Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Synthesis of Catalysts
3.2. Physicochemical Characterisation
3.3. Electrochemical Characterisation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuhl, K.P.; Hatsukade, T.; Cave, E.R.; Abram, D.N.; Kibsgaard, J.; Jaramillo, T.F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5, 1700275. [Google Scholar] [CrossRef]
- Küngas, R. Review—Electrochemical CO2 Reduction for CO Production: Comparison of Low- and High-Temperature Electrolysis Technologies. J. Electrochem. Soc. 2020, 167, 044508. [Google Scholar] [CrossRef]
- Trocino, S.; Vecchio, C.L.; Zignani, S.C.; Carbone, A.; Saccà, A.; Baglio, V.; Gómez, R.; Aricò, A.S. Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer. Catalysts 2020, 10, 1319. [Google Scholar] [CrossRef]
- Qi, Z.; Biener, M.M.; Kashi, A.R.; Hunegnaw, S.; Leung, A.; Ma, S.; Huo, Z.; Kuhl, K.P.; Biener, J. Scalable Fabrication of High Activity Nanoporous Copper Powders for Electrochemical CO2 Reduction via Ball Milling and Dealloying. J. CO2 Util. 2021, 45, 101454. [Google Scholar] [CrossRef]
- Marques da Silva, A.; Raaijman, S.; Santana, C.; Assaf, J.; Gomes, J.F.; Koper, M. Reprint of “Electrocatalytic CO2 Reduction to C2+ Products on Cu and CuxZny Electrodes: Effects of Chemical Composition and Surface Morphology”. J. Electroanal. Chem. 2021, 896, 115609. [Google Scholar] [CrossRef]
- Ali, S.; Razzaq, A.; Kim, H.; In, S.-I. Activity, Selectivity, and Stability of Earth-Abundant CuO/Cu2O/Cu0-Based Photocatalysts toward CO2 Reduction. Chem. Eng. J. 2022, 429, 131579. [Google Scholar] [CrossRef]
- Zeng, L.; Shi, J.; Chen, H.; Lin, C. Ag Nanowires/C as a Selective and Efficient Catalyst for CO2 Electroreduction. Energies 2021, 14, 2840. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. Chem. Soc. Rev. 2014, 43, 631–675. [Google Scholar] [CrossRef]
- Rabinowitz, J.A.; Kanan, M.W. The Future of Low-Temperature Carbon Dioxide Electrolysis Depends on Solving One Basic Problem. Nat. Commun. 2020, 11, 5231. [Google Scholar] [CrossRef]
- Song, J.T.; Song, H.; Kim, B.; Oh, J. Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems. Catalysts 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Kondratenko, E.V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G.O.; Pérez-Ramírez, J. Status and Perspectives of CO2 Conversion into Fuels and Chemicals by Catalytic, Photocatalytic and Electrocatalytic Processes. Energy Environ. Sci. 2013, 6, 3112–3135. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. An Alkaline Polymer Electrolyte CO2 Electrolyzer Operated with Pure Water. Energy Environ. Sci. 2019, 12, 2455–2462. [Google Scholar] [CrossRef]
- Kaczur, J.J.; Yang, H.; Liu, Z.; Sajjad, S.D.; Masel, R.I. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front. Chem. 2018, 6, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.K.; Park, H.-Y.; Lee, H.J.; Kim, H.-J.; Lim, A.; Henkensmeier, D.; Yoo, S.J.; Kim, J.Y.; Lee, S.Y.; Park, H.S.; et al. Alkaline Anion Exchange Membrane Water Electrolysis: Effects of Electrolyte Feed Method and Electrode Binder Content. J. Power Sources 2018, 382, 22–29. [Google Scholar] [CrossRef]
