Evaluation of Catalysts for the Metathesis of Ethene and 2-Butene to Propene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Performance Parameters
2.2. Activity Test
2.3. Characterization
2.3.1. N2 Physisorption (BET)
2.3.2. Powder X-ray Diffraction (XRD)
2.3.3. Ammonia Temperature Programmed Desorption (NH3-TPD)
2.3.4. Temperature-Programmed Reduction/Oxidation/Reduction Cycles
2.4. Stability
3. Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Experimental Evaluation
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Metal | TIE | IWI | Mix | Commercial | Si/Al | cMetal |
---|---|---|---|---|---|---|
Ni | x | x | x | |||
Re | x | x | x | x | x | x |
Mo | x | x | x | x | x | x |
W | x | x | x | x | x | x |
NiRe | x | x | x |
References
- Chauvin, Y. Olefin metathesis: The early days (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2006, 45, 3740–3747. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, R.H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2006, 45, 3760–3765. [Google Scholar] [CrossRef] [PubMed]
- Schrock, R.R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 2006, 45, 3748–3759. [Google Scholar] [CrossRef] [PubMed]
- Herisson, P.J.-L.; Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d’oléfines acycliques. Die Makromol. Chem. 1971, 141, 161–176. [Google Scholar] [CrossRef]
- Grubbs, R.H.; Chang, S. Recent Advances in Olefin Metathesis and Its Application in Organic Synthesis. Tetrahedron 1998, 54, 4413–4450. [Google Scholar] [CrossRef]
- Grubbs, R.H. Olefin metathesis. Tetrahedron 2004, 60, 7117–7140. [Google Scholar] [CrossRef]
- Trnka, T.M.; Grubbs, R.H. The Development of L 2 X 2 RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story. Acc. Chem. Res. 2001, 34, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Franzen, R.G. Metathesis Reactions on Solid-Phase: Towards New Synthesis Challenges. Top. Catal. 2016, 59, 1143–1150. [Google Scholar] [CrossRef]
- Higman, C.S.; Lummiss, J.A.M.; Fogg, D.E. Olefin Metathesis at the Dawn of Implementation in Pharmaceutical and Specialty-Chemicals Manufacturing. Angew. Chem. Int. Ed. Engl. 2016, 55, 3552–3565. [Google Scholar] [CrossRef]
- Higman, C.S.; Plais, L.; Fogg, D.E. Isomerization During Olefin Metathesis: An Assessment of Potential Catalyst Culprits. ChemCatChem 2013, 5, 3548–3551. [Google Scholar] [CrossRef]
- Schrock, R.R. Olefin Metathesis by Molybdenum Imido Alkylidene Catalysts. Tetrahedron 1999, 55, 8141–8153. [Google Scholar] [CrossRef]
- Schrock, R.R.; Hoveyda, A.H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem. Int. Ed. Engl. 2003, 42, 4592–4633. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Liu, S.; Xu, L.; Han, X.; Bao, X. The role of alumina in the supported Mo/Hβ–Al2O3 catalyst for olefin metathesis: A high-resolution solid-state NMR and electron microscopy study. J. Catal. 2007, 250, 55–66. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Liu, S.; Xie, S.; Zhu, X.; Bao, X.; Xu, L. Promoting effect of Mg in supported Mo/ Hβ–Al2O3 catalyst for cross-metathesis of ethene and butene-2 to propene. J. Mol. Catal. A Chem. 2009, 313, 38–43. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Li, X.; Liu, S.; Huang, H.; Han, X.; Xu, L.; Bao, X. Insights into the Deactivation Mechanism of Heterogeneous Mo/Hβ-Al2O3 Catalysts for Olefin Metathesis. J. Phys. Chem. C 2009, 113, 8228–8233. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Xin, W.; Bai, J.; Xie, S.; Xu, L. Metathesis of ethylene and butylene-2 to propylene with Mo on Hβ-Al2O3 catalysts. Catal. Today 2004, 93-95, 471–476. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xin, W.; Xie, S.; Zeng, P.; Zhang, L.; Xu, L. Cross metathesis of butene-2 and ethene to propene over Mo/MCM-22-Al2O3 catalysts with different Al2O3 contents. J. Nat. Gas Chem. 2010, 19, 482–486. [Google Scholar] [CrossRef]
- Huang, S.; Liu, S.; Xin, W.; Bai, J.; Xie, S.; Wang, Q.; Xu, L. Metathesis of ethene and 2-butene to propene on W/Al2O3–HY catalysts with different HY contents. J. Mol. Catal. A Chem. 2005, 226, 61–68. [Google Scholar] [CrossRef]
- Huang, S.; Liu, S.; Xin, W.; Xie, S.; Wang, Q.; Xu, L. Effect of Reaction Temperature and Pressure on the Metathesis Reaction between Ethene and 2-Butene to Propene on the WO3/Al2O3-HY Catalyst. J. Nat. Gas Chem. 2006, 15, 93–99. [Google Scholar] [CrossRef]
- Zuo, G.; Xu, Y.; Zheng, J.; Jiang, F.; Liu, X. Investigation on converting 1-butene and ethylene into propene via metathesis reaction over W-based catalysts. RSC Adv. 2018, 8, 8372–8384. [Google Scholar] [CrossRef] [Green Version]
- Behr, A.; Schüller, U. Kinetische Untersuchungen zur heterogen katalysierten Metathese von 1-Penten: Entwicklung einer optimierten Reaktorfahrweise. Chem. Ing. Tech. 2009, 81, 429–439. [Google Scholar] [CrossRef]
- Engel, J.; Smit, W.; Foscato, M.; Occhipinti, G.; Törnroos, K.W.; Jensen, V.R. Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization. J. Am. Chem. Soc. 2017, 139, 16609–16619. [Google Scholar] [CrossRef] [PubMed]
- Lafaye, K.; Bosset, C.; Nicolas, L.; Guérinot, A.; Cossy, J. Beyond catalyst deactivation: Cross-metathesis involving olefins containing N-heteroaromatics. Beilstein J. Org. Chem. 2015, 11, 2223–2241. [Google Scholar] [CrossRef] [Green Version]
- Poater, A.; Ragone, F.; Garrido, M.; Pérez, S.; Poch, M.; Correa, A.; Cavallo, L. Deactivation of Ru-benzylidene Grubbs catalysts active in olefin metathesis. Procedia Comput. Sci. 2011, 4, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Alvarado Perea, L.; Wolff, T.; Veit, P.; Hilfert, L.; Edelmann, F.T.; Hamel, C.; Seidel-Morgenstern, A. Alumino-mesostructured Ni catalysts for the direct conversion of ethene to propene. J. Catal. 2013, 305, 154–168. [Google Scholar] [CrossRef]
- Felischak, M.; Wolff, T.; Alvarado Perea, L.; Seidel-Morgenstern, A.; Hamel, C. Influence of process parameters on single bed Ni/(Al)MCM-41 for the production of propene from ethene feedstock. Chem. Eng. Sci. 2019, 210, 115246. [Google Scholar] [CrossRef]
- Iwamoto, M. Conversion of Ethene to Propene on Nickel Ion-loaded Mesoporous Silica Prepared by the Template Ion Exchange Method. Catal. Surv. Asia 2008, 12, 28–37. [Google Scholar] [CrossRef]
- Noreña-Franco, L.; Hernandez-Perez, I.; Aguilar-Pliego, J.; Maubert-Franco, A. Selective hydroxylation of phenol employing Cu–MCM-41 catalysts. Catal. Today 2002, 75, 189–195. [Google Scholar] [CrossRef]
