Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Nanohybrid Filter
2.2. Photoelectrochemical Degradation of Tetracycline
2.3. Mechanism Insights
2.4. Operational Parameters Optimization
2.4.1. Impacts of MIL-101(Fe) Loading and Applied Voltage
2.4.2. Impacts of PMS Concentration and Flow Rate
2.4.3. Impact of Solution pH
2.5. System Stability Evaluation
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of the Nanohybrid Filter
3.3. Characterization
3.4. TC Degradation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cristian, M.; Antonio, V.; José Luis, V.; Leire, R. Hybrid organic-inorganic membranes for photocatalytic water remediation. Catalysts 2022, 12, 180. [Google Scholar] [CrossRef]
- Vadivel, D.; Sturini, M.; Speltini, A.; Dondi, D. Tungsten catalysts for visible light driven ofloxacin photocatalytic degradation and hydrogen production. Catalysts 2022, 12, 310. [Google Scholar] [CrossRef]
- Azar, F.; Ivana, J.; Nivetha, S.; Leslie, B.; Robert, L.; Norman, Z.; Mark, S.; Maricor, A. Effect of background water matrices on pharmaceutical and personal care product removal by UV-LED/TiO2. Catalysts 2021, 11, 576. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, X.; Xu, B.; Peng, D.; Guo, X. Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. Sci. Total Environ. 2020, 753, 141891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, X.; Ho, S. Wastewater treatment nexus: Carbon nanomaterials towards potential aquatic ecotoxicity. J. Hazard. Mater. 2021, 417, 125959. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.T.; Liu, Y.B.; Liu, W.; Ji, H.D.; Li, F.; Shen, C.S.; Fang, X.F.; Li, X.; Duan, X.G. A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Res. 2021, 194, 116961. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, L.; Deng, L.; Zhang, H.; Zeng, H.; Shi, Z. Efficient activation of peroxymonosulfate on CuS@MIL-101(Fe) spheres featured with abundant sulfur vacancies for coumarin degradation: Performance and mechanisms. Sep. Purif. Technol. 2021, 276, 119404. [Google Scholar] [CrossRef]
- Wu, D.; Xia, K.; Fang, C.; Chen, X.; Ye, Y. Rapid removal of azophloxine via catalytic degradation by a novel heterogeneous catalyst under visible light. Catalysts 2020, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; Liu, F.Q.; Ding, N.; Hu, X.H.; Shen, C.S.; Li, F.; Huang, M.H.; Wang, Z.W.; Sand, W.; Wang, C.C. Recent advances on electroactive CNT-based membranes for environmental applications: The perfect match of electrochemistry and membrane separation. Chin. Chem. Lett. 2020, 31, 2539–2548. [Google Scholar] [CrossRef]
- Ren, Y.L.; Liu, Y.B.; Liu, F.Q.; Li, F.; Shen, C.S.; Wu, Z.C. Extremely efficient electro-Fenton-like Sb(III) detoxification using nanoscale Ti-Ce binary oxide: An effective design to boost catalytic activity via non-radical pathway. Chin. Chem. Lett. 2021, 32, 2519–2523. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, Y.B.; Shen, C.S.; Li, F.; Wang, C.C.; Huang, M.H.; Yang, B.; Wang, Z.W.; Yang, J.M.; Sand, W. One-step Sb(III) decontamination using a bifunctional photoelectrochemical filter. J. Hazard. Mater. 2020, 389, 121840. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Gao, G.D.; Vecitis, C.D. Prospects of an electroactive carbon nanotube membrane toward environmental applications. Acc. Chem. Res. 2020, 53, 2892–2902. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.L.; Liu, Y.B.; Ji, H.D.; Wang, C.C.; Chen, B.; Shen, C.S.; Li, F.; Wang, Y.X.; Lu, P.; Liu, W. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environ. Sci. Technol. 2021, 55, 4045–4053. [Google Scholar] [CrossRef] [PubMed]
- Debashis, R.; Sudarsan, N.; Sirshendu, D. Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation. Chem. Eng. J. 2021, 428, 131028. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Yang, K.; Liu, W.; Xu, Y.; Liang, P.; Zhang, X.; Huang, X. Versatile zero valent iron applied in anaerobic membrane reactor for treating municipal wastewater: Performances and mechanisms. Chem. Eng. J. 2020, 382, 123000. [Google Scholar] [CrossRef]
- Liu, B.; Song, W.; Wu, H.; Liu, Z.; Teng, Y.; Sun, Y.; Xu, Y.; Zheng, H. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite. Chem. Eng. J. 2020, 398, 125498. [Google Scholar] [CrossRef]
- Guo, D.L.; You, S.J.; Li, F.; Liu, Y.B. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: A review. Chin. Chem. Lett. 2022, 33, 1–10. [Google Scholar] [CrossRef]
- Xiao, Z.; Feng, X.; Shi, H.; Zhou, B.; Wang, W.; Ren, N. Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation. J. Hazard. Mater. 2021, 424, 127247. [Google Scholar] [CrossRef]
