zhang, B.; Guan, H.; Zhao, Y. In-situ incorporation of Pt nanoparticles on layered double hydroxides for selective conversion of cinnamaldehyde to cinnamyl alcohol. ChemistrySelect 2021, 6, 13890–13896. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, X.; Zhang, L.; Liu, F.; Wang, A.; Zhang, T. Producing of cinnamyl alcohol from cinnamaldehyde over supported gold nanocatalyst. Chin. J. Catal. 2021, 42, 470–481. [Google Scholar] [CrossRef]
- Wang, H.; Lan, X.; Wang, S.; Ali, B.; Wang, T. Selective hydrogenation of 2-pentenal using highly dispersed pt catalysts supported on ZnSnAl mixed metal oxides derived from layered double hydroxides. Catal. Sci. Technol. 2020, 10, 1106–1116. [Google Scholar] [CrossRef]
- Xiang, X.; He, W.; Xie, L.; Li, F. A mild solution chemistry method to synthesize hydrotalcite-supported platinum nanocrystals for selective hydrogenation of cinnamaldehyde in neat water. Catal. Sci. Technol. 2013, 3, 2819–2827. [Google Scholar] [CrossRef]
- Hui, T.; Miao, C.; Feng, J.; Liu, Y.; Wang, Q.; Wang, Y.; Li, D. Atmosphere induced amorphous and permeable carbon layer encapsulating PtGa catalyst for selective cinnamaldehyde hydrogenation. J. Catal. 2020, 389, 229–240. [Google Scholar] [CrossRef]
- Lin, W.; Cheng, H.; Li, X.; Zhang, C.; Zhao, F.; Arai, M. Layered double hydroxide-like Mg3Al1−xFex materials as supports for ir catalysts: Promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chin. J. Catal. 2018, 39, 988–996. [Google Scholar] [CrossRef]
- Miao, C.; Zhang, F.; Cai, L.; Hui, T.; Feng, J.; Li, D. Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem 2021, 13, 4937–4947. [Google Scholar] [CrossRef]
- Yang, Y.; Rao, D.; Chen, Y.; Dong, S.; Wang, B.; Zhang, X.; Wei, M. Selective hydrogenation of cinnamaldehyde over co-based intermetallic compounds derived from layered double hydroxides. ACS Catal. 2018, 8, 11749–11760. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Z.; Fan, G.; Li, F. The promotional effect of ZnO addition to supported ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catal. Sci. Technol. 2014, 4, 1123–1131. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Li, C.; Zhang, S.; Chen, Y.; Shi, S.; Wei, M. Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. J. Mater. Chem. A 2016, 4, 12825–12832. [Google Scholar] [CrossRef]
- Li, W.; Fan, G.; Yang, L.; Li, F. Surface lewis acid-promoted copper-based nanocatalysts for highly efficient and chemoselective hydrogenation of citral to unsaturated allylic alcohols. Catal. Sci. Technol. 2016, 6, 2337–2348. [Google Scholar] [CrossRef]
- Li, C.; Ke, C.; Han, R.; Fan, G.; Yang, L.; Li, F. The remarkable promotion of In Situ formed Pt-cobalt oxide interfacial sites on the carbonyl reduction to allylic alcohols. Mol. Catal. 2018, 455, 78–87. [Google Scholar] [CrossRef]
- Wang, Y.; He, W.; Wang, L.; Yang, J.; Xiang, X.; Zhang, B.; Li, F. Highly active supported Pt nanocatalysts synthesized by alcohol reduction towards hydrogenation of cinnamaldehyde: Synergy of metal valence and hydroxyl groups. Chem.—Asian J. 2015, 10, 1561–1570. [Google Scholar] [CrossRef]
- Rudolf, C.; Dragoi, B.; Ungureanu, A.; Chirieac, A.; Royer, S.; Nastro, A.; Dumitriu, E. Nial and coal materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catal. Sci. Technol. 2014, 4, 179–189. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Liu, C.; Nan, C.; Fan, G.; Yang, L.; Li, F. Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Mol. Catal. 2017, 436, 237–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, S.; Lin, Y.; Fan, G.; Li, F. Dispersing metallic platinum on green rust enables effective and selective hydrogenation of carbonyl group in cinnamaldehyde. ACS Omega 2018, 3, 12778–12787. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, S.; Wu, H.; You, Z.; Deng, L.; Qiu, X. Metal-support interactions on Ru/CaAlOx catalysts derived from structural reconstruction of Ca-Al layered double hydroxides for ammonia decomposition. Chem. Commun. 2019, 55, 14410–14413. [Google Scholar] [CrossRef]
- Miao, C.; Hui, T.; Liu, Y.; Feng, J.; Li, D. Pd/MgAl-LDH nanocatalyst with vacancy-rich sandwich structure: Insight into interfacial effect for selective hydrogenation. J. Catal. 2019, 370, 107–117. [Google Scholar] [CrossRef]
- Han, R.; Nan, C.; Yang, L.; Fan, G.; Li, F. Direct synthesis of hybrid layered double hydroxide–carbon composites supported pd nanocatalysts efficient in selective hydrogenation of citral. RSC Adv. 2015, 5, 33199–33207. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, W.; Yin, P.; Ju, M.; Wang, J.; Yang, W.; Yang, Y.; Shen, C. Synergistic effect between Ni single atoms and acid–base sites: Mechanism investigation into catalytic transfer hydrogenation reaction. J. Catal. 2021, 393, 1–10. [Google Scholar] [CrossRef]
- Basu, S.; Pradhan, N.C. Kinetics of acetone hydrogenation for synthesis of isopropyl alcohol over cu-al mixed oxide catalysts. Catal. Today 2020, 348, 118–126. [Google Scholar] [CrossRef]
- Santiago-Pedro, S.; Tamayo-Galván, V.; Viveros-García, T. Effect of the acid–base properties of the support on the performance of Pt catalysts in the partial hydrogenation of citral. Catal. Today 2013, 213, 101–108. [Google Scholar] [CrossRef]
- Shen, M.; Zhao, G.; Nie, Q.; Meng, C.; Sun, W.; Si, J.; Liu, Y.; Lu, Y. Ni-foam-structured Ni–Al2O3 ensemble as an efficient catalyst for gas-phase acetone hydrogenation to isopropanol. ACS Appl. Mater. Interfaces 2021, 13, 28334–28347. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, A.; Singh, P.P.; Mondal, T. Furfural—A versatile, biomass-derived platform chemical for the production of renewable chemicals. Green Chem. 2022, 24, 510–551. [Google Scholar] [CrossRef]
- Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023–11117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sadaba, I.; Lopez Granados, M. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Shao, S.; Yan, J.; Zhang, H.; Cai, Y. Catalytic transfer hydrogenation of biomass-derived oxygenated chemicals over hydrotalcite-like copper catalyst using methanol as hydrogen donor. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor. ACS Sustain. Chem. Eng. 2017, 5, 5982–5993. [Google Scholar] [CrossRef]
- Yan, K.; Chen, A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy 2013, 58, 357–363. [Google Scholar] [CrossRef]
- Yan, K.; Liao, J.; Wu, X.; Xie, X. A noble-metal free cu-catalyst derived from hydrotalcite for highly efficient hydrogenation of biomass-derived furfural and levulinic acid. RSC Adv. 2013, 3, 3853–3856. [Google Scholar] [CrossRef]
- Ramos, R.; Peixoto, A.F.; Arias-Serrano, B.I.; Soares, O.S.G.P.; Pereira, M.F.R.; Kubička, D.; Freire, C. Catalytic transfer hydrogenation of furfural over Co3O4−Al2O3 hydrotalcite-derived catalyst. ChemCatChem 2020, 12, 1467–1475. [Google Scholar] [CrossRef]