- Alvarado Perea, L.; Wolff, T.; Hamel, C.; Seidel-Morgenstern, A. Experimental study of the deactivation of Ni/AlMCM-41 catalyst in the direct conversion of ethene to propene. Appl. Catal. A Gen. 2017, 533, 121–131. [Google Scholar] [CrossRef]
- Maksasithorn, S.; Debecker, D.P.; Praserthdam, P.; Panpranot, J.; Suriye, K.; Ayudhya, S.K.N. NaOH modified WO3/SiO2 catalysts for propylene production from 2-butene and ethylene metathesis. Chin. J. Catal. 2014, 35, 232–241. [Google Scholar] [CrossRef]
- Bouchmella, K.; Hubert Mutin, P.; Stoyanova, M.; Poleunis, C.; Eloy, P.; Rodemerck, U.; Gaigneaux, E.M.; Debecker, D.P. Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route. J. Catal. 2013, 301, 233–241. [Google Scholar] [CrossRef]
Catalyst | Variation | Temperature | SC3H6 | XC2H4 | Xtrans-C4H8 |
---|---|---|---|---|---|
Ni/AlMCM-41 (60) | TIE [28] | 477 °C | 25.6% | 53.2% | 86.2% |
Ni/MCM-41 | TIE [27] | 477 °C | 27.2% | 37.8% | 87.7% |
Re/AlMCM-41 (5) | TIE | 250 °C | 31.0% | 4.6% | 62.3% |
Re/AlMCM-41 (16) | TIE | 175 °C | 45.5% | 7.9% | 69.5% |
Re/AlMCM-41 (60) | TIE | 200 °C | 42.9% | 8.9% | 68.1% |
Re/AlMCM-41 (16) | IWI | 200 °C | 35.6% | 6.4% | 65.7% |
Re/AlMCM-41 (60) | IWI | 175 °C | 42.6% | 7.9% | 67.6% |
Re/AlMCM-41 (150) | IWI | 200 °C | 34.9% | 6.9% | 60.8% |
Re/SiO2 | IWI | 450 °C | 23.5% | 7.5% | 36.2% |
NiRe/AlMCM-41 (60) | TIE | 175 °C | 16.9% | 2.6% | 50.6% |
NiRe/AlMCM-41 (60) | TIE-pt | 250 °C | 37.2% | 17.6% | 65.9% |
NiRe/mix (1:1) | IE | 225 °C | 43.9% | 9.2% | 67.8% |
Mo/MCM-41 (16) | TIE | 477 °C | 8.7% | 9.1% | 75.9% |
Mo/MCM-41 | TIE | 477 °C | 10.8% | 0% | 71.5% |
W/SiO2 | IWI | 600 °C | 46.0% | 19.9% | 67.5% |
W/AlMCM-41 (150) | TIE | 475 °C | 34.4% | 12.2% | 76.9% |
Catalyst | |||||
---|---|---|---|---|---|
278.3 | 20.1 | 17.3 | 1.40 | 0.97 | |
241.6 | 20.4 | 16.1 | 1.23 | 0.47 | |
205.7 | 11.2 | 7.8 | 0.58 | 0.58 | |
MCM-41 | 1087.5 | 4.1 | 3.9 | 1.23 | 1.07 |
AlMCM-41 (60) | 1087.0 | 5.2 | 4.0 | 1.50 | 1.12 |
NiRe/mix (1:1) | 226.7 | 8.5 | 5.9 | 0.48 | 0.36 |
Re/AlMCM-41 (60) | 917.0 | 6.1 | 4.0 | 1.40 | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felischak, M.; Wolff, T.; Alvarado Perea, L.; Seidel-Morgenstern, A.; Hamel, C. Evaluation of Catalysts for the Metathesis of Ethene and 2-Butene to Propene. Catalysts 2022, 12, 188. https://doi.org/10.3390/catal12020188
Felischak M, Wolff T, Alvarado Perea L, Seidel-Morgenstern A, Hamel C. Evaluation of Catalysts for the Metathesis of Ethene and 2-Butene to Propene. Catalysts. 2022; 12(2):188. https://doi.org/10.3390/catal12020188
Chicago/Turabian StyleFelischak, Matthias, Tanya Wolff, Leo Alvarado Perea, Andreas Seidel-Morgenstern, and Christof Hamel. 2022. "Evaluation of Catalysts for the Metathesis of Ethene and 2-Butene to Propene" Catalysts 12, no. 2: 188. https://doi.org/10.3390/catal12020188
APA StyleFelischak, M., Wolff, T., Alvarado Perea, L., Seidel-Morgenstern, A., & Hamel, C. (2022). Evaluation of Catalysts for the Metathesis of Ethene and 2-Butene to Propene. Catalysts, 12(2), 188. https://doi.org/10.3390/catal12020188