- Kutz, R.B.; Chen, Q.; Yang, H.; Sajjad, S.D.; Liu, Z.; Masel, I.R. Sustainion Imidazolium-Functionalized Polymers for Carbon Dioxide Electrolysis. Energy Technol. 2017, 5, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Sebastián, D.; Palella, A.; Baglio, V.; Spadaro, L.; Siracusano, S.; Negro, P.; Niccoli, F.; Aricò, A. CO2 Reduction to Alcohols in a Polymer Electrolyte Membrane Co-Electrolysis Cell Operating at Low Potentials. Electrochim. Acta 2017, 241, 28–40. [Google Scholar] [CrossRef]
- Manabe, A.; Kashiwase, M.; Hashimoto, T.; Hayashida, T.; Kato, A.; Hirao, K.; Shimomura, I.; Nagashima, I. Basic Study of Alkaline Water Electrolysis. Electrochim. Acta 2013, 100, 249–256. [Google Scholar] [CrossRef]
- Lee, S.; Ocon, J.D.; Son, Y.; Lee, J. Alkaline CO2 Electrolysis toward Selective and Continuous HCOO– Production over SnO2 Nanocatalysts. J. Phys. Chem. C 2015, 119, 4884–4890. [Google Scholar] [CrossRef]
- Zhang, L.; Merino-Garcia, I.; Albo, J.; Sánchez-Sánchez, C.M. Electrochemical CO2 Reduction Reaction on Cost-Effective Oxide-Derived Copper and Transition Metal–Nitrogen–Carbon Catalysts. Electrocatal. Sens. Biosens. 2020, 23, 65–73. [Google Scholar] [CrossRef]
- Krause, K.; Lee, C.; Lee, J.; Fahy, K.; Shafaque, H.; Kim, P.; Shrestha, P.; Bazylak, A. Unstable Cathode Potential in Alkaline Flow Cells for CO2 Electroreduction Driven by Gas Evolution. ACS Sustain. Chem. Eng. 2021, 9, 5570–5579. [Google Scholar] [CrossRef]
- Roy, A.; Jadhav, H.; Park, S.J.; Seo, J. Recent Advances in the Possible Electrocatalysts for the Electrochemical Reduction of Carbon Dioxide into Methanol. J. Alloys Compd. 2021, 887, 161449. [Google Scholar] [CrossRef]
- Schizodimou, A.; Kyriacou, G. Acceleration of the Reduction of Carbon Dioxide in the Presence of Multivalent Cations. Electrochim. Acta 2012, 78, 171–176. [Google Scholar] [CrossRef]
- Albo, J.; Sáez, A.; Solla-Gullón, J.; Montiel, V.; Irabien, A. Production of Methanol from CO2 Electroreduction at Cu2O and Cu2O/ZnO-Based Electrodes in Aqueous Solution. Appl. Catal. B Environ. 2015, 176–177, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Wang, X.; Klingan, K.; Klingenhof, M.; Möller, T.; Ferreira de Araújo, J.; Martens, I.; Bagger, A.; Jiang, S.; Rossmeisl, J.; Dau, H.; et al. Morphology and Mechanism of Highly Selective Cu(II) Oxide Nanosheet Catalysts for Carbon Dioxide Electroreduction. Nat. Commun. 2021, 12, 794. [Google Scholar] [CrossRef]
- Shu, D.; Wang, M.; Tian, F.; Zhang, H.; Peng, C. A Dual-Cathode Study on Ag-Cu Sequential CO2 Electroreduction towards Hydrocarbons. J. CO2 Util. 2021, 45, 101444. [Google Scholar] [CrossRef]
- Su, W.; Ma, L.; Cheng, Q.; Wen, K.; Wang, P.; Hu, W.; Zou, L.; Fang, J.; Yang, H. Highly Dispersive Trace Silver Decorated Cu/Cu2O Composites Boosting Electrochemical CO2 Reduction to Ethanol. J. CO2 Util. 2021, 52, 101698. [Google Scholar] [CrossRef]
- Monteiro, M.C.O.; Philips, M.F.; Schouten, K.J.P.; Koper, M.T.M. Efficiency and Selectivity of CO2 Reduction to CO on Gold Gas Diffusion Electrodes in Acidic Media. Nat. Commun. 2021, 12, 4943. [Google Scholar] [CrossRef]
- Ting, L.R.L.; García-Muelas, R.; Martín, A.J.; Veenstra, F.L.P.; Chen, S.T.-J.; Peng, Y.; Per, E.Y.X.; Pablo-García, S.; López, N.; Pérez-Ramírez, J.; et al. Electrochemical Reduction of Carbon Dioxide to 1-Butanol on Oxide-Derived Copper. Angew. Chem. Int. Ed. 2020, 59, 21072–21079. [Google Scholar] [CrossRef]
