Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment
Abstract
:1. Electrocatalytic Oxidation Technologies
1.1. Technique Principle
1.2. Anode
- (1)
- Potential safety hazards: Due to intrinsic properties, traditional titanium-based metal oxide electrodes (including the PbO2 electrode, Sb-SnO2 electrode, and Ir/Ru/Ta series electrode) have an issue of surface metal element dissolution in reactions, which will last during the entire life cycle of the electrode, resulting in a significant risk of secondary pollution [44]. In addition, there is a significant scaling phenomenon on the cathode surface in the engineering practice of electrocatalytic oxidation technology. Once the scale layer thickens and results in the connection between anode and cathode, the anode surface layer will be penetrated and corroded, seriously impairing the safe and stable operation of the system [45,46];
- (2)
- Inadequate catalytic capacity: The yield of the hydroxyl radical on the surface of the Sb-SnO2 electrode and Ir/Ru/Ta electrode is not sufficient. Although the hydroxyl radical yield of the PbO2 electrode is higher than that of the former two, it is mainly in the adsorption state [47] and incompetent for effective degradation, bringing its oxidation capacity even lower than that of the Sb-SnO2 electrode [48,49];
- (3)
- Poor economy: Although it is relatively cheap compared with the noble metal electrode and BDD electrode, the titanium-based metal oxide electrode still requires the use of noble metal salt to prepare a brush coating solution in the preparation process, resulting in high cost and vulnerability to fluctuations in noble metal market price [50,51];
- (4)
- Stability to be improved: The above-mentioned PbO2 electrode, Sb-SnO2 electrode, and Ir/Ru/Ta series electrode all have a surface-active element dissolution, surface oxide layer loss, and titanium base passivation in the use process (especially with F− ion or high concentration Cl− ion), which leads to the irreversible inactivation of the electrode [52,53]. Thus, the stability needs further improvement.
1.3. Magnéli Titanium Sub-Oxides Material
1.3.1. Crystal Structure of Titanium Sub-Oxides Material
1.3.2. Physicochemical Properties of Titanium Sub-Oxides Material
2. Preparation Methods of Titanium Sub-Oxides Electrode
2.1. Preparation of Titanium Sub-Oxides Powder
2.2. Titanium Sub-Oxides-Coated Electrode
2.2.1. Coating Method
2.2.2. Magnetron Sputtering Method
2.2.3. Electrodeposition Method
2.2.4. Sol–Gel Method
2.3. Titanium Sub-Oxides-Integrated Electrode
2.3.1. Compression Reduction Method
2.3.2. Powder Sintering Method
2.3.3. Membrane Preparation by Hydrothermal Reduction Method
2.4. Titanium Sub-Oxides Composite Electrode
2.4.1. Titanium Oxide-Doped Composite Electrode
2.4.2. Metals-Doped Composite Titanium Sub-Oxides Electrode
3. Application of Titanium Sub-Oxides Electrode in Electrocatalytic Oxidation Wastewater
3.1. Antibiotic Wastewater
3.2. Dye Wastewater
3.3. Wastewater Containing Phenols
3.4. Treatment of Mixed Pollutants
3.5. Coupling Technology of Titanium Sub-Oxides Anodic Electrocatalytic Oxidation System
4. Summary and Outlook
- (1)
- Optimization of preparation process: The current relatively stable preparation route still has the disadvantages of high energy consumption requirements, high temperature, and low efficiency, in which high-temperature calcination is prone to agglomeration. Therefore, it is necessary to further optimize the preparation route at high temperatures to prepare relatively pure titanium sub-oxides electrodes with high activity. In addition, the medium- and low-temperature synthesis should be further explored to avoid the disadvantages resulting from high temperatures and reduce the preparation costs;
- (2)
- Modification of electrode materials: Studies show that the performance of electrodes can be significantly promoted by doping with highly active metal elements, and its degradation mechanisms need further elucidation. By identifying the mechanisms, the titanium sub-oxide electrode can be further modified and optimized to retain its excellent electrochemical performance. The original defects are to be made up by doping and other technical means to develop high-efficiency and low-consumption electrode products;
- (3)
- Application expansion: The performance of titanium sub-oxides is not limited to electrocatalysis. Combining an electrocatalytic oxidation system and other technical means can better develop the hidden performance of the electrode to achieve twice the result with half the effort. In addition, the effective construction of an electrocatalytic oxidation system can also make the electrode material fulfill the maximum function;
- (4)
- Principles exploration: Titanium sub-oxides are a kind of material with excellent stability. Therefore, it is of great importance to explore the deactivation mechanism of electrodes for prolonging electrode life. In the electrocatalytic oxidation system, the effects of different impurity ions on the electrode and the synergistic degradation principle of complex pollutants demand to be further studied.
