Low-Temperature Oxidation Removal of Formaldehyde Catalyzed by Mn-Containing Mixed-Oxide-Supported Bismuth Oxychloride in Air
Abstract
:1. Introduction
2. Results
2.1. Characterization of Catalysts
2.2. Catalytic Performance and Stability of Catalysts
2.3. Structure Activity Relationship of Catalysts and Possible Reaction Mechanism
3. Experimental
3.1. Catalyst Preparation
3.2. Characterization
3.3. Oxidation Removal Reaction of Formaldehyde
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef] [PubMed]
- Wenger, O.S. Vapochromism in organometallic and coordination complexes: Chemical sensors for volatile organic compounds. Chem. Rev. 2013, 113, 3686–3733. [Google Scholar] [CrossRef]
- Bai, B.Y.; Qiao, Q.; Li, J.H.; Hao, J.M. Progress in research on catalysts for catalytic oxidation of formaldehyde. Chin. J. Catal. 2016, 37, 102–122. [Google Scholar] [CrossRef]
- Torres, J.Q.; Royer, S.; Bellat, J.P.; Giraudon, J.M.; Lamonier, J.F. Formaldehyde: Catalytic oxidation as a promising soft way of elimination. ChemSusChem 2013, 6, 578–592. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.B.; Xu, Y.; Feng, Q.Y.; Leung, D.Y.C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669. [Google Scholar] [CrossRef]
- Nie, L.H.; Yu, J.G.; Jaroniec, M.; Tao, F.F. Room-temperature catalytic oxidation of formaldehyde on catalysts. Catal. Sci. Technol. 2016, 6, 3649–3669. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Mo, J.H.; Li, Y.G.; Sundell, J.; Wargocki, P.; Zhang, J.; Little, J.C.; Corsi, R.; Deng, Q.H.; Leung, M.H.K.; et al. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos. Environ. 2011, 45, 4329–4343. [Google Scholar] [CrossRef]
- Chen, M.H.; Qin, Y.P.; Wang, W.Z.; Li, X.Y.; Wang, J.J.; Wen, H.; Yang, Z.Q.; Wang, P. Engineering oxygen vacancies via amorphization in conjunction with W-doping as an approach to boosting catalytic properties of Pt/Fe-W-O for formaldehyde oxidation. J. Hazar. Mater. 2021, 416, 126224. [Google Scholar] [CrossRef]
- Yang, T.F.; Huo, Y.; Liu, Y.; Rui, Z.B.; Ji, H.B. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content. Appl. Catal. B Environ. 2017, 200, 543–551. [Google Scholar] [CrossRef]
- Tan, H.Y.; Wang, J.; Yu, S.Z.; Zhou, K.B. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation. Environ. Sci. Technol. 2015, 49, 8675–8682. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.W.; Cheng, B.; Wageh, S.; Al-Ghamdib, A.A.; Yu, J.G. Flexible Mg–Al layered double hydroxide supported Pt on Al foil for use in room-temperature catalytic decomposition of formaldehyde. RSC Adv. 2016, 6, 34280–34287. [Google Scholar] [CrossRef]
- Chen, Y.X.; Huang, Z.W.; Zhou, M.J.; Hu, P.P.; Du, C.T.; Kong, L.D.; Chen, J.M.; Tang, X.F. The active sites of supported silver particle catalysts in formaldehyde oxidation. Chem. Commun. 2016, 52, 9996–9999. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Yu, J.G.; Jaroniec, M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited P. Appl. Catal. B Environ. 2015, 163, 306–312. [Google Scholar] [CrossRef]
- Li, Y.B.; Wang, C.Y.; Zhang, C.B.; He, H. Formaldehyde oixidation on Pd/TiO2 catalysts at room temperature: The effects of surface oxygen vacancies. Top. Catal. 2020, 63, 810–816. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yu, X.L.; Yang, X.Q.; Ma, X.Y.; Ge, M.F. Exploration of the active phase of the hydrotalcite-derived cobalt catalyst for HCHO oxidation. Chin. J. Catal. 2019, 40, 703–712. [Google Scholar] [CrossRef]
- Qi, Y.Q.P.; Zhang, W.R.; Zhang, Y.S.; Bai, G.M.; Wang, S.W.; Liang, P. Formaldehyde oxidation at room temperature over layered MnO2. Catal. Commun. 2021, 153, 106293. [Google Scholar] [CrossRef]
