Efficient Synthesis of cis-4-Propylcyclohexanol Using a Mutant Alcohol Dehydrogenase Coupled with Glucose Dehydrogenase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Using ADH to Produce cis-4-Propylcyclohexanol
2.2. Optimization of Reaction Temperature and pH
2.3. Optimization of Substrate Concentration
2.4. Optimization of Cell Dosage
2.5. Optimization of NAD+ Levels
2.6. Production of cis-4-Propylcyclohexanol under Optimized Conditions
2.7. Mechanism of Enhanced Catalytic Activity
3. Materials and Methods
3.1. Materials
3.2. Cloning and Expression
3.3. Using Recombinant ADH to Produce cis-4-Propylcyclohexanol
3.4. Optimization of Catalytic Parameters
3.5. Scale-Up of cis-4-Propylcyclohexanol
3.6. Homology Modeling and Molecular Docking
3.7. Product Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirsch, P.; Maillard, D. A convenient synthetic route to tetrahydropyran-based liquid crystals. Eur. J. Org. Chem. 2006, 15, 3326–3331. [Google Scholar] [CrossRef]
- Kirsch, P.; Hahn, A.; Froehlich, R.; Haufe, G. Liquid crystals based on axially fluorinated 1,3-dioxanes: Synthesis, properties and computational study. Eur. J. Org. Chem. 2006, 21, 4819–4824. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Prodanov, M.F.; Kang, C.B.; Vashchenko, V.V.; Gupta, S.K.; Chan, C.C.S.; Wong, K.S.; Srivastava, A.K. Stable bright perovskite nanoparticle thin porous films for color enhancement in modern liquid crystal displays. Nanoscale 2021, 13, 6400–6409. [Google Scholar] [CrossRef] [PubMed]
- Ikunaka, M.; Moriya, N.; Nomoto, F.; Ohsako, A.; Okuda, Y.; Suenaga, H. The highly selective equatorial hydride delivery by biocatalysis: Chemoenzymatic synthesis of trans-2-(4-propylcyclohexyl)-1,3-propanedioI via cis-4-propylcyclohexanol. Org. Process Res. Dev. 2004, 8, 389–395. [Google Scholar] [CrossRef]
- Kirsch, P.; Poetsch, E. Novel polar liquid crystals with very low birefringence based on trans-1,3-dioxane building blocks. Adv. Mater. 1998, 10, 602–606. [Google Scholar] [CrossRef]
- Zheng, Y.G.; Yin, H.H.; Yu, D.F.; Chen, X.; Tang, X.L.; Zhang, X.J.; Xue, Y.P.; Wang, Y.J.; Liu, Z.Q. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl. Microbiol. Biot. 2017, 101, 987–1001. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.Y.; Zheng, Y.C.; Bai, Y.P. Stereoselective synthesis of chiral delta-lactones via an engineered carbonyl reductase. Chem Comm. 2021, 57, 10584–10587. [Google Scholar] [CrossRef]
- An, J.H.; Nie, Y.; Xu, Y. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions. Crit. Rev. Biotechno. 2019, 39, 366–379. [Google Scholar] [CrossRef]
- He, X.J.; Chen, S.Y.; Wu, J.P.; Yang, L.R.; Xu, G. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir. Appl. Microbiol. Biot. 2015, 99, 8963–8975. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Y.; Zhao, Q.; Zhao, Q.; Wang, Z. Enzymatic synthesis of an orlistat intermediate using a mutant short-chain dehydrogenase from Novosphingobium aromaticivorans. Process Biochem. 2020, 95, 235–241. [Google Scholar] [CrossRef]
- Chen, N.; Chen, Y.; Tang, Y.; Zhao, Q.; Liu, C.; Niu, W.; Huang, P.; Yu, F.; Yang, Z.; Ding, G. Efficient synthesis of (S)-2-chloro-1-(2, 4-dichlorophenyl) ethanol using a tetrad mutant alcohol dehydrogenase from Lactobacillus kefir. Process Biochem. 2019, 85, 78–83. [Google Scholar] [CrossRef]
- Cho, H.J.; Jang, W.J.; Moon, S.Y.; Lee, J.M.; Kim, J.H.; Han, H.S.; Kim, K.W.; Lee, B.J.; Kong, I.S. Immobilization of beta-1,3-1,4-glucanase from Bacillus sp on porous silica for production of beta-glucooligosaccharides. Enzym. Microb. Tech. 2018, 110, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Xu, J.Y.; Sun, W.L.; Hu, W.J.; Gao, H.F.; Hu, K.H.; Qiu, J.Z.; Huang, B.B.; Zhang, L.Y. Efficient 1-hydroxy-2-butanone production from 1,2-butanediol by whole cells of engineered E. coli. Catalysts 2021, 11, 1184. [Google Scholar] [CrossRef]
- Kumpf, A.; Kowalczykiewicz, D.; Szymańska, K.; Mehnert, M.; Bento, I.; Łochowicz, A.; Pollender, A.; Jarzȩbski, A.; Tischler, D. Immobilization of the highly active UDP-glucose pyrophosphorylase from Thermocrispum agreste provides a highly efficient biocatalyst for the production of UDP-glucose. Front Bioeng. Biotechnol. 2020, 8, 740. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Tang, Y.; Liang, X.; Hou, M.; Wan, Z.; Tao, J. Development of a biocatalytic process to prepare (S)-N-Boc-3-hydroxypiperidine. Org. Process Res. Dev. 2014, 18, 827–830. [Google Scholar] [CrossRef]