- Pan, Z.; Jiang, H.; Gong, B.; Luo, R.; Zhang, W.; Wang, G.-H. Layered double hydroxide derived nial-oxide hollow nanospheres for selective transfer hydrogenation with improved stability. J. Mater. Chem. A 2020, 8, 23376–23384. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, L.; Chen, Y.; Liu, W.; Feng, H.; Wang, B.; Zhang, X.; Wei, M. The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chem. 2019, 21, 5352–5362. [Google Scholar] [CrossRef]
- Luo, L.; Yuan, F.; Zaera, F.; Zhu, Y. Catalytic hydrogenation of furfural to furfuryl alcohol on hydrotalcite-derived CuxNi3−xAlOy mixed-metal oxides. J. Catal. 2021, 404, 420–429. [Google Scholar] [CrossRef]
- Aldureid, A.; Medina, F.; Patience, G.S.; Montané, D. Ni-Cu/Al2O3 from layered double hydroxides hydrogenates furfural to alcohols. Catalysts 2022, 12, 390. [Google Scholar] [CrossRef]
- Manikandan, M.; Venugopal, A.K.; Prabu, K.; Jha, R.K.; Thirumalaiswamy, R. Role of surface synergistic effect on the performance of Ni-based hydrotalcite catalyst for highly efficient hydrogenation of furfural. J. Mol. Catal. A Chem. 2016, 417, 153–162. [Google Scholar] [CrossRef]
- Villaverde, M.M.; Bertero, N.M.; Garetto, T.F.; Marchi, A.J. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today 2013, 213, 87–92. [Google Scholar] [CrossRef]
- Villaverde, M.M.; Garetto, T.F.; Marchi, A.J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts. Catal. Commun. 2015, 58, 6–10. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, L.; Liu, J.; Huang, Z. Furfural hydrogenation on nickel-promoted cu-containing catalysts prepared from hydrotalcite-like precursors. Chin. J. Chem. 2011, 29, 691–697. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, L.; Deng, D.; Liu, J.; Liu, S. Effect of activation temperature on the surface copper particles and catalytic properties of Cu–Ni–Mg–Al oxides from hydrotalcite-like precursors. Catal. Commun. 2011, 12, 996–999. [Google Scholar] [CrossRef]
- Wu, J.; Gao, G.; Li, J.; Sun, P.; Long, X.; Li, F. Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural. Appl. Catal. B 2017, 203, 227–236. [Google Scholar] [CrossRef]
- Kang, S.; Fu, J.; Zhang, G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 2018, 94, 340–362. [Google Scholar] [CrossRef]
- Yan, K.; Yang, Y.; Chai, J.; Lu, Y. Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals. Appl. Catal. B 2015, 179, 292–304. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, K.; Li, Q.; Liu, Q.; Zhang, S.; Liu, Q.; Hu, G.; Hu, X. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1,4-pentanediol. Green Chem. 2019, 21, 4499–4511. [Google Scholar] [CrossRef]
- Li, W.; Fan, G.; Yang, L.; Li, F. Highly efficient vapor-phase hydrogenation of biomass-derived levulinic acid over structured nanowall-like nickel-based catalyst. ChemCatChem 2016, 8, 2724–2733. [Google Scholar] [CrossRef]
- Gundeboina, R.; Gadasandula, S.; Velisoju, V.K.; Gutta, N.; Kotha, L.R.; Aytam, H.P. Ni-Al-Ti hydrotalcite based catalyst for the selective hydrogenation of biomass-derived levulinic acid to γ-valerolactone. ChemistrySelect 2019, 4, 202–210. [Google Scholar] [CrossRef]
- Yan, K.; Chen, A. Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 2014, 115, 101–108. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Guo, Y.; Chen, L. Effective upgrade of levulinic acid into γ-valerolactone over an inexpensive and magnetic catalyst derived from hydrotalcite precursor. ACS Sustain. Chem. Eng. 2015, 3, 1708–1714. [Google Scholar] [CrossRef]
- Shao, Y.; Sun, K.; Fan, M.; Wang, J.; Gao, G.; Zhang, L.; Zhang, S.; Hu, X. Selective conversion of levulinic acid to gamma-valerolactone over Ni-based catalysts: Impacts of catalyst formulation on sintering of nickel. Chem. Eng. Sci. 2022, 248, 117258. [Google Scholar] [CrossRef]
- Gundeboina, R.; Velisoju, V.K.; Gutta, N.; Medak, S.; Aytam, H.P. Influence of surface lewis acid sites for the selective hydrogenation of levulinic acid to γ-valerolactone over Ni–Cu–Al mixed oxide catalyst. React. Kinet. Mech. Catal. 2019, 127, 601–616. [Google Scholar] [CrossRef]
- Long, X.; Sun, P.; Li, Z.; Lang, R.; Xia, C.; Li, F. Magnetic Co/Al2O3 catalyst derived from hydrotalcite for hydrogenation of levulinic acid to γ-valerolactone. Chin. J. Catal. 2015, 36, 1512–1518. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Yin, P.; Ren, Z.; Liu, W.; Tian, Z.; Zhang, Y.; Xu, E.; Yin, J.; Wei, M. Moox-decorated Co-based catalysts toward the hydrodeoxygenation reaction of biomass-derived platform molecules. ACS Appl. Mater. Interfaces 2021, 13, 31799–31807. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.S.R.; Kantam, M.L. Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catal. Today 2018, 309, 189–194. [Google Scholar] [CrossRef]
- Siddiqui, N.; Pendem, C.; Goyal, R.; Khatun, R.; Khan, T.S.; Samanta, C.; Chiang, K.; Shah, K.; Ali Haider, M.; Bal, R. Study of γ-valerolactone production from hydrogenation of levulinic acid over nanostructured pt-hydrotalcite catalysts at low temperature. Fuel 2022, 323, 124272. [Google Scholar] [CrossRef]
- Swarna Jaya, V.; Sudhakar, M.; Naveen Kumar, S.; Venugopal, A. Selective hydrogenation of levulinic acid to γ-valerolactone over a Ru/Mg–LaO catalyst. RSC Adv. 2015, 5, 9044–9049. [Google Scholar] [CrossRef]
- Abdelrahman, O.A.; Luo, H.Y.; Heyden, A.; Román-Leshkov, Y.; Bond, J.Q. Toward rational design of stable, supported metal catalysts for aqueous-phase processing: Insights from the hydrogenation of levulinic acid. J. Catal. 2015, 329, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Wright, W.R.H.; Palkovits, R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. ChemSusChem 2012, 5, 1657–1667. [Google Scholar] [CrossRef]
- Varkolu, M.; Velpula, V.; Burri, D.R.; Kamaraju, S.R.R. Gas phase hydrogenation of levulinic acid to γ-valerolactone over supported Ni catalysts with formic acid as hydrogen source. N. J. Chem. 2016, 40, 3261–3267. [Google Scholar] [CrossRef]
- Li, D.; Tian, Z.; Cai, X.; Li, Z.; Zhang, C.; Zhang, W.; Song, Y.; Wang, H.; Li, C. Nature of polymeric condensates during furfural rearrangement to cyclopentanone and cyclopentanol over Cu-based catalysts. N. J. Chem. 2021, 45, 22767–22777. [Google Scholar] [CrossRef]
- Gundekari, S.; Srinivasan, K. In Situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. Catal. Commun. 2017, 102, 40–43. [Google Scholar] [CrossRef]
- Hussain, S.; Velisoju, V.K.; Rajan, N.P.; Kumar, B.P.; Chary, K.V.R. Synthesis of γ-valerolactone from levulinic acid and formic acid over Mg-Al hydrotalcite like compound. ChemistrySelect 2018, 3, 6186–6194. [Google Scholar] [CrossRef]
- Mitta, H.; Seelam, P.K.; Chary, K.V.R.; Mutyala, S.; Boddula, R.; Inamuddin; Asiri, A.M. Efficient vapor-phase selective hydrogenolysis of bio-levulinic acid to γ-valerolactone using cu supported on hydrotalcite catalysts. Glob. Chall. 2018, 2, 1800028. [Google Scholar] [CrossRef] [Green Version]
- Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075–8098. [Google Scholar] [CrossRef]
- Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.; Manheim, A.; Eliot, D.; Lasure, L.; Jones, S. Top Value Added Chemicals from Biomass: Volume 1—Results of Screening for Potential Candidates from Sugars and Synthesis Gas; DTIC Document; DTIC: Fort Belvoir, VA, USA, 2004.
- Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of d-glucose to d-sorbitol. Green Chem. 2021, 23, 2010–2016. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Efficient d-xylose hydrogenation to d-xylitol over a hydrotalcite-supported nickel phosphide nanoparticle catalyst. Eur. J. Inorg. Chem. 2021, 2021, 3327–3331. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. Support-boosted nickel phosphide nanoalloy catalysis in the selective hydrogenation of maltose to maltitol. ACS Sustain. Chem. Eng. 2021, 9, 6347–6354. [Google Scholar] [CrossRef]
- Tathod, A.; Kane, T.; Sanil, E.S.; Dhepe, P.L. Solid base supported metal catalysts for the oxidation and hydrogenation of sugars. J. Mol. Catal. A Chem. 2014, 388, 90–99. [Google Scholar] [CrossRef]
- Attia, S.; Schmidt, M.C.; Schröder, C.; Weber, J.; Baumann, A.-K.; Schauermann, S. Keto–enol tautomerization as a first step in hydrogenation of carbonyl compounds. J. Phys. Chem. C 2019, 123, 29271–29277. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.; Liu, Y.; Li, B. Hydrogenation of glucose over reduced Ni/Cu/Al hydrotalcite precursors. Catal. Commun. 2013, 35, 23–26. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, S.; Wu, S.; Liu, Y. Hydrogenation of fructose over magnetic catalyst derived from hydrotalcite precursor. Chem. Eng. Sci. 2013, 99, 171–176. [Google Scholar] [CrossRef]
- Scholz, D.; Aellig, C.; Mondelli, C.; Pérez-Ramírez, J. Continuous transfer hydrogenation of sugars to alditols with bioderived donors over Cu–Ni–Al catalysts. ChemCatChem 2015, 7, 1551–1558. [Google Scholar] [CrossRef]
- McCue, A.J.; Anderson, J.A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front. Chem. Sci. Eng. 2015, 9, 142–153. [Google Scholar] [CrossRef]
- Kim, W.-J.; Moon, S.H. Modified pd catalysts for the selective hydrogenation of acetylene. Catal. Today 2012, 185, 2–16. [Google Scholar] [CrossRef]
- Feng, J.-T.; Ma, X.-Y.; Evans, D.G.; Li, D.-Q. Enhancement of metal dispersion and selective acetylene hydrogenation catalytic properties of a supported pd catalyst. Ind. Eng. Chem. Res. 2011, 50, 1947–1954. [Google Scholar] [CrossRef]
- Ma, X.-Y.; Chai, Y.-Y.; Evans, D.G.; Li, D.-Q.; Feng, J.-T. Preparation and selective acetylene hydrogenation catalytic properties of supported Pd catalyst by the In Situ precipitation−reduction method. J. Phys. Chem. C 2011, 115, 8693–8701. [Google Scholar] [CrossRef]
- He, Y.; Fan, J.; Feng, J.; Luo, C.; Yang, P.; Li, D. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: Effect of support acidic and basic properties. J. Catal. 2015, 331, 118–127. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Zhou, D.; Feng, J.; Li, D. Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: Effect of Pd–Cu alloy formation. Catal. Sci. Technol. 2016, 6, 3027–3037. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Y.; Jing, F.; Luo, J.; Huang, Q.; Chu, W. Layered double hydroxides derived ZnO-Al2O3 supported Pd-Ag catalysts for selective hydrogenation of acetylene. Chin. J. Chem. 2017, 35, 1009–1015. [Google Scholar] [CrossRef]
- Liu, Y.N.; Feng, J.T.; He, Y.F.; Sun, J.H.; Li, D.Q. Partial hydrogenation of acetylene over a NiTi-layered double hydroxide supported PdAg catalyst. Catal. Sci. Technol. 2015, 5, 1231–1240. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; He, Y.; Feng, J.; Wu, T.; Li, D. Highly efficient pdag catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: Role of acidic and basic sites. J. Catal. 2017, 348, 135–145. [Google Scholar] [CrossRef]
- Rives, V.; Labajos, F.M.; Trujillano, R.; Romeo, E.; Royo, C.; Monzón, A. Acetylene hydrogenation on Ni–Al–Cr oxide catalysts: The role of added Zn. Appl. Clay Sci. 1998, 13, 363–379. [Google Scholar] [CrossRef]
- Monzón, A.; Romeo, E.; Royo, C.; Trujillano, R.; Labajos, F.M.; Rives, V. Use of hydrotalcites as catalytic precursors of multimetallic mixed oxides. Application in the hydrogenation of acetylene. Appl. Catal. A 1999, 185, 53–63. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Feng, J.; He, Y.; Du, Y.; Li, D. Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of alkynes: Improvement of selectivity and anti-coking ability via alloying of Ni and Cu. J. Catal. 2018, 359, 251–260. [Google Scholar] [CrossRef]
- Bridier, B.; Pérez-Ramírez, J. Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. J. Am. Chem. Soc. 2010, 132, 4321–4327. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Liu, Y.; Li, Y.; Fu, B.; Zheng, L.; Feng, J.; Li, D. Interfacial bifunctional effect promoted non-noble Cu/FeYMgOx catalysts for selective hydrogenation of acetylene. ACS Catal. 2021, 11, 11117–11128. [Google Scholar] [CrossRef]
- Mastalir, Á.; Király, Z. Pd nanoparticles in hydrotalcite: Mild and highly selective catalysts for alkyne semihydrogenation. J. Catal. 2003, 220, 372–381. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Zhou, J.; Zhang, S.; Rao, D.; He, S.; Wei, M.; Evans, D.G.; Duan, X. Metal phosphides derived from hydrotalcite precursors toward the selective hydrogenation of phenylacetylene. ACS Catal. 2015, 5, 5756–5765. [Google Scholar] [CrossRef]
- Cooper, B.H.; Donnis, B.B.L. Aromatic saturation of distillates: An overview. Appl. Catal. A 1996, 137, 203–223. [Google Scholar] [CrossRef]
- Stanislaus, A.; Cooper, B.H. Aromatic hydrogenation catalysis: A review. Catal. Rev. 1994, 36, 75–123. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (pahs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Qi, S.-C.; Wei, X.-Y.; Zong, Z.-M.; Wang, Y.-K. Application of supported metallic catalysts in catalytic hydrogenation of arenes. RSC Adv. 2013, 3, 14219–14232. [Google Scholar] [CrossRef]
- Sun, Z.H.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev. 2018, 118, 614–678. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Dong, J.; Niu, L.; Chen, G.; Ricardez-Sandoval, L.; Wen, X.; Bai, G. Highly dispersed ni/nicaalox nanocatalyst derived from ternary layered double hydroxides for phenol hydrogenation: Spatial confinement effects and basicity of the support. Appl. Clay Sci. 2021, 203, 106003. [Google Scholar] [CrossRef]
- Dong, J.; Wen, X.; Zhu, T.; Qin, J.; Wu, Z.; Chen, L.; Bai, G. Hierarchically nanostructured bimetallic NiCo/MgxNiYO catalyst with enhanced activity for phenol hydrogenation. Mol. Catal. 2020, 485, 110846. [Google Scholar] [CrossRef]
- Dong, J.; Zhu, T.; Li, H.; Sun, H.; Wang, Y.; Niu, L.; Wen, X.; Bai, G. Biotemplate-assisted synthesis of layered double oxides confining ultrafine Ni nanoparticles as a stable catalyst for phenol hydrogenation. Ind. Eng. Chem. Res. 2019, 58, 14688–14694. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Liu, Y.; He, Y.; Feng, J.; Li, D. Pd nanoparticles loaded on coalce layered double oxide nanosheets for phenol hydrogenation. ACS Appl. Nano Mater. 2021, 4, 11820–11829. [Google Scholar] [CrossRef]
- Sreenavya, A.; Sahu, A.; Sakthivel, A. Hydrogenation of lignin-derived phenolic compound eugenol over ruthenium-containing nickel hydrotalcite-type materials. Ind. Eng. Chem. Res. 2020, 59, 11979–11990. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Zheng, L.; Fan, G.; Yang, L.; Li, F. Significant promotion of surface oxygen vacancies on bimetallic coni nanocatalysts for hydrodeoxygenation of biomass-derived vanillin to produce methylcyclohexanol. ACS Sustain. Chem. Eng. 2020, 8, 6075–6089. [Google Scholar] [CrossRef]