- Jin, L.M.; You, S.J.; Duan, X.G.; Yao, Y.; Yang, J.M.; Liu, Y.B. Peroxymonosulfate activation by Fe3O4-MnO2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism. J. Hazard. Mater. 2022, 423, 127111. [Google Scholar] [CrossRef]
- Wang, C.; Du, J.; Liang, Z.; Liang, J.; Zhao, Z.; Cui, F.; Shi, W. High efficiency oxidation of fluoroquinolones by the synergistic activation of peroxymonosulfate via vacuum ultraviolet and ferrous iron. J. Hazard. Mater. 2021, 422, 126884. [Google Scholar] [CrossRef]
- Li, N.; Tang, S.; Rao, Y.; Qi, J.; Zhang, Q.; Yuan, D. Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochim. Acta 2018, 298, 56–69. [Google Scholar] [CrossRef]
- Xie, X.; Cao, J.; Xiang, Y.; Xie, R.; Suo, Z.; Ao, Z.; Yang, X.; Huang, H. Accelerated iron cycle inducing molecular oxygen activation for deep oxidation of aromatic VOCs in MoS2 co-catalytic Fe3+/PMS system. Appl. Catal. B Environ. 2022, 309, 121235. [Google Scholar] [CrossRef]
- Yang, Q.; Yan, Y.; Yang, X.; Liao, G.; He, J.; Wang, D. The effect of complexation with metal ions on tetracycline degradation by Fe2+/Fe3+ and Ru3+ activated peroxymonosulfate. Chem. Eng. J. 2021, 429, 132178. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.; Huang, J.; Yan, F.; Du, Y.; He, C.; Liu, Y.; Yao, G.; Lai, B. A singlet oxygen dominated process through photocatalysis of CuS-modified MIL-101(Fe) assisted by peroxymonosulfate for efficient water disinfection. Chem. Eng. J. 2022, 439, 135788. [Google Scholar] [CrossRef]
- Bi, H.; Liu, C.; Li, J.; Tan, J. Insights into the visible-light-driving MIL-101 (Fe)/g-C3N4 materials-activated persulfate system for efficient hydrochloride water purification. J. Solid State Chem. 2022, 306, 122741. [Google Scholar] [CrossRef]
- Zheng, W.T.; You, S.J.; Yao, Y.; Jin, L.M.; Liu, Y.B. Development of atomic hydrogen-mediated electrocatalytic filtration system for peroxymonosulfate activation towards ultrafast degradation of emerging organic contaminants. Appl. Catal. B Environ. 2021, 298, 120593. [Google Scholar] [CrossRef]
- Zuo, S.; Xia, D.; Guan, Z.; Yang, F.; Zhang, B.; Xu, H.; Huang, M.; Guo, X.; Li, D. The polarized electric field on Fe2O3/g-C3N4 for efficient peroxymonosulfate activation: A synergy of 1O2, electron transfer and pollutant oxidation. Sep. Purif. Technol. 2021, 269, 118717. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Gou, G.; Kang, S.; Tan, X.; Tan, B.; Li, L.; Li, N.; Liu, C.; Lai, B. New insight into the mechanism of peroxymonosufate activation by Fe3S4: Radical and non-radical oxidation. Sep. Purif. Technol. 2022, 286, 120471. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, H.G.; Zhang, Y.L.; Wu, X.; Liu, Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017, 113, 80–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, W. G–C3N4 induced acceleration of Fe3+/Fe2+ cycles for enhancing metronidazole degradation in Fe3+/peroxymonosulfate process under visible light. Chemosphere 2022, 293, 133611. [Google Scholar] [CrossRef]
- Dai, Y.L.; Yao, Y.; Li, M.H.; Fang, X.F.; Shen, C.S.; Li, F.; Liu, Y.B. Carbon nanotube filter functionalized with MIL-101(Fe) for enhanced flow-through electro-Fenton. Environ. Res. 2022, 204, 112117. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Han, Y.; Gao, P.; Li, H. New insight into the mechanism of electro-assisted pyrite minerals activation of peroxymonosulfate: Synergistic effects, activation sites and electron transfer. Sep. Purif. Technol. 2021, 274, 118817. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Huang, N.; Wang, T.; Hu, H. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species. Water Res. 2016, 98, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Yang, B.; Xiong, Q.; Cai, W.; Lan, Z.; Ying, G. Hydrolytic transformation mechanism of tetracycline antibiotics: Reaction kinetics, products identification and determination in WWTPs. Ecotoxicol. Environ. Saf. 2021, 229, 113063. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Dai, Y.; Zheng, W.; Liu, Y. Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination. Catalysts 2022, 12, 416. https://doi.org/10.3390/catal12040416
Zhao W, Dai Y, Zheng W, Liu Y. Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination. Catalysts. 2022; 12(4):416. https://doi.org/10.3390/catal12040416
Chicago/Turabian StyleZhao, Wenchang, Yuling Dai, Wentian Zheng, and Yanbiao Liu. 2022. "Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination" Catalysts 12, no. 4: 416. https://doi.org/10.3390/catal12040416
APA StyleZhao, W., Dai, Y., Zheng, W., & Liu, Y. (2022). Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination. Catalysts, 12(4), 416. https://doi.org/10.3390/catal12040416