- Xu, T.; Wang, C.; Zhu, S.; Zheng, G. Enzymatic preparation of optically pure t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate by a novel alcohol dehydrogenase discovered from Klebsiella oxytoca. Process Biochem. 2017, 57, 72–79. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Wu, L.; Zheng, L.; Wang, W.-Z.; Zhang, X.-J.; Jin, L.-Q.; Zheng, Y.-G. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. Bioresour. Technol. 2018, 249, 161–167. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Dong, S.-C.; Yin, H.-H.; Xue, Y.-P.; Tang, X.-L.; Zhang, X.-J.; He, J.-Y.; Zheng, Y.-G. Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system. Bioresour. Technol. 2017, 229, 26–32. [Google Scholar] [CrossRef]
- Naeem, M.; Li, A.; Younis, M.A.; Shen, B.; Ye, L.; Yu, H. Asymmetric bioreduction of 4-hydroxy-2-butanone by carbonyl reductases PFODH and CpSADH delivers 1,3-butanediol enantiomers with excellent R- and S-enantioselectivity. Biotechnol. Bioproc. E. 2019, 24, 972–980. [Google Scholar] [CrossRef]
- Enugala, T.R.; Morato, M.C.; Kamerlin, S.C.L.; Widersten, M. The role of substrate-coenzyme crosstalk in determining turnover rates in Rhodococcus ruber alcohol dehydrogenase. ACS Catal. 2020, 10, 9115–9128. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, C.; Xing, X.-H.; Yun, Z.; Zhao, L.; Wu, Q. Construction and characterization of novel bifunctional fusion proteins composed of alcohol dehydrogenase and NADH oxidase with efficient oxidized cofactor regeneration. Biotechnol. Appl. Biochem. 2021. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-Q.; Li, F.-L.; Yu, W.-Q.; Li, R.-F.; Zhang, Y.-W. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD(+) regeneration. Int. J. Biol. Macromol. 2020, 144, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Wang, W.-Z.; Zhou, R.; Liu, Z.-Q.; Zheng, Y.-G. Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization. Biotechnol. Bioproc. E. 2020, 43, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Sirota, F.L.; Maurer-Stroh, S.; Li, Z.; Eisenhaber, F.; Eisenhaber, B. Functional classification of super-large families of enzymes based on substrate binding pocket residues for biocatalysis and enzyme engineering applications. Front Bioeng. Biotechnol. 2021, 9, 701120. [Google Scholar] [CrossRef]
- Verma, R.; Ellis, J.M.; Mitchell-Koch, K.R. Dynamic preference for NADP/H cofactor binding/release in E. coli YqhD oxidoreductase. Molecules 2021, 26, 270. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Yan, J.; Wang, X.; Yin, X.; Shi, G.; Yang, L.; Li, F.; Huang, J.; Shao, L. Efficient synthesis of bepotastine and cloperastine intermediates using engineered alcohol dehydrogenase with a hydrophobic pocket. Appl.Microbiol. Biot. 2021, 105, 5873–5882. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, J.; Ni, J.; Zhu, C.; Sun, Z.; Xu, G.; Ni, Y. Engineering an alcohol dehydrogenase from Kluyveromyces polyspora for efficient synthesis of ibrutinib intermediate. Adv. Synth.Catal. 2022, 364, 332–340. [Google Scholar] [CrossRef]
- Li, S.-F.; Xie, J.-Y.; Qiu, S.; Zhou, S.-Y.; Wang, Y.-J.; Zheng, Y.-G. Tailoring an aldo-keto reductase KmAKR for robust thermostability and catalytic efficiency by stepwise evolution and structure-guided consensus engineering. Bioorg. Chem. 2021, 109, 104712. [Google Scholar] [CrossRef]
- Xu, G.-C.; Wang, Y.; Tang, M.-H.; Zhou, J.-Y.; Zhao, J.; Han, R.-Z.; Ni, Y. Hydroclassified combinatorial saturation mutagenesis: Reshaping substrate binding pockets of KpADH for enantioselective reduction of bulky-bulky ketones. ACS Catal. 2018, 8, 8336–8345. [Google Scholar] [CrossRef]
- Noey, E.L.; Tibrewal, N.; Jimenez-Oses, G.; Osuna, S.; Park, J.; Bond, C.M.; Cascio, D.; Liang, J.; Zhang, X.; Huisman, G.W.; et al. Origins of stereoselectivity in evolved ketoreductases. Proc. Natl. Acad. Sci. USA. 2015, 112, 7065–7072. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF chimera-A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Wang, Z.; Guo, X.; Liu, P.; Liu, Z.; Wu, G. Efficient Synthesis of cis-4-Propylcyclohexanol Using a Mutant Alcohol Dehydrogenase Coupled with Glucose Dehydrogenase. Catalysts 2022, 12, 406. https://doi.org/10.3390/catal12040406
Wu L, Wang Z, Guo X, Liu P, Liu Z, Wu G. Efficient Synthesis of cis-4-Propylcyclohexanol Using a Mutant Alcohol Dehydrogenase Coupled with Glucose Dehydrogenase. Catalysts. 2022; 12(4):406. https://doi.org/10.3390/catal12040406
Chicago/Turabian StyleWu, Licheng, Zhiwei Wang, Xiaolei Guo, Pengfu Liu, Ziduo Liu, and Gaobing Wu. 2022. "Efficient Synthesis of cis-4-Propylcyclohexanol Using a Mutant Alcohol Dehydrogenase Coupled with Glucose Dehydrogenase" Catalysts 12, no. 4: 406. https://doi.org/10.3390/catal12040406
APA StyleWu, L., Wang, Z., Guo, X., Liu, P., Liu, Z., & Wu, G. (2022). Efficient Synthesis of cis-4-Propylcyclohexanol Using a Mutant Alcohol Dehydrogenase Coupled with Glucose Dehydrogenase. Catalysts, 12(4), 406. https://doi.org/10.3390/catal12040406