- Ramírez-Verduzco, L.F.; Rodríguez-Rodríguez, J.E.; Jaramillo-Jacob, A.d.R. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 2012, 91, 102–111. [Google Scholar] [CrossRef]
- Cao, X.; Long, F.; Wang, F.; Zhao, J.; Xu, J.; Jiang, J. Chemoselective decarboxylation of higher aliphatic esters to diesel-range alkanes over the NiCu/Al2O3 bifunctional catalyst under mild reaction conditions. Renew. Energy 2021, 180, 1–13. [Google Scholar] [CrossRef]
- Zhao, N.; Zheng, Y.; Chen, J. Remarkably reducing carbon loss and H2 consumption on Ni–Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons. J. Energy Chem. 2020, 41, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Zhang, X.; Wang, H.; Li, Z.; Wang, W.; Yu, Q.; Zheng, L.; Wang, Y.; Zhu, J.; Wei, M. ZrO2-x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation. Appl. Catal. B 2021, 280, 119406. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhao, X.C.; Wang, A.Q.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Jia, Z.; Ji, N.; Diao, X.; Li, X.; Zhao, Y.; Lu, X.; Liu, Q.; Liu, C.; Chen, G.; Ma, L.; et al. Highly selective hydrodeoxygenation of lignin to naphthenes over three-dimensional flower-like Ni2P derived from hydrotalcite. ACS Catal. 2022, 12, 1338–1356. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, L.; Sun, L.; Gao, S.; Gao, W.; Cheng, X.; Shang, N.; Gao, Y.; Wang, C. Highly efficient hydrodeoxygenation of lignin-derivatives over ni-based catalyst. Appl. Catal. B 2021, 293, 120243. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, A.; Yang, L.; Fan, G.; Li, F. Supported Ru nanocatalyst over phosphotungstate intercalated Zn-Al layered double hydroxide derived mixed metal oxides for efficient hydrodeoxygenation of guaiacol. Mol. Catal. 2022, 528, 112503. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, Y.; Yang, L.; Fan, G.; Li, F. The promotional effect of surface Ru decoration on the catalytic performance of Co-based nanocatalysts for guaiacol hydrodeoxygenation. Mol. Catal. 2020, 497, 111224. [Google Scholar] [CrossRef]
- De Saegher, T.; Lauwaert, J.; Hanssen, J.; Bruneel, E.; Van Zele, M.; Van Geem, K.; De Buysser, K.; Verberckmoes, A. Monometallic cerium layered double hydroxide supported Pd-Ni nanoparticles as high performance catalysts for lignin hydrogenolysis. Materials 2020, 13, 691. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Chen, C.; Sun, Y.; Liu, B.; Yang, Y.; Gao, S.; Zhang, Z.; Wang, X.; Zhou, J. Ni–Mg–Al catalysts effectively promote depolymerization of rice husk lignin to bio-oil. Catal. Lett. 2020, 150, 1591–1604. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, X.; Li, H.; Lu, J.; Liu, M.; Wang, F. Carbon modification of nickel catalyst for depolymerization of oxidized lignin to aromatics. ACS Catal. 2018, 8, 1614–1620. [Google Scholar] [CrossRef]
- Wang, H.-T.; Li, Z.-K.; Yan, H.-L.; Lei, Z.-P.; Yan, J.-C.; Ren, S.-B.; Wang, Z.-C.; Kang, S.-G.; Shui, H.-F. Catalytic hydrogenolysis of lignin and model compounds over highly dispersed Ni-Ru/Al2O3 without additional H2. Fuel 2022, 326, 125027. [Google Scholar] [CrossRef]
- Kruger, J.S.; Cleveland, N.S.; Zhang, S.; Katahira, R.; Black, B.A.; Chupka, G.M.; Lammens, T.; Hamilton, P.G.; Biddy, M.J.; Beckham, G.T. Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catal. 2016, 6, 1316–1328. [Google Scholar] [CrossRef]
- Adkins, H.; Connor, R. The catalytic hydrogenation of organic compounds over copper chromite. J. Am. Chem. Soc. 1931, 53, 1091–1095. [Google Scholar] [CrossRef]
- Xu, W.; Wang, H.; Liu, X.; Ren, J.; Wang, Y.; Lu, G. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/CO2AlO4 catalyst. Chem. Commun. 2011, 47, 3924–3926. [Google Scholar] [CrossRef]
- Mizugaki, T.; Yamakawa, T.; Nagatsu, Y.; Maeno, Z.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst. ACS Sustain. Chem. Eng. 2014, 2, 2243–2247. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Z.; Zhao, F.; Cui, F.; Li, X.; Xia, C.; Chen, J. Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a non-precious Cu–Mg3AlO4.5 bifunctional catalyst. Catal. Sci. Technol. 2016, 6, 668–671. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Z.; Kang, H.; Xia, C.; Chen, J. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed cu-Al2O3 catalysts. Chin. J. Catal. 2016, 37, 700–710. [Google Scholar] [CrossRef]
- Sulmonetti, T.P.; Hu, B.; Lee, S.; Agrawal, P.K.; Jones, C.W. Reduced Cu–Co–Al mixed metal oxides for the ring-opening of furfuryl alcohol to produce renewable diols. ACS Sustain. Chem. Eng. 2017, 5, 8959–8969. [Google Scholar] [CrossRef]
- Tan, J.; Su, Y.; Hai, X.; Huang, L.; Cui, J.; Zhu, Y.; Wang, Y.; Zhao, Y. Conversion of furfuryl alcohol to 1,5-pentanediol over cucoal nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides. Mol. Catal. 2022, 526, 112391. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Du, H.; Sun, K.; Zhang, Z.; Zhang, L.; Li, Q.; Zhang, S.; Liu, Q.; Hu, X. Importance of magnesium in Cu-based catalysts for selective conversion of biomass-derived furan compounds to diols. ACS Sustain. Chem. Eng. 2020, 8, 5217–5228. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, W.; Zhang, J.; An, Z.; Ma, X.; Zhang, Z.; Jiang, Y.; Zheng, L.; Shu, X.; Song, H.; et al. Selective activation of C–OH, C–O–C, or C═C in furfuryl alcohol by engineered pt sites supported on layered double oxides. ACS Catal. 2020, 10, 8032–8041. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Sun, K.; Gao, G.; Li, C.; Zhang, L.; Zhang, S.; Xu, L.; Hu, G.; Hu, X. Selective hydrogenation of furfural and its derivative over bimetallic Nife-based catalysts: Understanding the synergy between Ni sites and Ni–Fe alloy. Renew. Energy 2021, 170, 1114–1128. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, M.; Wang, J.; Sun, K.; Zhang, L.; Zhang, S.; Hu, G.; Xu, L.; Yuan, X.; Hu, X. Selective conversion of furfural into diols over Co-based catalysts: Importance of the coordination of hydrogenation sites and basic sites. Ind. Eng. Chem. Res. 2021, 60, 10393–10406. [Google Scholar] [CrossRef]
- Roman-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982–985. [Google Scholar] [CrossRef]
- Hoang, A.T.; Ölçer, A.I.; Nižetić, S. Prospective review on the application of biofuel 2,5-dimethylfuran to diesel engine. J. Energy Inst. 2021, 94, 360–386. [Google Scholar] [CrossRef]
- Perret, N.; Grigoropoulos, A.; Zanella, M.; Manning, T.D.; Claridge, J.B.; Rosseinsky, M.J. Catalytic response and stability of nickel/alumina for the hydrogenation of 5-hydroxymethylfurfural in water. ChemSusChem 2016, 9, 521–531. [Google Scholar] [CrossRef]
- Nagpure, A.S.; Venugopal, A.K.; Lucas, N.; Manikandan, M.; Thirumalaiswamy, R.; Chilukuri, S. Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of hmf to 2,5-dimethylfuran. Catal. Sci. Technol. 2015, 5, 1463–1472. [Google Scholar] [CrossRef]
