Organocatalysis for the Asymmetric Michael Addition of Aldehydes and α,β-Unsaturated Nitroalkenes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Asymmetric Michael Reaction of Various Aldehydes and α,β-Unsaturated Nitroalkenes Using a Thiourea Catalyst
2.1.1. Effect of the DPEN Catalyst, Temperature, and Equiv.
2.1.2. Solvent Effect on the Reaction
2.1.3. Effects of the Types of α,β-Unsaturated Nitroalkenes on the Reaction
2.1.4. Reaction Effect Depending on the Type of Aldehyde
2.1.5. Reaction Mechanism Inferred through Expected Transition States
3. Materials and Methods
3.1. Instruments and Reagents
3.2. Experimental Method
3.2.1. Synthesis of N-mono-thiourea Catalyst
3.2.2. Asymmetric Michael Reaction of Chitons and α,β-Unsaturated Nitroalkenes Using a Chiral Thiourea Catalyst
3.2.3. General Procedure of the Racemic Michael Addition
3.3. Results of DFT Calculations and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacMillan, D.W.C. The advent and development of organocatalysis. Nature 2008, 455, 304–308. [Google Scholar] [CrossRef] [PubMed]
- List, B.; Pojarliev, P.; Martin, H.J. Efficient Proline-Catalyzed Michael Additions of Unmodified Ketones to Nitro Olefins. Org. Lett. 2001, 3, 2423–2425. [Google Scholar] [CrossRef]
- Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.; Tanaka, F.; BarbasIII, C.F. Organocatalytic Direct Michael Reaction of Ketones and Aldehydes with β-Nitrostyrene in Brine. J. Am. Chem. Soc. 2006, 128, 4966–4967. [Google Scholar] [CrossRef]
- Dalko, P.L.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed. 2004, 43, 5138. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Perrier, A.; Linhardt, R.; Travers, L.; Wittmann, S.; Caminade, A.-M.; Majoral, J.-P.; Reiser, O.; Ouali, A. Dendrimers or Nanoparticles as Supports for the Design of Efficient and Recoverable Organocatalysts? Adv. Synth. Catal. 2013, 355, 1748–1754. [Google Scholar] [CrossRef]
- De Simone, N.A.; Meninno, S.; Talotta, C.; Gaeta, C.; Neri, P.; Lattanzi, A. Solvent-Free Enantioselective Michael Reactions Catalyzed by a Calixarene-Based Primary Amine Thiourea. J. Org. Chem. 2018, 83, 10318–10325. [Google Scholar] [CrossRef] [PubMed]
- Seayad, J.; List, B. Asymmetric organocatalysis. Org. Biomol. Chem. 2005, 3, 719. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ji, S.; Wei, K.; Lin, J. Epiandrosterone-derived prolinamide as an efficient asymmetric catalyst for Michael addition reactions of aldehydes to nitroalkenes. RSC Adv. 2014, 4, 30850–30856. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Lin, J.; Wei, K. Organocatalytic asymmetric Michael addition of aldehydes and ketones to nitroalkenes catalyzed by adamantoyl l-prolinamide. RSC Adv. 2015, 5, 5863–5874. [Google Scholar] [CrossRef]
- Castán, A.; Badorrey, R.; Gálvez, J.A.; López-Ram-de-Víu, P.; Díaz-de-Villegas, M.D. Michael addition of carbonyl compounds to nitroolefins under the catalysis of new pyrrolidine-based bifunctional organocatalysts. Org. Biomol. Chem. 2018, 16, 924–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorde, A.B.; Ramapanicker, R. d-Prolyl-2-(trifluoromethylsulfonamidopropyl)pyrrolidine: An Organocatalyst for Asymmetric Michael Addition of Aldehydes to β-Nitroalkenes at Ambient Conditions. J. Org. Chem. 2019, 84, 1523–1533. [Google Scholar] [CrossRef]
- Tsogoeva, S.B. Recent Advances in Asymmetric Organocatalytic 1,4-Conjugate Additions. Eur. J. Org. Chem. 2007, 11, 1701–1716. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Wang, M.; He, P.; Lin, L.; Feng, X. Enantioselective Synthesis of 3,4-Dihydropyran Derivatives via Organocatalytic Michael Reaction of α,β-Unsaturated Enones. J. Org. Chem. 2012, 77, 4136–4142. [Google Scholar] [CrossRef]
- Kwiatkowski, P.; Lyzwa, D. Effect of High Pressure on the Organocatalytic Asymmetric Michael Reaction: Highly Enantioselective Synthesis of γ-Nitroketones with Quaternary Stereogenic Centers. Org. Lett. 2011, 13, 3624–3627. [Google Scholar] [CrossRef]
