Heterogeneous Activation of Persulfate by LaMO3 (M=Co, Fe, Cu, Mn, Ni) Perovskite Catalysts for the Degradation of Organic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of LaMO3
2.2. Activation of Persulfate by LaMO3 towards Phenolics Degradation
2.2.1. Effect of B-position Metal Ion and Calcination Temperature
2.2.2. Quenching Experiments for the Determination of ROS
2.2.3. Reusability and Stability of the Best Catalysts
3. Materials and Methods
3.1. Materials
3.2. Synthetic Method of LaMO3
3.3. Characterization of LaMO3
3.4. Catalytic Activity of LaMO3 Materials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological Effects, Environmental Fate and Risks of Pharmaceutical and Personal Care Products in the Water Environment: A Review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhu, H.; Croué, J.-P. Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism. Environ. Sci. Technol. 2013, 47, 2784–2791. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, S.; Ding, H.; Zhu, Y.; Wang, X.; Liu, H.; Zhang, Q.; Zhao, C. Electrochemical/Fe3+/Peroxymonosulfate System for the Degradation of Acid Orange 7 Adsorbed on Activated Carbon Fiber Cathode. Chemosphere 2020, 241, 125125. [Google Scholar] [CrossRef] [PubMed]
- Kilic, M.Y.; Abdelraheem, W.H.; He, X.; Kestioglu, K.; Dionysiou, D.D. Photochemical Treatment of Tyrosol, a Model Phenolic Compound Present in Olive Mill Wastewater, by Hydroxyl and Sulfate Radical-Based Advanced Oxidation Processes (AOPs). J. Hazard. Mater. 2019, 367, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Ferkous, H.; Merouani, S.; Hamdaoui, O.; Pétrier, C. Persulfate-Enhanced Sonochemical Degradation of Naphthol Blue Black in Water: Evidence of Sulfate Radical Formation. Ultrason. Sonochem. 2017, 34, 580–587. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, Y.; Teng, J.; Zhang, J.; You, S. Visible-Light-Driven Photocatalytic Activation of Peroxymonosulfate by Cu2(OH)PO4 for Effective Decontamination. Chemosphere 2018, 201, 197–205. [Google Scholar] [CrossRef]
- Oh, W.-D.; Dong, Z.; Lim, T.-T. Generation of Sulfate Radical through Heterogeneous Catalysis for Organic Contaminants Removal: Current Development, Challenges and Prospects. Appl. Catal. B Environ. 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Duan, X.; Su, C.; Miao, J.; Zhong, Y.; Shao, Z.; Wang, S.; Sun, H. Insights into Perovskite-Catalyzed Peroxymonosulfate Activation: Maneuverable Cobalt Sites for Promoted Evolution of Sulfate Radicals. Appl. Catal. B Environ. 2018, 220, 626–634. [Google Scholar] [CrossRef]
- Yang, Q.; Choi, H.; Al-Abed, S.R.; Dionysiou, D.D. Iron-Cobalt Mixed Oxide Nanocatalysts: Heterogeneous Peroxymonosulfate Activation, Cobalt Leaching, and Ferromagnetic Properties for Environmental Applications. Appl. Catal. B Environ. 2009, 88, 462–469. [Google Scholar] [CrossRef]
- Machulek, A.; Oliveira, C.S.; Osugi, M.E.; Ferreira, V.S.; Quina, F.H.; Dantas, R.F.; Oliveira, S.L.; Casagrande, G.A.; Anaissi, F.J.; Silva, V.O.; et al. Application of Different Advanced Oxidation Processes for the Degradation of Organic Pollutants. In Organic Pollutants—Monitoring, Risk and Treatment; IntechOpen, Ltd.: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.