- Ma, C.; Sun, S.; Lu, H.; Hao, Z.; Yang, C.G.; Wang, B.; Chen, C.; Song, M.Y. Remarkable MnO2 structure-dependent H2O promoting effect in HCHO oxidation at room temperature. J. Hazar. Mater. 2021, 414, 125542. [Google Scholar] [CrossRef]
- Tao, Y.; Li, R.; Huang, A.B.; Ma, Y.N.; Ji, S.D.; Jin, P.; Luo, H.J. High catalytic activity for formaldehyde oxidation of an interconnected network structure composed of d-MnO2 nanosheets and c-MnOOH nanowires. Adv. Manuf. 2020, 8, 429–439. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.Z.; Zhang, L.; Jiang, D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal. Sci. Technol. 2016, 6, 3845–3853. [Google Scholar] [CrossRef]
- Lu, S.H.; Li, K.L.; Huang, F.L.; Chen, C.C.; Sun, B. Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Appl. Surf. Sci. 2017, 400, 277–282. [Google Scholar] [CrossRef]
- Bai, L.; Wyrwalski, F.; Safariamin, M.; Bleta, R.; Lamonier, J.F.; Przybylski, C.; Monflier, E.; Ponchel, A. Cyclodextrin-cobalt (II) molecule-ion pairs as precursors to active Co3O4/ZrO2 catalysts for the complete oxidation of formaldehyde: Influence of the cobalt source. J. Catal. 2016, 341, 191–204. [Google Scholar] [CrossRef]
- Huang, Y.C.; Fan, W.J.; Long, B.; Li, H.B.; Qiu, W.T.; Zhao, F.Y.; Tong, Y.X.; Ji, H.B. Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature. J. Mater. Chem. A 2016, 4, 3648–3654. [Google Scholar] [CrossRef]
- Dai, Z.J.; Yu, X.W.; Huang, C.; Li, M.; Su, J.F.; Guo, Y.P.; Xu, H.; Ke, Q.F. Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal. RSC Adv. 2016, 6, 97022–97029. [Google Scholar] [CrossRef]
- Rong, S.P.; Zhang, P.Y.; Wang, J.L.; Liu, F.; Yang, Y.J.; Yang, G.L.; Liu, S. Ultrathin manganese dioxide nanosheets for formaldehyde removal and regeneration performance. Chem. Eng. J. 2016, 306, 1172–1179. [Google Scholar] [CrossRef]
- Bai, B.Y.; Qiao, Q.; Li, J.H.; Ha, J.M. Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation. Chin. J. Catal. 2016, 37, 27–31. [Google Scholar] [CrossRef]
- Bai, B.Y.; Qiao, Q.; Arandiyan, H.; Li, J.H.; Hao, J.M. Three-dimensional ordered mesoporous MnO2 supported Ag nanoparticles for catalytic removal of formaldehyde. Environ. Sci. Technol. 2016, 50, 2635–2640. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.L.; Rong, S.P.; Wang, H.Y.; Zhang, P.Y. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Appl. Catal. B Environ. 2017, 211, 212–221. [Google Scholar] [CrossRef]
- Huang, Y.X.; Ye, K.H.; Li, H.B.; Fan, W.J.; Zhang, Y.M.; Ji, H.B. A highly durable catalysts based on CoxMn3-xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Res. 2016, 9, 3881–3892. [Google Scholar] [CrossRef]
- Peña O’Shea, V.A.; Álvarez-Galván, M.C.; Fierro, J.L.G.; Arias, P.L. Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Appl. Catal. B Environ. 2005, 57, 191–199. [Google Scholar] [CrossRef]
- Li, H.; Qin, F.; Yang, Z.; Cui, X.; Wang, J.; Zhang, L. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Li, Y.; Yu, H.; Peng, F.; Wang, H.; Yang, Y. Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J. Catal. 2016, 335, 95–104. [Google Scholar] [CrossRef]
- Wang, X.L.; Wu, G.D.; Zhang, X.L.; Wang, D.F.; Lan, J.Y.; Li, J.Y. Selective oxidation of glycerol to glyceraldehyde with H2O2 catalyzed by CuNiAl hydrotalcites supported BiOCl in Neutral Media. Catal. Lett. 2019, 149, 1046–1056. [Google Scholar] [CrossRef]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Labajos, F.M.; Rives, V.; Ulibarri, M.A. Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials. J. Mater. Sci. 1992, 27, 1546–1552. [Google Scholar] [CrossRef]