- Qing, G.; You, S.L. Desymmetrization of cyclohexadienones viacinchonine derived thiourea-catalyzed enantioselective aza-Michael reaction and total synthesis of (-)-Mesembrine. Chem. Sci. 2011, 2, 1519–1522. [Google Scholar]
- Li, H.Y.; Xu, L.W. A Total Synthesis of Paeoveitol. Org. Lett. 2011, 15, 3698–3701. [Google Scholar]
- Sigman, M.; Jacobsen, E.N. Schiff Base Catalysts for the Asymmetric Strecker Reaction Identified and Optimized from Parallel Synthetic Libraries. J. Am. Chem. Soc. 1998, 120, 4901–4902. [Google Scholar] [CrossRef]
- Uraguchi, D.; Terada, M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356–5357. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.G.; Jacobsen, E.N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev. 2007, 107, 5713–5743. [Google Scholar] [CrossRef]
- McCooey, S.H.; McCabe, T.; Connon, S.J. Stereoselective Synthesis of Highly Functionalized Nitrocyclopropanes via Organocatalyic Conjugate Addition to Nitroalkenes. J. Org. Chem. 2006, 71, 7494–7497. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Torres, H.; Barbas, C.F., III. Rationally Designed Amide Donors for Organocatalytic Asymmetric Michael Reactions. Angew. Chem. Int. Ed. 2012, 51, 5381. [Google Scholar] [CrossRef] [PubMed]
- Curti, C.; Casiraghi, G. Bifunctional Cinchona Alkaloid/Thiourea Catalyzes Direct and Enantioselective Vinylogous Michael Addition of 3-Alkylidene Oxindoles to Nitroolefins. Angew. Chem. Int. Ed. 2012, 51, 6304–6308. [Google Scholar] [CrossRef]
- Mase, N.; Thayumanavan, R.; Tanaka, F.; Barbas, C.F. Direct Asymmetric Organocatalytic Michael Reactions of α,α-Disubstituted Aldehydes with β-Nitrostyrenes for the Synthesis of Quaternary Carbon-Containing Products. Org. Lett. 2004, 6, 2527–2530. [Google Scholar] [CrossRef]
- Cao, C.L.; Ye, M.C.; Sun, X.L.; Tang, Y. Pyrrolidine−Thiourea as a Bifunctional Organocatalyst: Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins. Org. Lett. 2006, 8, 2901–2904. [Google Scholar] [CrossRef]
- McCooey, S.H.; Connon, S.J. Readily Accessible 9-epi-amino Cinchona Alkaloid Derivatives Promote Efficient, Highly Enantioselective Additions of Aldehydes and Ketones to Nitroolefins. Org. Lett. 2007, 9, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Liu, S.P.; Yan, M.; Chan, A.S.C. Highly enantioselective conjugate addition of aldehydes to nitroolefins catalyzed by chiral bifunctional sulfamides. Chem. Commun. 2009, 833–835. [Google Scholar] [CrossRef]
- Ting, Y.F.; Chang, C.; Reddy, R.J.; Magar, D.R.; Chen, K. Pyrrolidinyl–Camphor Derivatives as a New Class of Organocatalyst for Direct Asymmetric Michael Addition of Aldehydes and Ketones to β-Nitroalkenes. Chem. Eur. J. 2010, 16, 7030–7038. [Google Scholar] [CrossRef] [PubMed]
- Genc, H.N.; Ozgun, U.; Sirit, A. Design, synthesis and application of chiraltetraoxacalix[2]arene[2]triazine base dorganocatalysts in asymmetric Michael additionreactions. Chirality 2019, 31, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yu, S.; Ma, D. Highly Efficient Catalytic System for Enantioselective MichaelAddition of Aldehydes to Nitroalkenes in Water. Angew. Chem. Int. Ed. 2008, 47, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Nugent, T.C.; Shoaib, M.; Shoaib, A. Practical access to highly enantioenriched quaternary carbon Michael adducts using simple organocatalysts. Org. Biomol. Chem. 2011, 9, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Nam, S.H.; Kim, B.S.; Ha, D.C. Organocatalytic Asymmetric Michael Addition of Ketones to α,β-Unsaturated Nitro Compounds. Catalysts 2020, 10, 618. [Google Scholar] [CrossRef]