- Kong, X.; Zheng, R.; Zhu, Y.; Ding, G.; Zhu, Y.; Li, Y.-W. Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chem. 2015, 17, 2504–2514. [Google Scholar] [CrossRef]
- Hansen, T.S.; Barta, K.; Anastas, P.T.; Ford, P.C.; Riisager, A. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol. Green Chem. 2012, 14, 2457–2461. [Google Scholar] [CrossRef] [Green Version]
- Kumalaputri, A.J.; Bottari, G.; Erne, P.M.; Heeres, H.J.; Barta, K. Tunable and selective conversion of 5-hmf to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. ChemSusChem 2014, 7, 2266–2275. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Kumar, R.; Pant, K.K. Hydrotalcite supported bimetallic (Ni-Cu) catalyst: A smart choice for one-pot conversion of biomass-derived platform chemicals to hydrogenated biofuels. Fuel 2020, 277, 118111. [Google Scholar] [CrossRef]
- An, Z.; Wang, W.; Dong, S.; He, J. Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2,5-methylfuran. Catal. Today 2019, 319, 128–138. [Google Scholar] [CrossRef]
- Xia, J.; Gao, D.; Han, F.; Lv, R.; Waterhouse, G.I.N.; Li, Y. Hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a modified coal-hydrotalcite catalyst. Front. Chem. 2022, 10, 907649. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Z.; Feng, J.; Fornasiero, P.; He, Y.; Li, D. Insight into the effect of dual active Cu0/Cu+ sites in a Cu/ZnO-Al2O3 catalyst on 5-hydroxylmethylfurfural hydrodeoxygenation. ACS Sustain. Chem. Eng. 2020, 8, 15288–15298. [Google Scholar] [CrossRef]
- Ma, N.; Song, Y.; Han, F.; Waterhouse, G.I.N.; Li, Y.; Ai, S. Highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran at low temperature over a Co–N–C/NiAl-MMO catalyst. Catal. Sci. Technol. 2020, 10, 4010–4018. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, Y.; Zheng, H.; Zhu, Y.; Fang, Z. Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2017, 5, 11280–11289. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, J.; Zheng, L.; Wang, B.; Bi, R.; He, Y.; Liu, H.; Li, D. Interfacial structure-determined reaction pathway and selectivity for 5-(hydroxymethyl)furfural hydrogenation over Cu-based catalysts. ACS Catal. 2020, 10, 1353–1365. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhang, Z.; Gai, Y.; Li, Q. Insights into the interfacial effects in cu-co/ceox catalysts on hydrogenolysis of 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran. J. Colloid Interface Sci. 2022, 615, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Wang, X.; Jiang, Y.; Wu, F.; Chen, X.; Mu, X. One-step conversion of biomass-derived 5-hydroxymethylfurfural to 1,2,6-hexanetriol over Ni–Co–Al mixed oxide catalysts under mild conditions. ACS Sustain. Chem. Eng. 2014, 2, 173–180. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Sun, K.; Gao, G.; Fan, M.; Li, C.; Ming, C.; Zhang, L.; Zhang, S.; Hu, X. Cu-based nanoparticles as catalysts for selective hydrogenation of biomass-derived 5-hydroxymethylfurfural to 1,2-hexanediol. ACS Appl. Nano Mater. 2022, 5, 5882–5894. [Google Scholar] [CrossRef]
- Li, W.; Fan, G.; Yang, L.; Li, F. Highly efficient synchronized production of phenol and 2,5-dimethylfuran through a bimetallic Ni–Cu catalyzed dehydrogenation–hydrogenation coupling process without any external hydrogen and oxygen supply. Green Chem. 2017, 19, 4353–4363. [Google Scholar] [CrossRef]
- Xia, J.; Gao, D.; Han, F.; Li, Y.; Waterhouse, G.I.N. Efficient and selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a non-noble CoNCx/NiFeO catalyst. Catal. Lett. 2022, 152, 3400–3413. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, M.; Fan, G.; Yang, L.; Li, F. Efficient transfer hydrogenolysis of 5-hydromethylfurfural to 2,5-dimethylfuran over cofe bimetallic catalysts using formic acid as a sustainable hydrogen donor. Ind. Eng. Chem. Res. 2021, 60, 5826–5837. [Google Scholar] [CrossRef]
- Kataoka, H.; Kosuge, D.; Ogura, K.; Ohyama, J.; Satsuma, A. Reductive conversion of 5-hydroxymethylfurfural to 1,2,6-hexanetriol in water solvent using supported pt catalysts. Catal. Today 2020, 352, 60–65. [Google Scholar] [CrossRef]
- Fulignati, S.; Antonetti, C.; Licursi, D.; Pieraccioni, M.; Wilbers, E.; Heeres, H.J.; Raspolli Galletti, A.M. Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Appl. Catal. A 2019, 578, 122–133. [Google Scholar] [CrossRef]
- Farooqi, A.S.; Yusuf, M.; Zabidi, N.A.M.; Sanaullah, K.; Abdullah, B. Chapter 3—CO2 conversion technologies for clean fuels production. In Carbon Dioxide Capture and Conversion; Nanda, S., Vo, D.-V.N., Nguyen, V.-H., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 37–63. [Google Scholar]
- Ra, E.C.; Kim, K.Y.; Kim, E.H.; Lee, H.; An, K.; Lee, J.S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives. ACS Catal. 2020, 10, 11318–11345. [Google Scholar] [CrossRef]
- Fang, X.; Chen, C.; Jia, H.; Li, Y.; Liu, J.; Wang, Y.; Song, Y.; Du, T.; Liu, L. Progress in adsorption-enhanced hydrogenation of CO2 on layered double hydroxide (LDH) derived catalysts. J. Ind. Eng. Chem. 2021, 95, 16–27. [Google Scholar] [CrossRef]
- Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and dme by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, N.; Hui, W.M.; Jayaprakash, S.; Bawah, A.-R.; Poerjoto, A.J.; Jie, T.; Jangam, A.; Hidajat, K.; Kawi, S. Recent progress on layered double hydroxide (ldh) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal. Today 2020, 356, 490–513. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413. [Google Scholar] [CrossRef]
- Olah, G.A. Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef] [PubMed]
- Goeppert, A.; Czaun, M.; Jones, J.-P.; Surya Prakash, G.K.; Olah, G.A. Recycling of carbon dioxide to methanol and derived products—Closing the loop. Chem. Soc. Rev. 2014, 43, 7995–8048. [Google Scholar] [CrossRef]
- Yang, M.; Fan, D.; Wei, Y.; Tian, P.; Liu, Z. Recent progress in methanol-to-olefins (mto) catalysts. Adv. Mater. 2019, 31, 1902181. [Google Scholar] [CrossRef]
- Spencer, M.S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water–gas shift reaction. Top. Catal. 1999, 8, 259. [Google Scholar] [CrossRef]
- Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.-L.; et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Kühl, S.; Tarasov, A.; Zander, S.; Kasatkin, I.; Behrens, M. Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: A microstructural, thermoanalytical, and in situ xas study. Chem.—Eur. J. 2014, 20, 3782–3792. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. J. Catal. 2013, 298, 51–60. [Google Scholar] [CrossRef]
- Mureddu, M.; Lai, S.; Atzori, L.; Rombi, E.; Ferrara, F.; Pettinau, A.; Cutrufello, M.G. Ex-ldh-based catalysts for CO2 conversion to methanol and dimethyl ether. Catalysts 2021, 11, 615. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Sun, Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Appl. Catal. A 2013, 468, 442–452. [Google Scholar] [CrossRef]
- Gao, P.; Zhong, L.; Zhang, L.; Wang, H.; Zhao, N.; Wei, W.; Sun, Y. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catal. Sci. Technol. 2015, 5, 4365–4377. [Google Scholar] [CrossRef]