Author Contributions
Funding
Conflicts of Interest
References
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Panizza, M.; Michaud, P.-A.; Iniesta, J.; Comninellis, C.; Cerisola, G. Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim. Acta 2001, 46, 3573–3578. [Google Scholar]
- Lei, J.; Xu, Z.; Xu, H.; Qiao, D.; Liao, Z.; Yan, W.; Wang, Y. Pulsed electrochemical oxidation of acid Red G and crystal violet by PbO2 anode. J. Environ. Chem. Eng. 2020, 8, 103773. [Google Scholar]
- Zhang, Y.; Zhang, C.; Shao, D.; Xu, H.; Rao, Y.; Tan, G.; Yan, W. Magnetically assembled electrodes based on Pt, RuO2-IrO2-TiO2 and Sb-SnO2 for electrochemical oxidation of wastewater featured by fluctuant Cl− concentration. J. Hazard. Mater. 2022, 421, 126803. [Google Scholar] [CrossRef]
- Kobya, M.; Hiz, H.; Senturk, E.; Aydiner, C.; Demirbas, E. Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination 2006, 190, 201–211. [Google Scholar] [CrossRef]
- Dargahi, A.; Shokoohi, R.; Asgari, G.; Ansari, A.; Nematollahi, D.; Samarghandi, M.R. Moving-bed biofilm reactor combined with three-dimensional electrochemical pretreatment (MBBR-3DE) for 2,4-D herbicide treatment: Application for real wastewater, improvement of biodegradability. RSC Adv. 2021, 11, 9608–9620. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35, 1324–1340. [Google Scholar] [CrossRef]
- Li, A.; Weng, J.; Yan, X.; Li, H.; Shi, H.; Wu, X. Electrochemical oxidation of acid orange 74 using Ru, IrO2, PbO2, and boron doped diamond anodes: Direct and indirect oxidation. J. Electroanal. Chem. 2021, 898, 115622. [Google Scholar] [CrossRef]
- Kirk, D.W.; Sharifian, H.; Foulkes, F.R. Anodic oxidation of aniline for waste water treatment. J. Appl. Electrochem. 1985, 15, 285–292. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zhou, L.; Zhu, H.; Wan, F.; Wang, Y.; Zhang, D. Performance of nitrogen-doped graphene aerogel particle electrodes for electro-catalytic oxidation of simulated Bisphenol A wastewaters. J. Hazard. Mater. 2017, 332, 70–78. [Google Scholar] [CrossRef]
- Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Xu, H.; Qiao, D.; Xu, Z.; Guo, H.; Chen, S.; Xu, X.; Gao, X.; Yan, W. Application of electro-catalytic oxidation technology in organic wastewater treatment. Ind. Water Treat. 2021, 41, 1–9. (In Chinese) [Google Scholar]
- Liu, Y.; Liu, H. Comparative studies on the electrocatalytic properties of modified PbO2 anodes. Electrochim. Acta 2008, 53, 5077–5083. [Google Scholar] [CrossRef]
- Patel, P.S.; Bandre, N.; Saraf, A.; Ruparelia, J.P. Electro-catalytic Materials (Electrode Materials) in Electrochemical Wastewater Treatment. Procedia Eng. 2013, 51, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Ignasi, S. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. Int. 2014, 21, 8336–8367. [Google Scholar]
- Ihara, I.; Umetsu, K.; Kanamura, K.; Watanabe, T. Electrochemical oxidation of the effluent from anaerobic digestion of dairy manure. Bioresour. Technol. 2006, 97, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Q.; Yang, B.; Deng, S.; Huang, J.; Wang, B.; Yu, G. Electrochemical Anodic Materials Used for Degradation of Organic Pollutants. Prog. Chem. 2012, 24, 628–636. (In Chinese) [Google Scholar]
- Dargahi, A.; Hasani, K.; Mokhtari, S.A.; Vosoughi, M.; Moradi, M.; Vaziri, Y. Highly effective degradation of 2,4-Dichlorophenoxyacetic acid herbicide in a three-dimensional sono-electro-Fenton (3D/SEF) system using powder activated carbon (PAC)/Fe3O4 as magnetic particle electrode. J. Environ. Chem. Eng. 2021, 9, 105889. [Google Scholar] [CrossRef]
- Salazar-Banda, G.R.; Santos, G.d.O.S.; Duarte Gonzaga, I.M.; Dória, A.R.; Barrios Eguiluz, K.I. Developments in electrode materials for wastewater treatment. Curr. Opin. Electrochem. 2021, 26, 100663. [Google Scholar] [CrossRef]
- Comninellis, C.; Pulgarin, C. Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem. 1991, 21, 703–708. [Google Scholar] [CrossRef]