-T.; Zhang, Y.; Teng, Y.; Fan, M. Sulfate Radical and Its Application in Decontamination Technologies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1756–1800. [Google Scholar] [CrossRef]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbæk, H.; Siegrist, R.L.; Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Mahdi Ahmed, M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate Radical Anion Oxidation of Diclofenac and Sulfamethoxazole for Water Decontamination. Chem. Eng. J. 2012, 197, 440–447. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Wacławek, S.; Grübel, K.; Černík, M. Simple Spectrophotometric Determination of Monopersulfate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 928–933. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of Persulfates in Water and Wastewater Treatment: A Review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Behrman, E.J.; Dean, D.H. Sodium Peroxydisulfate Is a Stable and Cheap Substitute for Ammonium Peroxydisulfate (Persulfate) in Polyacrylamide Gel Electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 1999, 723, 325–326. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, H.; Zhong, X.; Hou, L. Electrochemical Enhanced Heterogeneous Activation of Peroxydisulfate by Fe-Co/SBA-15 Catalyst for the Degradation of Orange II in Water. Water Res. 2014, 66, 473–485. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Huang, Y.-F.; Huang, C.-I.; Chen, C.-Y. Efficient Decolorization of Azo Dye Reactive Black B Involving Aromatic Fragment Degradation in Buffered Co2+/PMS Oxidative Processes with a Ppb Level Dosage of Co2+-Catalyst. J. Hazard. Mater. 2009, 170, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Gao, N.; Deng, Y.; An, N.; Deng, J. Heat-Activated Persulfate Oxidation of Diuron in Water. Chem. Eng. J. 2012, 203, 294–300. [Google Scholar] [CrossRef]
- Ji, Y.; Dong, C.; Kong, D.; Lu, J.; Zhou, Q. Heat-Activated Persulfate Oxidation of Atrazine: Implications for Remediation of Groundwater Contaminated by Herbicides. Chem. Eng. J. 2015, 263, 45–54. [Google Scholar] [CrossRef]
- Dulova, N.; Kattel, E.; Trapido, M. Degradation of Naproxen by Ferrous Ion-Activated Hydrogen Peroxide, Persulfate and Combined Hydrogen Peroxide/Persulfate Processes: The Effect of Citric Acid Addition. Chem. Eng. J. 2017, 318, 254–263. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Wang, S. Metal-Free Carbocatalysis in Advanced Oxidation Reactions. Acc. Chem. Res. 2018, 51, 678–687. [Google Scholar] [CrossRef]
- Miao, J.; Sunarso, J.; Su, C.; Zhou, W.; Wang, S.; Shao, Z. SrCo1−xTixO3−δ Perovskites as Excellent Catalysts for Fast Degradation of Water Contaminants in Neutral and Alkaline Solutions. Sci. Rep. 2017, 7, 44215. [Google Scholar] [CrossRef] [Green Version]
- Oh, W.-D.; Lua, S.-K.; Dong, Z.; Lim, T.-T. Performance of Magnetic Activated Carbon Composite as Peroxymonosulfate Activator and Regenerable Adsorbent via Sulfate Radical-Mediated Oxidation Processes. J. Hazard. Mater. 2015, 284, 1–9. [Google Scholar] [CrossRef]
- Rodriguez, S.; Vasquez, L.; Costa, D.; Romero, A.; Santos, A. Oxidation of Orange G by Persulfate Activated by Fe(II), Fe(III) and Zero Valent Iron (ZVI). Chemosphere 2014, 101, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, P.; Liu, S.; Yu, K. Three-Dimensionally Ordered Macroporous Perovskite Materials for Environmental Applications. Chin. J. Catal. 2019, 40, 1324–1338. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J. Nanomater. 2018, 2018, 8148072. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Perovskite Synthesis, Properties and Their Related Biochemical and Industrial Application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Grimaud, A.; May, K.J.; Carlton, C.E.; Lee, Y.