- Stangeland, K.; Chamssine, F.; Fu, W.; Huang, Z.; Duan, X.; Yu, Z. CO2 hydrogenation to methanol over partially embedded cu within Zn-Al oxide and the effect of indium. J. CO2 Util. 2021, 50, 101609. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Xu, X.; Yang, P.; Miao, P.; Zhang, Y.; Sun, Q. Effect of al-containing precursors on Cu/Zno/Al2O3 catalyst for methanol production. Fuel Process. Technol. 2018, 178, 148–155. [Google Scholar] [CrossRef]
- Bahmani, M.; Vasheghani Farahani, B.; Sahebdelfar, S. Preparation of high performance nano-sized Cu/ZnO/Al2O3 methanol synthesis catalyst via aluminum hydrous oxide sol. Appl. Catal. A 2016, 520, 178–187. [Google Scholar] [CrossRef]
- Zhao, F.; Fan, L.; Xu, K.; Hua, D.; Zhan, G.; Zhou, S.-F. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from ldh/mof composites for CO2 hydrogenation to methanol. J. CO2 Util. 2019, 33, 222–232. [Google Scholar] [CrossRef]
- Zhao, F.; Zhan, G.; Zhou, S.-F. Intercalation of laminar cu–al ldhs with molecular tcpp(m) (M = Zn, Co, Ni, and Fe) towards high-performance CO2 hydrogenation catalysts. Nanoscale 2020, 12, 13145–13156. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, C.; Baik, J.H.; Suh, Y.-W. Phases of Cu/Zn/Al/Zr precursors linked to the property and activity of their final catalysts in CO2 hydrogenation to methanol. Catal. Today 2020, 347, 70–78. [Google Scholar] [CrossRef]
- Frusteri, L.; Cannilla, C.; Todaro, S.; Frusteri, F.; Bonura, G. Tailoring of hydrotalcite-derived cu-based catalysts for CO2 hydrogenation to methanol. Catalysts 2019, 9, 1058. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Xiao, F.; Zhao, N.; Sun, N.; Wei, W.; Zhong, L.; Sun, Y. Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. Catal. Sci. Technol. 2012, 2, 1447–1454. [Google Scholar] [CrossRef]
- Gao, P.; Xie, R.; Wang, H.; Zhong, L.; Xia, L.; Zhang, Z.; Wei, W.; Sun, Y. Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide. J. CO2 Util. 2015, 11, 41–48. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.; Xiao, F.; Zhao, N.; Wei, W.; Zhong, L.; Sun, Y. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: Introduction of Cu2+ at different formation stages of precursors. Catal. Today 2012, 194, 9–15. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Yuan, L.; Gasem, K.A.M.; Chen, J.; Chiang, F.; Wang, Y.; Fan, M. Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods. Mol. Catal. 2017, 441, 190–198. [Google Scholar] [CrossRef]
- Hou, X.-X.; Xu, C.-H.; Liu, Y.-L.; Li, J.-J.; Hu, X.-D.; Liu, J.; Liu, J.-Y.; Xu, Q. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde. J. Catal. 2019, 379, 147–153. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Gao, P.; Zhong, L.; Li, X.; Zhang, Z.; Wang, H.; Wei, W.; Sun, Y. Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Catal. Today 2017, 281, 327–336. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Gao, P.; Zhu, H.; Zhong, L.; Wang, H.; Wei, W.; Sun, Y. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported cu-based catalyst by deposition-precipitation method. J. CO2 Util. 2017, 17, 263–272. [Google Scholar] [CrossRef]
- Kattel, S.; Ramírez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, M.; Wilmer, H.; Genger, T.; Hinrichsen, O.; Muhler, M. Deactivation of supported copper catalysts for methanol synthesis. Catal. Lett. 2003, 86, 77–80. [Google Scholar] [CrossRef]
- Kühl, S.; Schumann, J.; Kasatkin, I.; Hävecker, M.; Schlögl, R.; Behrens, M. Ternary and quaternary Cr or Ga-containing ex-ldh catalysts—Influence of the additional oxides onto the microstructure and activity of Cu/ZnAl2O4 catalysts. Catal. Today 2015, 246, 92–100. [Google Scholar] [CrossRef]
- Li, M.M.J.; Chen, C.; Ayvalı, T.; Suo, H.; Zheng, J.; Teixeira, I.F.; Ye, L.; Zou, H.; O’Hare, D.; Tsang, S.C.E. CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors. ACS Catal. 2018, 8, 4390–4401. [Google Scholar] [CrossRef]
- Zheng, H.; Narkhede, N.; Zhang, G.; Zhang, H.; Ma, L.; Yu, S. Highly dispersed cu catalyst based on the layer confinement effect of Cu/Zn/Ga-ldh for methanol synthesis. Mol. Catal. 2021, 516, 111984. [Google Scholar] [CrossRef]
- Younas, M.; Loong Kong, L.; Bashir, M.J.K.; Nadeem, H.; Shehzad, A.; Sethupathi, S. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy Fuels 2016, 30, 8815–8831. [Google Scholar] [CrossRef]
- Wei, W.; Jinlong, G. Methanation of carbon dioxide: An overview. Front. Chem. Sci. Eng. 2011, 5, 2–10. [Google Scholar] [CrossRef]
- Guo, X.; Peng, Z.; Hu, M.; Zuo, C.; Traitangwong, A.; Meeyoo, V.; Li, C.; Zhang, S. Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation. Ind. Eng. Chem. Res. 2018, 57, 9102–9111. [Google Scholar] [CrossRef]
- Pan, Q.; Peng, J.; Sun, T.; Wang, S.; Wang, S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78. [Google Scholar] [CrossRef]
- He, L.; Lin, Q.; Liu, Y.; Huang, Y. Unique catalysis of ni-al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between ni nanoparticles and a basic support. J. Energy Chem. 2014, 23, 587–592. [Google Scholar] [CrossRef]
- Sun, C.; Świrk, K.; Wierzbicki, D.; Motak, M.; Grzybek, T.; Da Costa, P. On the effect of yttrium promotion on ni-layered double hydroxides-derived catalysts for hydrogenation of CO2 to methane. Int. J. Hydrogen Energy 2021, 46, 12169–12179. [Google Scholar] [CrossRef]
- Summa, P.; Samojeden, B.; Motak, M.; Wierzbicki, D.; Alxneit, I.; Świerczek, K.; Da Costa, P. Investigation of Cu promotion effect on hydrotalcite-based nickel catalyst for CO2 methanation. Catal. Today 2022, 384, 133–145. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, J.; Li, J.; Dai, H.; Jing, F.; Liu, Y.; Chu, W. Enhanced low-temperature catalytic performance in CO2 hydrogenation over Mn-promoted NiMgAl catalysts derived from quaternary hydrotalcite-like compounds. Int. J. Hydrogen Energy 2021, 46, 33107–33119. [Google Scholar] [CrossRef]
- Aldana, P.A.U.; Ocampo, F.; Kobl, K.; Louis, B.; Thibault-Starzyk, F.; Daturi, M.; Bazin, P.; Thomas, S.; Roger, A.C. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando Ir spectroscopy. Catal. Today 2013, 215, 201–207. [Google Scholar] [CrossRef]
- Liu, J.; Bing, W.; Xue, X.; Wang, F.; Wang, B.; He, S.; Zhang, Y.; Wei, M. Alkaline-assisted Ni nanocatalysts with largely enhanced low-temperature activity toward CO2 methanation. Catal. Sci. Technol. 2016, 6, 3976–3983. [Google Scholar] [CrossRef]
- Guo, X.; Gao, D.; He, H.; Traitangwong, A.; Gong, M.; Meeyoo, V.; Peng, Z.; Li, C. Promotion of CO2 methanation at low temperature over hydrotalcite-derived catalysts-effect of the tunable metal species and basicity. Int. J. Hydrogen Energy 2021, 46, 518–530. [Google Scholar] [CrossRef]
- Yin, L.; Chen, X.; Sun, M.; Zhao, B.; Chen, J.; Zhang, Q.; Ning, P. Insight into the role of fe on catalytic performance over the hydrotalcite-derived Ni-based catalysts for CO2 methanation reaction. Int. J. Hydrogen Energy 2022, 47, 7139–7149. [Google Scholar] [CrossRef]
- Świrk, K.; Summa, P.; Wierzbicki, D.; Motak, M.; Da Costa, P. Vanadium promoted Ni(Mg,Al)O hydrotalcite-derived catalysts for CO2 methanation. Int. J. Hydrogen Energy 2021, 46, 17776–17783. [Google Scholar] [CrossRef]