- Bai, H.; He, P.; Pan, J.; Chen, J.; Chen, Y.; Dong, F.; Li, H. Boron-doped diamond electrode: Preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene. J. Colloid Interface Sci. 2017, 497, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huitle, C.A.; Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Zhao, G.; Li, P.; Nong, F.; Li, M.; Gao, J.; Li, D. Construction and High Performance of a Novel Modified Boron-Doped Diamond Film Electrode Endowed with Superior Electrocatalysis. J. Phys. Chem. C 2010, 114, 5906–5913. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, C.; Yu, G.; Zhuo, Q.; Deng, S.; Wu, J.; Zhang, H. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. J. Hazard. Mater. 2015, 299, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Salman, N.M.; Guo, H.; Xu, Z.; Xu, H.; Yan, W.; Liao, Z.; Wang, Y. A 2.5D Electrode System Constructed of Magnetic Sb-SnO2 Particles and a PbO2 Electrode and Its Electrocatalysis Application on Acid Red G Degradation. Catalysts 2019, 9, 875. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhu, K.; Xu, H.; Yan, W. Electrochemical oxidation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode. Chin. J. Catal. 2019, 40, 917–927. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Sun, Y.; Jiang, S.; Shi, L.; Bi, Q.; Xue, J. Preparation of a novel Ni/Sb co-doped Ti/SnO2 electrode with carbon nanotubes as growth template by electrodeposition in a deep eutectic solvent. J. Electroanal. Chem. 2022, 911, 116225. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Dimou, A.; Mantzavinos, D.; Katsaounis, A. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode. J. Hazard. Mater. 2009, 167, 268–274. [Google Scholar] [CrossRef]
- Qu, J.P.; Zhang, X.G.; Wang, Y.G.; Xie, C.X. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim. Acta 2005, 50, 3576–3580. [Google Scholar] [CrossRef]
- Samet, Y.; Elaoud, S.C.; Ammar, S.; Abdelhedi, R. Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes. J. Hazard. Mater. 2006, 138, 614–619. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Z.; Qiao, D.; Wan, D.; Xu, H.; Yan, W.; Jin, X. Fabrication and characterization of porous titanium-based PbO2 electrode through the pulse electrodeposition method: Deposition condition optimization by orthogonal experiment. Chemosphere 2020, 261, 128157. [Google Scholar]
- Zhang, X.; Shao, D.; Lyu, W.; Xu, H.; Yang, L.; Zhang, Y.; Wang, Z.; Liu, P.; Yan, W.; Tan, G. Design of magnetically assembled electrode (MAE) with Ti/PbO2 and heterogeneous auxiliary electrodes (AEs): The functionality of AEs for efficient electrochemical oxidation. Chem. Eng. J. 2020, 395, 125145. [Google Scholar] [CrossRef]
- Shao, D.; Wang, Z.; Zhang, C.; Li, W.; Xu, H.; Tan, G.; Yan, W. Embedding wasted hairs in Ti/PbO2 anode for efficient and sustainable electrochemical oxidation of organic wastewater. Chin. Chem. Lett. 2022, 33, 1288–1292. [Google Scholar] [CrossRef]
- Samarghandi, M.R.; Ansari, A.; Dargahi, A.; Shabanloo, A.; Nematollahi, D.; Khazaei, M.; Nasab, H.Z.; Vaziri, Y. Enhanced electrocatalytic degradation of bisphenol A by graphite/beta-PbO2 anode in a three-dimensional electrochemical reactor. J. Environ. Chem. Eng. 2021, 9, 106072. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Jiang, C.; Li, J.; Yu, G.; Deng, S.; Lu, S.; Zhang, P.; Zhu, C.; Zhuo, Q. Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer. Chem. Eng. J. 2017, 316, 296–304. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, Y.; Liu, H.; Niu, J. Highly efficient and stable Zr-doped nanocrystalline PbO2 electrode for mineralization of perfluorooctanoic acid in a sequential treatment system. Sci. Total Environ. 2017, 579, 1600–1607. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Fan, X.; Zhang, Z.; Dou, R.; Wen, S.; Chen, Y.; Chen, Y.; Hu, Y. Preparation and Characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA. Electrochim. Acta 2017, 231, 354–362. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Cao, X.; Wang, D.; Wei, J. Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol. Chin. J. Catal. 2015, 36, 975–981. [Google Scholar] [CrossRef]
- Wu, W.; Huang, Z.-H.; Hu, Z.-T.; He, C.; Lim, T.-T. High performance duplex-structured SnO2-Sb-CNT composite anode for bisphenol A removal. Sep. Purif. Technol. 2017, 179, 25–35. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, H.; Niu, J.; Zhou, Y.; Wang, C.; Wang, Y. Hydroxyl multi-walled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. J. Hazard. Mater. 2017, 327, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liang, G.; Yin, M. A promising electrode material modified by Nb-doped TiO2 nanotubes for electrochemical degradation of AR 73. Chemosphere 2017, 173, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jin, T.; Hu, Z.; Zhou, L.; Zhou, M. TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: Effect of TiO2-NTs architecture. Sep. Purif. Technol. 2013, 102, 180–186. [Google Scholar] [CrossRef]