-L.; Risch, M.; Hong, W.T.; Zhou, J.; Shao-Horn, Y. Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution. Nat. Commun. 2013, 4, 2439. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.-F.; Zhong, H.; Zhang, W.-G.; Li, X.-R.; Wang, G.-Y.; Song, J.; Cheng, Z.-P.; Yin, J.Z.; Guo, L.-P. A Novel Nonenzymatic ECL Glucose Sensor Based on Perovskite LaTiO3-Ag0.1 Nanomaterials. Sens. Actuators B Chem. 2015, 212, 174–182. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Wang, Y.; Li, Y. Sr2Fe2−xMoxO6−δ Perovskite as an Anode in a Solid Oxide Fuel Cell: Effect of the Substitution Ratio. Catal. Today 2016, 259, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Tavakkoli, H.; Yazdanbakhsh, M. Fabrication of Two Perovskite-Type Oxide Nanoparticles as the New Adsorbents in Efficient Removal of a Pesticide from Aqueous Solutions: Kinetic, Thermodynamic, and Adsorption Studies. Microporous Mesoporous Mater. 2013, 176, 86–94. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, C.; Zhu, J.; Wang, L.; Gao, S.; Xia, X. Enhanced Degradation of Atrazine by Nanoscale LaFe1-xCuxO3-δ Perovskite Activated Peroxymonosulfate: Performance and Mechanism. Sci. Total Environ. 2019, 673, 565–575. [Google Scholar] [CrossRef]
- Gao, P.; Tian, X.; Nie, Y.; Yang, C.; Zhou, Z.; Wang, Y. Promoted Peroxymonosulfate Activation into Singlet Oxygen over Perovskite for Ofloxacin Degradation by Controlling the Oxygen Defect Concentration. Chem. Eng. J. 2019, 359, 828–839. [Google Scholar] [CrossRef]
- Miao, J.; Li, J.; Dai, J.; Guan, D.; Zhou, C.; Zhou, W.; Duan, X.; Wang, S.; Shao, Z. Postsynthesis Oxygen Nonstoichiometric Regulation: A New Strategy for Performance Enhancement of Perovskites in Advanced Oxidation. Ind. Eng. Chem. Res. 2020, 59, 99–109. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Ma, X.; Miao, J.; Ran, R.; Zhou, W.; Wang, S.; Shao, Z. Nonstoichiometric Perovskite for Enhanced Catalytic Oxidation through Excess A-Site Cation. Chem. Eng. Sci. 2020, 219, 115596. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Chen, Y.-C.; Lin, Y.-F. LaMO3 Perovskites (M=Co, Cu, Fe and Ni) as Heterogeneous Catalysts for Activating Peroxymonosulfate in Water. Chem. Eng. Sci. 2017, 160, 96–105. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, Z.; Wang, Z.; Zhang, H.; Qiu, Y.; Yin, D.; Zhao, G. 3D Hollow Sphere-like Cu-Incorporated LaAlO3 Perovskites for Peroxymonosulfate Activation: Coaction of Electron Transfer and Oxygen Defect. Chem. Eng. J. 2020, 385, 123935. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. In Phenolic Compounds—Natural Sources, Importance and Applications; IntechOpen, Ltd.: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.F.; Zhang, Y.; Han, F.; Guo, H.; Huang, Y.; Li, R.; Qi, F.; Ma, J. Heterogeneous Activation of Peroxymonosulfate by LaFeO3 for Diclofenac Degradation: DFT-Assisted Mechanistic Study and Degradation Pathways. Chem. Eng. J. 2018, 352, 601–611. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Y.; Li, Q.; Qi, F.; Xu, B.; Chen, Z. Synchronously Degradation Benzotriazole and Elimination Bromate by Perovskite Oxides Catalytic Ozonation: Performance and Reaction Mechanism. Sep. Purif. Technol. 2018, 197, 261–270. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, R.; Li, X. Casein Templated Synthesis of Porous Perovskite and Its Application in Visible-Light Photocatalytic Degradation of Methylene Blue. Mater. Sci. Semicond. Process. 2019, 103, 104597. [Google Scholar] [CrossRef]