- Yan, Z.X.; Xu, Z.H.; Cheng, B.; Jiang, C.J. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl. Surf. Sci. 2017, 404, 426–434. [Google Scholar] [CrossRef]
- Prescott, H.A.; Li, Z.J.; Kemnitz, E.; Trunschke, A.; Deutsch, J.; Lieske, H.; Auroux, A. Application of calcined Mg–Al hydrotalcites for Michael additions: An investigation of catalytic activity and acid–base properties. J. Catal. 2005, 234, 119–130. [Google Scholar] [CrossRef]
- Wu, G.D.; Wang, X.L.; Chen, B.; Li, J.P.; Zhao, N.; Wei, W.; Sun, Y.H. Fluorine-modified mesoporous Mg–Al mixed oxides: Mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Appl. Catal. A Gen. 2007, 329, 106–111. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Jia, F.L.; Zhang, L.Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. 2017, 56, 2–19. [Google Scholar] [CrossRef]
- Wu, G.D.; Wang, X.L.; Wei, W.; Sun, Y.H. Fluorine-modified mesoporous Mg–Al mixed oxides: A solid base with variable basic sites and tunable basicity. Appl. Catal. A Gen. 2010, 377, 107–113. [Google Scholar] [CrossRef]
- Ishikawa, S.; Goto, Y.; Kawahara, Y.; Inukai, S.; Hiyoshi, N.; Dummer, N.F.; Murayama, T.; Yoshida, A.; Sadakane, M.; Ueda, W. Synthesis of crystalline microporous Mo−V−Bi oxide for selective oxidation of light alkanes. Chem. Mater. 2017, 29, 2939–2950. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.T.; Wang, J.L.; Gu, C.Q.; Ling, Y.; Gao, Z.M. MnO2/Al foil decorated air cleaner with self-driven property for the abatement of indoor formaldehyde. Chem. Eng. J. 2020, 382, 122872. [Google Scholar] [CrossRef]
- Zou, N.; Nie, Q.; Zhang, X.R.; Zhang, G.K.; Wang, J.L.; Zhang, P.Y. Electrothermal regeneration by Joule heat effect on carbon cloth based MnO2 catalyst for long-term formaldehyde removal. Chem. Eng. J. 2019, 357, 1–10. [Google Scholar] [CrossRef]
Entry | Catalysts | Mn/Mg/Al Molar Ratio | SBET (m2/g) | Removal Efficiency of Formaldehyde b (%) |
---|---|---|---|---|
1 | blank | --- c | --- | 0 |
2 | BiOCl | --- | 35 | 1.5 |
3 | MnMgAl-HT | 1.45/1.46/1 | 85 | 7.8 |
4 | 0.015BiOCl/MnMgAl-HT | 1.46/1.46/1 | 73 | 51.4 |
5 | 0.012BiOCl/MnMgAl-HT | 1.45/1.46/1 | 77 | 54.5 |
6 | 0.01BiOCl/MnMgAl-HT | 1.45/1.47/1 | 78 | 54.9 |
7 | 0.005BiOCl/MnMgAl-HT | 1.47/1.46/1 | 81 | 45.5 |
8 | MnMgAlO | 1.45/1.45/1 | 210 | 9.5 |
9 | 0.015BiOCl/MnMgAlO | 1.46/1.47/1 | 197 | 80.6 |
10 | 0.012BiOCl/MnMgAlO | 1.45/1.46/1 | 204 | 91.5 |
11 | 0.01BiOCl/MnMgAlO | 1.45/1.47/1 | 205 | 91.0 |
12 | 0.005BiOCl/MnMgAlO | 1.46/1.45/1 | 207 | 75.4 |
Sample | CO2 Uptake (µmol/g) a | ||
---|---|---|---|
Weak Basic Sites | Moderate Basic Sites | Strong Basic Sites | |
0.005BiOCl/MnMgAlO | 32.5 | 6.7 | 45.3 |
0.01BiOCl/MnMgAlO | 37.8 | 9.5 | 53.2 |
0.015BiOCl/MnMgAlO | 34.6 | 8.6 | 48.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, G.; Ma, Y. Low-Temperature Oxidation Removal of Formaldehyde Catalyzed by Mn-Containing Mixed-Oxide-Supported Bismuth Oxychloride in Air. Catalysts 2022, 12, 262. https://doi.org/10.3390/catal12030262
Wang X, Wu G, Ma Y. Low-Temperature Oxidation Removal of Formaldehyde Catalyzed by Mn-Containing Mixed-Oxide-Supported Bismuth Oxychloride in Air. Catalysts. 2022; 12(3):262. https://doi.org/10.3390/catal12030262
Chicago/Turabian StyleWang, Xiaoli, Gongde Wu, and Yanwen Ma. 2022. "Low-Temperature Oxidation Removal of Formaldehyde Catalyzed by Mn-Containing Mixed-Oxide-Supported Bismuth Oxychloride in Air" Catalysts 12, no. 3: 262. https://doi.org/10.3390/catal12030262
APA StyleWang, X., Wu, G., & Ma, Y. (2022). Low-Temperature Oxidation Removal of Formaldehyde Catalyzed by Mn-Containing Mixed-Oxide-Supported Bismuth Oxychloride in Air. Catalysts, 12(3), 262. https://doi.org/10.3390/catal12030262