- Mebrahtu, C.; Krebs, F.; Perathoner, S.; Abate, S.; Centi, G.; Palkovits, R. Hydrotalcite based Ni–Fe/(Mg, Al)Ox catalysts for CO2 methanation—Tailoring fe content for improved co dissociation, basicity, and particle size. Catal. Sci. Technol. 2018, 8, 1016–1027. [Google Scholar] [CrossRef]
- He, F.; Zhuang, J.; Lu, B.; Liu, X.; Zhang, J.; Gu, F.; Zhu, M.; Xu, J.; Zhong, Z.; Xu, G.; et al. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation. Appl. Catal. B 2021, 293, 120218. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, R.; Liu, N.; Dai, C.; Yu, G.; Wang, N.; Chen, B. In Situ Ce-doped catalyst derived from NiCeAl-ldhs with enhanced low-temperature performance for CO2 methanation. Appl. Surf. Sci. 2022, 579, 152204. [Google Scholar] [CrossRef]
- Lee, W.J.; Li, C.; Prajitno, H.; Yoo, J.; Patel, J.; Yang, Y.; Lim, S. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal. Today 2021, 368, 2–19. [Google Scholar] [CrossRef]
- Zhang, L.; Bian, L.; Zhu, Z.; Li, Z. La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance. Int. J. Hydrogen Energy 2018, 43, 2197–2206. [Google Scholar] [CrossRef]
- Ho, P.H.; de Luna, G.S.; Angelucci, S.; Canciani, A.; Jones, W.; Decarolis, D.; Ospitali, F.; Aguado, E.R.; Rodríguez-Castellón, E.; Fornasari, G.; et al. Understanding structure-activity relationships in highly active la promoted Ni catalysts for CO2 methanation. Appl. Catal. B 2020, 278, 119256. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over pd/CeO2 catalysts. ACS Catal. 2020, 10, 11493–11509. [Google Scholar] [CrossRef]
- Guo, X.; He, H.; Traitangwong, A.; Gong, M.; Meeyoo, V.; Li, P.; Li, C.; Peng, Z.; Zhang, S. Ceria imparts superior low temperature activity to nickel catalysts for CO2 methanation. Catal. Sci. Technol. 2019, 9, 5636–5650. [Google Scholar] [CrossRef]
- Malkar, R.S.; Yadav, G.D. Selectivity engineering in one pot synthesis of raspberry ketone: Crossed aldol condensation of p-hydroxybenzaldehyde and acetone and hydrogenation over novel Ni/Zn-La mixed oxide. ChemistrySelect 2019, 4, 2140–2152. [Google Scholar] [CrossRef]
- Novodárszki, G.; Onyestyák, G.; Barthos, R.; Wellisch, Á.F.; Thakur, A.J.; Deka, D.; Valyon, J. Guerbet alkylation of acetone by ethanol and reduction of product alkylate to alkane over tandem nickel/Mg,Al-hydrotalcite and nickel molybdate/γ-alumina catalyst systems. React. Kinet. Mech. Catal. 2017, 121, 69–81. [Google Scholar] [CrossRef]
- Fridrich, B.; Stuart, M.C.A.; Barta, K. Selective coupling of bioderived aliphatic alcohols with acetone using hydrotalcite derived mg–al porous metal oxide and raney nickel. ACS Sustain. Chem. Eng. 2018, 6, 8468–8475. [Google Scholar] [CrossRef]
- Onyestyák, G.; Novodárszki, G.; Farkas Wellisch, Á.; Pilbáth, A. Upgraded biofuel from alcohol–acetone feedstocks over a two-stage flow-through catalytic system. Catal. Sci. Technol. 2016, 6, 4516–4524. [Google Scholar] [CrossRef]
- Ramos, R.; Tišler, Z.; Kikhtyanin, O.; Kubička, D. Towards understanding the hydrodeoxygenation pathways of furfural–acetone aldol condensation products over supported Pt catalysts. Catal. Sci. Technol. 2016, 6, 1829–1841. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Li, N.; Wang, W.; Wang, A.; Zhang, T.; Cong, Y.; Wang, X.; Huber, G.W. Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal. Ind. Eng. Chem. Res. 2015, 54, 11825–11837. [Google Scholar] [CrossRef]
- Onyestyák, G.; Novodárszki, G.; Barthos, R.; Klébert, S.; Wellisch, Á.F.; Pilbáth, A. Acetone alkylation with ethanol over multifunctional catalysts by a borrowing hydrogen strategy. RSC Adv. 2015, 5, 99502–99509. [Google Scholar] [CrossRef]
- Al-Wadaani, F.; Kozhevnikova, E.F.; Kozhevnikov, I.V. Pd supported on znii–criii mixed oxide as a catalyst for one-step synthesis of methyl isobutyl ketone. J. Catal. 2008, 257, 199–205. [Google Scholar] [CrossRef]
- Nikolopoulos, A.A.; Jang, B.W.L.; Spivey, J.J. Acetone condensation and selective hydrogenation to MIBK on Pd and Pt hydrotalcite-derived Mg–Al mixed oxide catalysts. Appl. Catal. A 2005, 296, 128–136. [Google Scholar] [CrossRef]
- Das, N.N.; Das, R. Synthesis, characterization and activation of quaternary layered double hydroxides for the one-pot synthesis of methyl isobutyl ketone. React. Kinet. Mech. Catal. 2010, 99, 397–408. [Google Scholar] [CrossRef]
- Hetterley, R.D.; Mackey, R.; Jones, J.T.A.; Khimyak, Y.Z.; Fogg, A.M.; Kozhevnikov, I.V. One-step conversion of acetone to methyl isobutyl ketone over pd-mixed oxide catalysts prepared from novel layered double hydroxides. J. Catal. 2008, 258, 250–255. [Google Scholar] [CrossRef]
- Shen, Y.; Yi, J.; Yan, Y.; Liu, D.; Fan, L.; Li, S. Hydrogenation and condensation of acetone over Ni/MgO–Al2O3 prepared from hydrotalcite precursors. J. Chem. Eng. Jpn. 2016, 49, 656–662. [Google Scholar] [CrossRef]
- Basu, S.; Sarkar, J.J.; Pradhan, N.C. Selective synthesis of MIBK via acetone hydrogenation over Cu-Al mixed oxide catalysts. Catal. Today 2021, 404, 182–189. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Shao, S.; Hu, X.; Cai, Y. Aldol condensation/hydrogenation for jet fuel from biomass-derived ketone platform compound in one pot. Fuel Process. Technol. 2021, 215, 106768. [Google Scholar] [CrossRef]
- Shao, S.; Hu, X.; Dong, W.; Li, X.; Zhang, H.; Xiao, R.; Cai, Y. Integrated C–C coupling/hydrogenation of ketones derived from biomass pyrolysis for aviation fuel over Ni/Mg–Al–O/Ac bifunctional catalysts. J. Clean. Prod. 2021, 282, 124331. [Google Scholar] [CrossRef]
- Sheng, X.; Li, G.; Wang, W.; Cong, Y.; Wang, X.; Huber, G.W.; Li, N.; Wang, A.; Zhang, T. Dual-bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. AIChE J. 2016, 62, 2754–2761. [Google Scholar] [CrossRef]
- Sheng, X.; Li, N.; Li, G.; Wang, W.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T. Direct synthesis of renewable dodecanol and dodecane with methyl isobutyl ketone over dual-bed catalyst systems. ChemSusChem 2017, 10, 825–829. [Google Scholar] [CrossRef]
- Luggren, P.J.; Apesteguía, C.R.; Di Cosimo, J.I. Upgrading of biomass-derived 2-hexanol to liquid transportation fuels on Cu–Mg–Al mixed oxides. Effect of Cu content. Fuel 2016, 177, 28–38. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhou, B.; Wang, L. Fe/FeOx embedded in LDH catalyzing C-C bond forming reactions of furfural with alcohols in the absence of a homogeneous base. Mol. Catal. 2020, 493, 111056. [Google Scholar] [CrossRef]
- Hernández, W.Y.; De Vlieger, K.; Van Der Voort, P.; Verberckmoes, A. Ni−Cu hydrotalcite-derived mixed oxides as highly selective and stable catalysts for the synthesis of β-branched bioalcohols by the guerbet reaction. ChemSusChem 2016, 9, 3196–3205. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lin, L.; Tan, Y.; Wang, S.; Yang, W.; Chen, X.; Luo, W.; Ding, Y.-J. High performing and stable Cu/NiAlOx catalysts for the continuous catalytic conversion of ethanol into butanol. ChemCatChem 2022, 14, e202200539. [Google Scholar]
- Pang, J.; Zheng, M.; He, L.; Li, L.; Pan, X.; Wang, A.; Wang, X.; Zhang, T. Upgrading ethanol to n-butanol over highly dispersed Ni–MgAlO catalysts. J. Catal. 2016, 344, 184–193. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Li, K.; Zhang, X.; Wang, L.; Zou, J.-J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B 2018, 227, 386–408. [Google Scholar] [CrossRef]