- Ma, M.; Clark, E.L.; Therkildsen, K.T.; Dalsgaard, S.; Chorkendorff, I.; Seger, B. Insights into the Carbon Balance for CO2 Electroreduction on Cu Using Gas Diffusion Electrode Reactor Designs. Energy Environ. Sci. 2020, 13, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-Y.; Li, T.-T.; Zhu, H.-L.; Zheng, Y.-Q. Co3O4 Polyhedrons with Enhanced Electric Conductivity as Efficient Water Oxidation Electrocatalysts in Alkaline Medium. J. Mater. Sci. 2018, 53, 4323–4333. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Trocino, S.; Giacoppo, G.; Barbera, O.; Baglio, V.; Díez-García, M.I.; Contreras, M.; Gómez, R.; Aricò, A.S. Water Splitting with Enhanced Efficiency Using a Nickel-Based Co-Catalyst at a Cupric Oxide Photocathode. Catalysts 2021, 11, 1363. [Google Scholar] [CrossRef]
- Zhao, J.; Xue, S.; Barber, J.; Zhou, Y.; Meng, J.; Ke, X. An Overview of Cu-Based Heterogeneous Electrocatalysts for CO2 Reduction. J. Mater. Chem. A 2020, 8, 4700–4734. [Google Scholar] [CrossRef]
- Spadaro, L.; Palella, A.; Arena, F. Copper-Iron-Zinc-Cerium Oxide Compositions as Most Suitable Catalytic Materials for the Synthesis of Green Fuels via CO2 Hydrogenation. Proc. V Int. Conf. Catal. Renew. Sources Fuel Energy Chem. 2021, 379, 230–239. [Google Scholar] [CrossRef]
- Crisafulli, R.; Barros, V.; Oliveira, F.; Rocha, T.; Zignani, S.; Spadaro, L.; Palella, A.; Dias, J.; Linares Leon, J. On the Promotional Effect of Cu on Pt for Hydrazine Electrooxidation in Alkaline Medium. Appl. Catal. B Environ. 2018, 236, 36–44. [Google Scholar] [CrossRef]
- Spadaro, L.; Palella, A.; Arena, F. Totally-Green Fuels via CO2 Hydrogenation. Bull. Chem. React. Eng. Catal. 2020, 15, 390–404. [Google Scholar] [CrossRef]
- Corro, G.; Vidal, E.; Cebada, S.; Pal, U.; Bañuelos, F.; Vargas, D.; Guilleminot, E. Electronic State of Silver in Ag/SiO2 and Ag/ZnO Catalysts and Its Effect on Diesel Particulate Matter Oxidation: An XPS Study. Appl. Catal. B Environ. 2017, 216, 1–10. [Google Scholar] [CrossRef]
- Barbera, K.; Frusteri, L.; Italiano, G.; Spadaro, L.; Frusteri, F.; Perathoner, S.; Centi, G. Low-temperature graphitization of amorphous carbon nanospheres. Chin. J. Catal. 2014, 35, 869–876. [Google Scholar] [CrossRef]
- Pantea, D.; Darmstadt, H.; Kaliaguine, S.; Roy, C. Electrical Conductivity of Conductive Carbon Blacks: Influence of Surface Chemistry and Topology. Appl. Surf. Sci. 2003, 217, 181–193. [Google Scholar] [CrossRef]
- Benson, E.E.; Kubiak, C.P.; Sathrum, A.J.; Smieja, J.M. Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chem. Soc. Rev. 2009, 38, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Vickers, J.W.; Alfonso, D.; Kauffman, D.R. Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. Energy Technol. 2017, 5, 775–795. [Google Scholar] [CrossRef] [Green Version]
- Salehi-Khojin, A.; Jhong, H.-R.M.; Rosen, B.A.; Zhu, W.; Ma, S.; Kenis, P.J.A.; Masel, R.I. Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632. [Google Scholar] [CrossRef]
- Calvinho, K.U.D.; Laursen, A.B.; Yap, K.M.K.; Goetjen, T.A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K.M.; Hall, E.S.; et al. Selective CO2 Reduction to C3 and C4 Oxyhydrocarbons on Nickel Phosphides at Overpotentials as Low as 10 MV. Energy Environ. Sci. 2018, 11, 2550–2559. [Google Scholar] [CrossRef]
