Three-Dimensional Graphene with Preserved Channeling as a Binder Additive for Zeolite 13X for Enhanced Thermal Conductivity, Vapor Transport, and Vapor Adsorption Loading Kinetics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kummu, M.; Guillaume, J.H.A.; De Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 2021, 16, 024020. [Google Scholar] [CrossRef]
- Möller, D. On the history of the scientific exploration of fog, dew, rain and other atmospheric water. Erde 2008, 139, 11–44. [Google Scholar]
- Beysens, D.; Broggini, F.; Milimouk-Melnytchouk, I.; Ouazzani, J.; Tixier, N. New architectural forms to enhance dew collection. Chem. Eng. Trans. 2013, 34, 79–84. [Google Scholar] [CrossRef]
- Li, C.; Yu, C.; Zhou, S.; Dong, Z.; Jiang, L. Liquid harvesting and transport on multiscaled curvatures. Proc. Natl. Acad. Sci. USA 2020, 117, 23436–23442. [Google Scholar] [CrossRef]
- Wright, A.M.; Rieth, A.J.; Yang, S.; Wang, E.N.; Dincă, M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal–organic frameworks. Chem. Sci. 2018, 9, 3856–3859. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Rao, S.R.; Kapustin, E.A.; Zhao, L.; Yang, S.; Yaghi, O.M.; Wang, E.N. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 2018, 9, 1191. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yang, S.; Rao, S.R.; Narayanan, S.; Kapustin, E.A.; Furukawa, H.; Umans, A.S.; Yaghi, O.M.; Wang, E.N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430–434. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Liu, Y.; Ye, X.; Liu, M.; Du, B.; Jin, Y.; Wen, R.; Lan, Z.; Wang, Z.; Ma, X. Macrotextures-enabled self-propelling of large condensate droplets. Chem. Eng. J. 2021, 405, 126901. [Google Scholar] [CrossRef]
- Magrini, A.; Cattani, L.; Cartesegna, M.; Magnani, L. Water production from air conditioning systems: Some evaluations about a sustainable use of resources. Sustainability 2017, 9, 1309. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, L.; Zhao, L.; Li, B.; Bhatia, B.; Wang, C.; Wilke, K.L.; Song, Y.; Labban, O.; Lienhard, J.H.; et al. Ultrahigh-efficiency desalination: Via a thermally-localized multistage solar still. Energy Environ. Sci. 2020, 13, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Ran, T.; Zhang, K.; Chen, D.; Gan, Y.; Wang, Z.; Jiang, L. Highly Efficient Multiscale Fog Collector Inspired by Sarracenia Trichome Hierarchical Structure. Glob. Chall. 2021, 5, 2100087. [Google Scholar] [CrossRef]
- Liu, H.; Yu, A.; Liu, H.; Chu, S.; Tan, S. Preparation of graphene/zeolite composites and the adsorption of pollutants in water. Russ. J. Appl. Chem. 2017, 90, 1171–1180. [Google Scholar] [CrossRef]
- Khatamian, M.; Khodakarampoor, N.; Saket-Oskoui, M. Efficient removal of arsenic using graphene-zeolite based composites. J. Colloid Interface Sci. 2017, 498, 433–441. [Google Scholar] [CrossRef]
- Manjili, M.; Silva, M.R.; Garman, D.; Zhang, H.F. Graphene oxide and thiol functionalized natural zeolite for the removal of lead from water. Water Sci. Technol. Water Supply 2020, 20, 2577–2588. [Google Scholar] [CrossRef]
- Ali, I.O.; El-Sheikh, S.M.; Salama, T.M.; Abdel-Khalek, E.K.; Thabet, M.S.; Bakr, M.F.; Fodial, M.H. Novel Composites of Multifunctional NaP Zeolite/Graphene Oxide for Highly Efficient Removal of Fe(III) from Aqueous Solution. J. Inorg. Organomet. Polym. Mater. 2021, 31, 577–590. [Google Scholar] [CrossRef]
- Lee, S.K.; Park, H.; Yoon, J.W.; Kim, K.; Cho, S.J.; Maurin, G.; Ryoo, R.; Chang, J.S. Microporous 3D Graphene-like Zeolite-Templated Carbons for Preferentia l Adsorption of Ethane. ACS Appl. Mater. Interfaces 2020, 12, 28484–28495. [Google Scholar] [CrossRef]
- Soldatov, A.P. Mechanism of Hydrogen Adsorption in Graphene Nanostructures Synthesized in Membrane Pores and on Zeolites. Russ. J. Phys. Chem. 2019, 93, 494–500. [Google Scholar] [CrossRef]
- Firdaus, R.M.; Desforges, A.; Rahman Mohamed, A.; Vigolo, B. Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. J. Clean. Prod. 2021, 328, 129553. [Google Scholar] [CrossRef]
- Silva, M.R.; Lecus, A.; Gajdardziska-Josifovska, M.; Schofield, M.; Virnoche, M.; Chang, J.; Chen, J.; Garman, D. Graphene-oxide loading on natural zeolite particles for enhancement of adsorption properties. RSC Adv. 2020, 10, 4589–4597. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Huang, X.; Chen, G.; Wang, E.N. Three-dimensional graphene enhanced heat conduction of porous crystals. J. Porous Mater. 2016, 23, 1647–1652. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, S.; Yang, S.; Kim, H.; Wang, E.N. Optimization of adsorption processes for climate control and thermal energy storage. Int. J. Heat Mass Transf. 2014, 77, 288–300. [Google Scholar] [CrossRef]
- Rocky, K.A.; Pal, A.; Rupam, T.H.; Nasruddin; Saha, B.B. Zeolite-graphene composite adsorbents for next generation adsorption heat pumps. Microporous Mesoporous Mater. 2021, 313, 110839. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef]
- Menna, E.; Della Negra, F.; Dalla Fontana, M.; Meneghetti, M. Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution. Phys. Rev. B 2003, 68, 193412. [Google Scholar] [CrossRef]
- Frisch, H.L. “Diffusion in polymers” edited by J. Crank and G. S. Park, Academic Press, London and New York, 1968; 452 pg. J. Appl. Polym. Sci. 1970, 14, 1657. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gildernew, E.; Tareq, S.; Yang, S. Three-Dimensional Graphene with Preserved Channeling as a Binder Additive for Zeolite 13X for Enhanced Thermal Conductivity, Vapor Transport, and Vapor Adsorption Loading Kinetics. Catalysts 2022, 12, 292. https://doi.org/10.3390/catal12030292
Gildernew E, Tareq S, Yang S. Three-Dimensional Graphene with Preserved Channeling as a Binder Additive for Zeolite 13X for Enhanced Thermal Conductivity, Vapor Transport, and Vapor Adsorption Loading Kinetics. Catalysts. 2022; 12(3):292. https://doi.org/10.3390/catal12030292
Chicago/Turabian StyleGildernew, Evan, Syed Tareq, and Sungwoo Yang. 2022. "Three-Dimensional Graphene with Preserved Channeling as a Binder Additive for Zeolite 13X for Enhanced Thermal Conductivity, Vapor Transport, and Vapor Adsorption Loading Kinetics" Catalysts 12, no. 3: 292. https://doi.org/10.3390/catal12030292
APA StyleGildernew, E., Tareq, S., & Yang, S. (2022). Three-Dimensional Graphene with Preserved Channeling as a Binder Additive for Zeolite 13X for Enhanced Thermal Conductivity, Vapor Transport, and Vapor Adsorption Loading Kinetics. Catalysts, 12(3), 292. https://doi.org/10.3390/catal12030292