- Ben Hammouda, S.; Zhao, F.; Safaei, Z.; Srivastava, V.; Lakshmi Ramasamy, D.; Iftekhar, S.; Kalliola, S.; Sillanpää, M. Degradation and Mineralization of Phenol in Aqueous Medium by Heterogeneous Monopersulfate Activation on Nanostructured Cobalt Based-Perovskite Catalysts ACoO3 (A=La, Ba, Sr and Ce): Characterization, Kinetics and Mechanism Study. Appl. Catal. B Environ. 2017, 215, 60–73. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, X.; Zhang, Y.; Yao, Q.; Qian, Y.; Chu, H.; Chen, J. Carbamazepine Degradation by Heterogeneous Activation of Peroxymonosulfate with Lanthanum Cobaltite Perovskite: Performance, Mechanism and Toxicity. J. Environ. Sci. 2020, 91, 10–21. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Vijayaraghavan, T.; Bradha, M.; Babu, P.; Parida, K.M.; Ramadoss, G.; Vadivel, S.; Selvakumar, R.; Ashok, A. Influence of Secondary Oxide Phases in Enhancing the Photocatalytic Properties of Alkaline Earth Elements Doped LaFeO3 Nanocomposites. J. Phys. Chem. Solids 2020, 140, 109377. [Google Scholar] [CrossRef]
- Amiri, O.; Salar, K.; Othman, P.; Rasul, T.; Faiq, D.; Saadat, M. Purification of Wastewater by the Piezo-Catalyst Effect of PbTiO3 Nanostructures under Ultrasonic Vibration. J. Hazard. Mater. 2020, 394, 122514. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Quan, X.; Zhang, J. High Surface Area Mesoporous Nanocast LaMO3 (M=Mn, Fe) Perovskites for Efficient Catalytic Ozonation and an Insight into Probable Catalytic Mechanism. Appl. Catal. B Environ. 2017, 206, 692–703. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Zhu, K.; Zhang, H. Understanding Oxygen-Deficient La2CuO4-Δperovskite Activated Peroxymonosulfate for Bisphenol A Degradation: The Role of Localized Electron within Oxygen Vacancy. Appl. Catal. B Environ. 2021, 284. [Google Scholar] [CrossRef]
- Zhu, M.; Miao, J.; Guan, D.; Zhong, Y.; Ran, R.; Wang, S.; Zhou, W.; Shao, Z. Efficient Wastewater Remediation Enabled by Self-Assembled Perovskite Oxide Heterostructures with Multiple Reaction Pathways. ACS Sustain. Chem. Eng. 2020, 8, 6033–6042. [Google Scholar] [CrossRef]
- Miao, J.; Sunarso, J.; Duan, X.; Zhou, W.; Wang, S.; Shao, Z. Nanostructured Co-Mn Containing Perovskites for Degradation of Pollutants: Insight into the Activity and Stability. J. Hazard. Mater. 2018, 349, 177–185. [Google Scholar] [CrossRef]
- Miao, J.; Duan, X.; Li, J.; Dai, J.; Liu, B.; Wang, S.; Zhou, W.; Shao, Z. Boosting Performance of Lanthanide Magnetism Perovskite for Advanced Oxidation through Lattice Doping with Catalytically Inert Element. Chem. Eng. J. 2019, 355, 721–730. [Google Scholar] [CrossRef]
- Lu, S.; Wang, G.; Chen, S.; Yu, H.; Ye, F.; Quan, X. Heterogeneous Activation of Peroxymonosulfate by LaCo1-xCuxO3 Perovskites for Degradation of Organic Pollutants. J. Hazard. Mater. 2018, 353, 401–409. [Google Scholar] [CrossRef]
- Xu, Y.; Ai, J.; Zhang, H. The Mechanism of Degradation of Bisphenol A Using the Magnetically Separable CuFe2O4/Peroxymonosulfate Heterogeneous Oxidation Process. J. Hazard. Mater. 2016, 309, 87–96. [Google Scholar] [CrossRef]
- Luo, X.; Bai, L.; Xing, J.; Zhu, X.; Xu, D.; Xie, B.; Gan, Z.; Li, G.; Liang, H. Ordered Mesoporous Cobalt Containing Perovskite as a High-Performance Heterogeneous Catalyst in Activation of Peroxymonosulfate. ACS Appl. Mater. Interfaces 2019, 11, 35720–35728. [Google Scholar] [CrossRef]