- Wang, J.; Du, C.; Wei, Q.; Shen, W. Two-dimensional pd nanosheets with enhanced catalytic activity for selective hydrogenation of nitrobenzene to aniline. Energy Fuels 2021, 35, 4358–4366. [Google Scholar] [CrossRef]
- Kowalewski, E.; Krawczyk, M.; Słowik, G.; Kocik, J.; Pieta, I.S.; Chernyayeva, O.; Lisovytskiy, D.; Matus, K.; Śrębowata, A. Continuous-flow hydrogenation of nitrocyclohexane toward value-added products with CuZnAl hydrotalcite derived materials. Appl. Catal. A 2021, 618, 118134. [Google Scholar] [CrossRef]
- Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, X.Y.; Zhang, L.; Wang, A.; Li, L.; Pan, X.; Miao, S.; Haruta, M.; Wei, H.; Wang, H. ZnAl-hydrotalcite-supported Au25 nanoclusters as precatalysts for chemoselective hydrogenation of 3-nitrostyrene. Angew. Chem. 2017, 129, 2753–2757. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, X.Y.; Li, L.; Kang, L.; Wang, A.; Zhang, T. Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene. J. Catal. 2018, 364, 174–182. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, H.; Li, J.; Bing, W.; Yang, W.; Liu, Y.; Chen, J.; Wei, C.; Zhou, L.; Fang, S. Effects of preparation parameters of nial oxide-supported Au catalysts on nitro compounds chemoselective hydrogenation. ACS Omega 2020, 5, 7011–7017. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, J.; Ma, L. Recent advances in selective catalytic hydrogenation of nitriles to primary amines. J. Catal. 2021, 404, 475–492. [Google Scholar] [CrossRef]
- Tichit, D.; Medina, F.; Durand, R.; Mateo, C.; Coq, B.; Sueiras, J.E.; Salagre, P. Use of ni containing anionic clay minerals as precursors of catalysts for the hydrogenation of nitriles. In Studies in Surface Science and Catalysis; Blaser, H.U., Baiker, A., Prins, R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 108, pp. 297–304. [Google Scholar]
- Coq, B.; Tichit, D.; Ribet, S. Co/Ni/Mg/Al layered double hydroxides as precursors of catalysts for the hydrogenation of nitriles: Hydrogenation of acetonitrile. J. Catal. 2000, 189, 117–128. [Google Scholar] [CrossRef]
- Cao, Y.; Niu, L.; Wen, X.; Feng, W.; Huo, L.; Bai, G. Novel layered double hydroxide/oxide-coated nickel-based core–shell nanocomposites for benzonitrile selective hydrogenation: An interesting water switch. J. Catal. 2016, 339, 9–13. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Dong, J.; Ma, Y.; Sun, H.; Niu, L.; Lan, X.; Cao, L.; Bai, G. A stable nickel-based catalyst derived from layered double hydroxide for selective hydrogenation of benzonitrile. Mol. Catal. 2019, 475, 110452. [Google Scholar] [CrossRef]
- Sheng, M.; Yamaguchi, S.; Nakata, A.; Yamazoe, S.; Nakajima, K.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T. Hydrotalcite-supported cobalt phosphide nanorods as a highly active and reusable heterogeneous catalyst for ammonia-free selective hydrogenation of nitriles to primary amines. ACS Sustain. Chem. Eng. 2021, 9, 11238–11246. [Google Scholar] [CrossRef]
Catalyst | Preparation Method | Surface Area (m2/g) | Particle Size (nm) | Other Properties | Ref. |
---|---|---|---|---|---|
PdAg/ZnTi-LDH | Coprecipitation and photochemical reduction | 131 | 5 | Pore volume 2.63 cm3·g−1; mean pore size 80.3 nm | [22] |
Pt/CoAl-MMO | Coprecipitation and reduction–deposition | 87 | 4–5 | Pore volume 0.29 cm3·g−1; mean pore diameter 3.83 nm | [23] |
CuMgAl-MMO | Urea hydrolysis | 213 | − | Pore volume 0.95 cm3·g−1 | [24] |
CuCoAl-MMO | Coprecipitation | 92.9 | 3.1 | Pore volume 0.69 cm3·g−1 | [25] |
NiMoAl-MMO | Coprecipitation and ion exchange | 93 | 4.6 | Pore volume 0.13 cm3·g−1; total acid sites 2.077 mmol·g−1 | [26] |
NiIn-IMC | Co-precipitation | 126.4 | 5.8 | − | [27] |
NiMo-IMC | In situ co-reduction | 189.2 | 18.6 | − | [28] |
Catalyst | Substrate | Reaction Conditions | Conversion (%) | Product Selectivity (%) | Ref. |
---|---|---|---|---|---|
Pt/ZnSnAl/C | 2-Pentenal | 80 °C; 3.0 MPa H2 | 28.5 | 2−Pentenol, 92.0 | [54] |
Cu/MgAl-HT | Benzaldehyde | 250 °C | 68 | Benzyl alcohol, 93 | [47] |
Ru/MgAl-HT | Benzaldehyde | 100 °C; 3.5 MPa H2 | >63 | Cyclohexanemethanol, 91.9 | [49] |
Au/Mg2AlO | Crotonaldehyde | 120 °C; 0.93 MPa H2 | 23.6 | Crotyl alcohol, 62 | [51] |
Pt/MgAl-LDH | Cinnamaldehyde | 80 °C; 2 MPa H2 | 92.6 | Cinnamyl alcohol, 75.5 | [52] |
Pt/CoAl-MMO | Cinnamaldehyde | 70 °C; 2 MPa H2 | 99.7 | Cinnamyl alcohol, 72.5 | [23] |
Au/ZnAl | Cinnamaldehyde | 130 °C; 1.5 MPa H2 | 100 | Cinnamyl alcohol, 95.7 | [53] |
Pt/MgAl-LDH | Cinnamaldehyde | 60 °C; 1 MPa H2 | 79.7 | Cinnamyl alcohol, 85.4 | [55] |
PtGa/MgAlGa | Cinnamaldehyde | 70 °C; 3 MPa H2 | 52.8 | Cinnamyl alcohol, 70.7 | [56] |
Ir/MgAlFe | Cinnamaldehyde | 60 °C; 3 MPa H2 | 94.4 | Cinnamyl alcohol, 79.1 | [57] |
Pt/CoAl-LDH | Cinnamaldehyde | 70 °C; 3 MPa H2 | 94.3 | Cinnamyl alcohol, 91.9 | [58] |
CoGa-IMC | Cinnamaldehyde | 100 °C; 2 MPa H2 | 100 | Cinnamyl alcohol, 96 | [59] |
NiZnAl/C | Citral | 140 °C; 1 MPa H2 | 100 | Citronellol, 92.3 | [60] |
CoSn-IMC | Citral | 160 °C; 4.0 MPa H2 | 100 | Citronellol, 67.6 | [61] |
CuZnAl-MMO | Citral | 80 °C; 1.0 MPa H2 | 99.8 | Allylic alcohol, 75.1 | [62] |
NiBi-IMC | Unsaturated aldehydes | 100 °C; 2 MPa H2 | >90 | Unsaturated alcohol, >93.2 | [43] |
NiIn-IMC | Unsaturated aldehydes | 120–145 °C; 3 MPa H2 | >56 | Unsaturated alcohol, >44 | [27] |
Pt/MgCoAl | Unsaturated aldehydes | 80 °C; 2 MPa H2 | >87 | Unsaturated alcohol, >80 | [63] |
Catalyst | Reaction Condition | Conversion (%) | Major Product Selectivity (%) | Ref. |
---|---|---|---|---|
NiAl-MMO | 80 °C; 2 MPa H2 | 96.0 | THFDM, 74 | [180] |
Ru/MgAl-HT | 220 °C; 1 MPa H2 | 100.0 | DMF, 58 | [181] |
NiAl-MMO | 180 °C; 1.2 MPa H2 | 100.0 | DMTHF, 97.4 | [182] |
Ni-Cu/HT | 90 °C; 1 MPa H2 | 99 | DMF, 67 | [185] |
CoZnAl-MMO | 130 °C; 0.7 MPa H2 | >99.9 | DMF, 74.2 | [186] |
CuCoNiAl-MMO | 180 °C; 1 MPa H2, | 99.8 | DMF, 95.3 | [187] |
CuZnAl-MMO | 180 °C; 1.2 MPa H2 | 100 | DMF, 90.1 | [188] |
Co−N-C/NiAl−MMO | 170 °C; 1.5 MPa H2 | 99.9 | DMF, 100 | [189] |
NiZnAl | 100 °C; 1.5 MPa H2 | 100 | FDM, 98.2 | [190] |
Cu@Co/CoAlOx | 180 °C; 1.2 MPa H2 | 100 | DHTMF, 83.6 | [191] |
CuCoCe-MMO | 210 °C; 1.5 MPa H2 | 100 | DMF, 96.5 | [192] |
NiCoAl-MMO | 120 °C; 4 MPa H2 | 100 | 1,2,6-HTO, 64.5 | [193] |
Cu1.5Mg1.5Al | 150 °C, 6 MPa H2 | 100 | 1,2-HDO, 40 | [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, W.; Li, C.; Zhang, C. Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides. Catalysts 2022, 12, 1484. https://doi.org/10.3390/catal12111484
Wang Z, Zhang W, Li C, Zhang C. Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides. Catalysts. 2022; 12(11):1484. https://doi.org/10.3390/catal12111484
Chicago/Turabian StyleWang, Zhihui, Wei Zhang, Cuiqing Li, and Chen Zhang. 2022. "Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides" Catalysts 12, no. 11: 1484. https://doi.org/10.3390/catal12111484
APA StyleWang, Z., Zhang, W., Li, C., & Zhang, C. (2022). Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides. Catalysts, 12(11), 1484. https://doi.org/10.3390/catal12111484