- Karapinar, D.; Creissen, C.E.; Rivera de la Cruz, J.G.; Schreiber, M.W.; Fontecave, M. Electrochemical CO2 Reduction to Ethanol with Copper-Based Catalysts. ACS Energy Lett. 2021, 6, 694–706. [Google Scholar] [CrossRef]
- Campagna Zignani, S.; Lo Faro, M.; Trocino, S.; Aricò, A.S. Investigation of NiFe-Based Catalysts for Oxygen Evolution in Anion-Exchange Membrane Electrolysis. Energies 2020, 13, 1720. [Google Scholar] [CrossRef] [Green Version]
- Arena, F.; Trunfio, G.; Negro, J.; Spadaro, L. Synthesis of Highly Dispersed MnCeOx Catalysts via a Novel “Redox-Precipitation” Route. Mater. Res. Bull. 2008, 43, 539–545. [Google Scholar] [CrossRef]
- Erkan, S.; Eroglu, I. Progress in Clean Energy. In Ultrasonic Spray Coating Technique for High-Performance PEM Fuel Cell Electrode Manufacturing; Dincer, I., Colpan, C., Kizilkan, O., Ezan, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 2. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, X.; Yang, D.; Ma, J.; Kang, X.; Zheng, L.; Zhang, J.; Wu, Z.; Han, B. Carbon Dioxide Electroreduction to C2 Products over Copper-Cuprous Oxide Derived from Electrosynthesized Copper Complex. Nat. Commun. 2019, 10, 3851. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kley, C.S.; Li, Y.; Yang, P. Copper Nanoparticle Ensembles for Selective Electroreduction of CO2 to C2–C3 Products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560. [Google Scholar] [CrossRef] [Green Version]
CuOx/KB-Sustanion-NiFeOx/KB | |||
---|---|---|---|
Operative Conditions | Product Yield (µmol gcat−1) | CO2 Conversion Rate (µmol gcat−1 h−1) | |
Methanol | Ethanol | ||
Cathode CO2 (50 °C) Anode: 0.1 M NaHCO3 −1.8 V | 29.5 | 14.4 | 2.43 |
Cathode CO2 (50 °C) Anode: 0.1 M NaHCO3 −1.6 V | 17.6 | 9.5 | 1.52 |
Cathode CO2 (50 °C) Anode: 0.5 M NaHCO3 −1.8 V | 4.5 | 0.7 | 1.19 |
Cathode CO2 (50 °C) Anode: 0.5 M NaHCO3 −1.6 V | 11.4 | 7.1 | 1.07 |
CuOxAg/KB-Sustanion-NiFeOx/KB | |||
---|---|---|---|
Operative Conditions | Product Yield (µmol gcat−1) | CO2 Conversion Rate (µmol gcat−1 h−1) | |
Methanol | Ethanol | ||
Cathode: CO2 (50 °C) Anode: 0.1 M NaHCO3; 24 h | 34.7 | 7.5 | 2.07 |
CuOxAg/KB-Sustanion-NiFeOx/KB | |||
Operative Conditions | Product Yield (µmol gcat−1) | CO2 Conversion Rate (µmol gcat−1 h−1) | |
Methanol | Ethanol | ||
Cathode: CO2 (50 °C) Anode: 1 M KOH; 22 h | 0 | 5.45 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zignani, S.C.; Lo Faro, M.; Palella, A.; Spadaro, L.; Trocino, S.; Lo Vecchio, C.; Aricò, A.S. Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts 2022, 12, 293. https://doi.org/10.3390/catal12030293
Zignani SC, Lo Faro M, Palella A, Spadaro L, Trocino S, Lo Vecchio C, Aricò AS. Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts. 2022; 12(3):293. https://doi.org/10.3390/catal12030293
Chicago/Turabian StyleZignani, Sabrina Campagna, Massimiliano Lo Faro, Alessandra Palella, Lorenzo Spadaro, Stefano Trocino, Carmelo Lo Vecchio, and Antonino Salvatore Aricò. 2022. "Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell" Catalysts 12, no. 3: 293. https://doi.org/10.3390/catal12030293
APA StyleZignani, S. C., Lo Faro, M., Palella, A., Spadaro, L., Trocino, S., Lo Vecchio, C., & Aricò, A. S. (2022). Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts, 12(3), 293. https://doi.org/10.3390/catal12030293