- Sádaba, I.; López Granados, M.; Riisager, A.; Taarning, E. Deactivation of Solid Catalysts in Liquid Media: The Case of Leaching of Active Sites in Biomass Conversion Reactions. Green Chem. 2015, 17, 4133–4145. [Google Scholar] [CrossRef] [Green Version]
- Okuhara, T. Water-Tolerant Solid Acid Catalysts. Chem. Rev. 2002, 102, 3641–3666. [Google Scholar] [CrossRef] [PubMed]
- Sádaba, I.; Ojeda, M.; Mariscal, R.; Fierro, J.L.G.; Granados, M.L. Catalytic and Structural Properties of Co-Precipitated Mg-Zr Mixed Oxides for Furfural Valorization via Aqueous Aldol Condensation with Acetone. Appl. Catal. B Environ. 2011, 101, 638–648. [Google Scholar] [CrossRef]
- Cicco, N.; Lattanzio, V. The Influence of Initial Carbonate Concentration on the Folin-Ciocalteu Micro-Method for the Determination of Phenolics with Low Concentration in the Presence of Methanol: A Comparative Study of Real-Time Monitored Reactions. Am. J. Anal. Chem. 2011, 2, 840–848. [Google Scholar] [CrossRef] [Green Version]
Perovskite | Crystalline Phase (% Content) | Specific Surface Area (m2/g) |
---|---|---|
LaMnO3 | LaMnO3-P-trigonal (74%) | 13 |
LaMnO3-P-Cubic (26%) | ||
LaFeO3 | LaFeO3-P-orthorombic (100%) | 14 |
LaCoO3 | LaCoO3-P-monoclinic (70%) | 7 |
La2CoO4-RP-orthorhombic (18%) | ||
Co3O4-O-cubic (12%) | ||
LaNiO3 | La2NiO4-RP-orthorhombic (50%) | 13 |
La3Ni2O7-HS-orthorhombic (28%) | ||
NiO-O-trigonal (22%) | ||
LaCuO3 | La2CuO4-RP-orthorombic (80%) | 7 |
CuO-O-monoclinic (20%) | ||
LaNiO3-800 | LaNiO3-P-trigonal (69%) | 5 |
La2NiO4-RP-tetragonal (25%) | ||
NiO-O-trigonal (6%) |
Perovskite | (%) Degradation | k (min−1) | R2 |
---|---|---|---|
LaMnO3 | 10% in 120 min | 0.0009 | 0.9696 |
LaFeO3 | 5% in 120 min | 0.00004 | 0.9625 |
LaCoO3 | 96% in 90 min | 0.029 | 0.9258 |
LaNiO3 | 96% in 30 min | 0.082 | 0.9344 |
LaCuO3 | 52% in 120 min | 0.006 | 0.9925 |
LaNiO3-800 | 97% in 45 min | 0.048 | 0.9248 |
Catalyst | (%) Degradation | k (min−1) | Metal Leaching (mgL−1) | Reference |
---|---|---|---|---|
LaCo0.5Mn0.5O3+δ | 100% in 60 min | 0.052 | Co: 4.07 | [57] |
La0.4Sr0.6MnO3-δ | 100% in 90 min | 0.031 | Mn: 1.11 Sr: 8.91 | [58] |
LaCo0.6Cu0.4O3 | 99% in 12 min | 0.302 | Co: 1.37 | [59] |
La0.4Sr1.05MnO4-δ | 100% in 60 min | 0.070 | Mn: 3.20 Sr: 4.04 | [56] |
LaCoO3 | 96% in 90 min | 0.029 | Co: 1.34 | This work |
LaNiO3 | 96% in 30 min | 0.082 | Ni: 14.39 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manos, D.; Papadopoulou, F.; Margellou, A.; Petrakis, D.; Konstantinou, I. Heterogeneous Activation of Persulfate by LaMO3 (M=Co, Fe, Cu, Mn, Ni) Perovskite Catalysts for the Degradation of Organic Compounds. Catalysts 2022, 12, 187. https://doi.org/10.3390/catal12020187
Manos D, Papadopoulou F, Margellou A, Petrakis D, Konstantinou I. Heterogeneous Activation of Persulfate by LaMO3 (M=Co, Fe, Cu, Mn, Ni) Perovskite Catalysts for the Degradation of Organic Compounds. Catalysts. 2022; 12(2):187. https://doi.org/10.3390/catal12020187
Chicago/Turabian StyleManos, Donatos, Foteini Papadopoulou, Antigoni Margellou, Dimitrios Petrakis, and Ioannis Konstantinou. 2022. "Heterogeneous Activation of Persulfate by LaMO3 (M=Co, Fe, Cu, Mn, Ni) Perovskite Catalysts for the Degradation of Organic Compounds" Catalysts 12, no. 2: 187. https://doi.org/10.3390/catal12020187
APA StyleManos, D., Papadopoulou, F., Margellou, A., Petrakis, D., & Konstantinou, I. (2022). Heterogeneous Activation of Persulfate by LaMO3 (M=Co, Fe, Cu, Mn, Ni) Perovskite Catalysts for the Degradation of Organic Compounds. Catalysts, 12(2), 187. https://doi.org/10.3390/catal12020187