- Shim, J.H.; Park, S.J.; Ahn, B.K.; Lee, J.Y.; Kim, B.S.; Ha, D.C. Enantioselective Thiolysis and Aminolysis of Cyclic Anhydrides Using a Chiral Diamine-Derived Thiourea Catalyst. ACS Omega 2021, 6, 34501–34511. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Ahn, B.K.; Lee, J.Y..; Kim, H.S.; Ha, D.C. Organocatalysis for the Asymmetric Michael Addition of Cycloketones and α,β-Unsaturated Nitroalkenes. Catalysts 2021, 11, 1004. [Google Scholar] [CrossRef]
- Shim, J.H.; Hong, Y.; Kim, S.H.; Kim, J.H.; Ha, D.C. Organocatalytic Asymmetric Michael Addition in Aqueous Media by a Hydrogen-Bonding Catalyst and Application for Inhibitors of GABAB Receptor. Catalysts 2021, 11, 1134. [Google Scholar] [CrossRef]
- Gorde, A.B.; Ramapanicker, R. Enantioselective Michael Addition of Aldehydes to β-Nitrostyrenes Catalyzed by (S)-N-(D-Prolyl)-1-triflicamido-3-phenylpropan-2-amine. Eur. J. Org. Chem. 2019, 26, 4745–4751. [Google Scholar] [CrossRef]
- Ying, A.; Liu, S.; Li, Z.; Chen, G.; Yang, J.; Yan, H.; Xu, S. Magnetic Nanoparticles-Supported Chiral Catalyst with an Imidazolium Ionic Moiety: An Efficient and Recyclable Catalyst for Asymmetric Michael and Aldol Reactions. Adv. Synth. Catal. 2016, 358, 2116–2125. [Google Scholar] [CrossRef]
- Shim, J.H.; Kim, M.J.; Lee, J.Y.; Kim, K.H.; Ha, D.C. Organocatalytic Asymmetric Aldol Reaction Using Protonated Chiral 1,2-Diamines. Tetrahedron Lett. 2020, 61, 152295. [Google Scholar] [CrossRef]
- Luis, Á.S.; Eusebio, J.; Alexa, B.A.C.; Jorge, P.F.; Fanny, A.C.R.; Jaime, E. Efficient Solvent-Free Preparation of Imines, and Their Subsequent Oxidation with m-CPBA to Afford Oxaziridines. Green Sustain. Chem. 2019, 9, 143–154. [Google Scholar]
- José, D.R.R.; Jaime, E.; Agustín, L.M.; Alain, M.; Edmundo, C. Thermodynamically controlled chemoselectivity in lipase-catalyzed aza-Michael additions. J. Mol. Catal. B Enzym. 2015, 112, 76–82. [Google Scholar]
Entry | Catalyst | Temp (°C) | Equiv. | mol% | Yield (%) a | ee (%) b |
---|---|---|---|---|---|---|
1 | 1a | rt | 10 | 10 | 50 | 92 |
2 | 1b | rt | 10 | 10 | 91 | 97 |
3 | 1c | rt | 10 | 10 | 67 | 93 |
4 | 1d | rt | 10 | 10 | 70 | 93 |
5 | 1e | rt | 10 | 10 | 50 | 92 |
6 | 1f | rt | 10 | 10 | 68 | 97 |
7 | 1g | rt | 10 | 10 | 86 | 94 |
8 | 1h | rt | 10 | 10 | N.R | - |
9 | 1i | rt | 10 | 10 | 45 | 94 |
10 | 1b | 10 | 10 | 74 | 97 | |
11 | 1b | rt | 7 | 10 | 86 | 97 |
12 | 1b | rt | 5 | 10 | 85 | 97 |
13 | 1b | rt | 10 | 5 | 83 | 96 |
Entry | Solvent | Yield (%) a | ee (%) b |
---|---|---|---|
1 | n-hexane | 52 | 97 |
2 | CHCl3 | 80 | 97 |
3 | THF | 60 | 96 |
4 | benzene | 87 | 97 |
5 | EtOH | 58 | 97 |
6 | toluene | 85 | 97 |
7 c | water | 99 | 99 |
8 | CH2Cl2 | 85 | 97 |
Entry | Ar | Yield (%) a | ee (%) b |
---|---|---|---|
1 | Ph | 99 | 99 |
2 | 4-Cl-Ph | 94 | 99 |
3 | 4-Br-Ph | 94 | 98 |
4 | 4-Me-Ph | 94 | 99 |
5 | 2-Furyl | 96 | 99 |
6 | 4-MeO-Ph | 97 | 99 |
7 | 2-MeO-Ph | 96 | 99 |
8 | 4-OH-Ph | 96 | 99 |
Entry | R1 | R2 | Yield (%) a | drb (syn:anti) | ee (%) c |
---|---|---|---|---|---|
1 | Me | H | 95 | 67:33 | 99 |
2 | Et | H | 94 | 83:17 | 99 |
3 | n-Pr | H | 94 | 83:17 | 98 |
4 | i-Pr | H | 93 | 93:07 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, J.H.; Cheun, S.H.; Kim, H.S.; Ha, D.-C. Organocatalysis for the Asymmetric Michael Addition of Aldehydes and α,β-Unsaturated Nitroalkenes. Catalysts 2022, 12, 121. https://doi.org/10.3390/catal12020121
Shim JH, Cheun SH, Kim HS, Ha D-C. Organocatalysis for the Asymmetric Michael Addition of Aldehydes and α,β-Unsaturated Nitroalkenes. Catalysts. 2022; 12(2):121. https://doi.org/10.3390/catal12020121
Chicago/Turabian StyleShim, Jae Ho, Seok Hyun Cheun, Hyeon Soo Kim, and Deok-Chan Ha. 2022. "Organocatalysis for the Asymmetric Michael Addition of Aldehydes and α,β-Unsaturated Nitroalkenes" Catalysts 12, no. 2: 121. https://doi.org/10.3390/catal12020121
APA StyleShim, J. H., Cheun, S. H., Kim, H. S., & Ha, D.-C. (2022). Organocatalysis for the Asymmetric Michael Addition of Aldehydes and α,β-Unsaturated Nitroalkenes. Catalysts, 12(2), 121. https://doi.org/10.3390/catal12020121