- Shao, D.; Zhang, Y.; Lyu, W.; Zhang, X.; Tan, G.; Xu, H.; Yan, W. A modular functionalized anode for efficient electrochemical oxidation of wastewater: Inseparable synergy between OER anode and its magnetic auxiliary electrodes. J. Hazard. Mater. 2020, 390, 122174. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yan, W.; Yang, H. Surface Analysis of Ti/Sb-SnO2/PbO2 Electrode after Long Time Electrolysis. Rare Met. Mater. Eng. 2015, 44, 2637–2641. [Google Scholar]
- Guo, Y.; Xu, Z.; Guo, S.; Chen, S.; Xu, H.; Xu, X.; Gao, X.; Yan, W. Selection of anode materials and optimization of operating parameters for electrochemical water descaling. Sep. Purif. Technol. 2021, 261, 118304. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Z.; Guo, Y.; Guo, S.; Xu, X.; Gao, X.; Wang, L.; Yan, W. Research and application progress of electrochemical water quality stabilization technology for recirculating cooling water in China: A short review. J. Water Process Eng. 2020, 37, 101433. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Z.; Wang, D.; Chen, S.; Qiao, D.; Wan, D.; Xu, H.; Yan, W.; Jin, X. Evaluation of diclofenac degradation effect in “active” and “non-active” anodes: A new consideration about mineralization inclination. Chemosphere 2022, 286, 131580. [Google Scholar] [CrossRef]
- Xing, X.; Ni, J.; Zhu, X.; Jiang, Y.; Xia, J. Maximization of current efficiency for organic pollutants oxidation at BDD, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb anodes. Chemosphere 2018, 205, 361–368. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Chen, J.; Niu, J. Electrochemical degradation of sunscreen agent benzophenone-3 and its metabolite by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, mechanism, toxicity and energy consumption. Sci. Total Environ. 2019, 688, 75–82. [Google Scholar] [CrossRef]
- Kaur, R.; Kushwaha, J.P.; Singh, N. Electro-oxidation of amoxicillin trihydrate in continuous reactor by Ti/RuO2 anode. Sci. Total Environ. 2019, 677, 84–97. [Google Scholar] [CrossRef]
- Duan, P.; Hu, X.; Ji, Z.; Yang, X.; Sun, Z. Enhanced oxidation potential of Ti/SnO2-Cu electrode for electrochemical degradation of low-concentration ceftazidime in aqueous solution: Performance and degradation pathway. Chemosphere 2018, 212, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Feng, J.; Fan, S.; Zhou, W.; Dai, Q. Fabrication of a multi-layer CNT-PbO2 anode for the degradation of isoniazid: Kinetics and mechanism. Chemosphere 2021, 263, 128069. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Guo, H.; Feng, J.; Wang, D.; Liao, Z.; Wang, Y.; Wei, Y. Electrochemical Oxidation Combined with Adsorption: A Novel Route for Low Concentration Organic Wastewater Treatment. Int. J. Electrochem. Sci. 2019, 14, 8110–8120. [Google Scholar]
- Kong, D.; Lue, W.; Feng, Y.; Bi, S. Advances and Some Problems in Electrocatalysis of DSA Electrodes. Prog. Chem. 2009, 21, 1107–1117. (In Chinese) [Google Scholar]
- Tang, C.; Zhou, D.; Zhang, Q. Synthesis and characterization of Magnéli phases: Reduction of TiO2 in a decomposed NH3 atmosphere. Mater. Lett. 2012, 79, 42–44. [Google Scholar] [CrossRef]
- Geng, P.; Chen, G. Antifouling ceramic membrane electrode modified by Magnéli Ti4O7 for electro-microfiltration of humic acid. Sep. Purif. Technol. 2017, 185, 61–71. [Google Scholar] [CrossRef]
- Smith, J.R.; Walsh, F.C.; Clarke, R.L. Reviews in applied electrochemistry. Number 50—Electrodes based on Magnéli phase titanium oxides: The properties and applications of Ebonex (R) materials. J. Appl. Electrochem. 1998, 28, 1021–1033. [Google Scholar] [CrossRef]
- Walsh, F.C.; Wills, R.G.A. The continuing development of Magnéli phase titanium sub-oxides and Ebonex (R) electrodes. Electrochim. Acta 2010, 55, 6342–6351. [Google Scholar] [CrossRef]
- Pei, S.; Teng, J.; Ren, N.; You, S. Low-Temperature Removal of Refractory Organic Pollutants by Electrochemical Oxidation: Role of Interfacial Joule Heating Effect. Environ. Sci. Technol. 2020, 54, 4573–4582. [Google Scholar] [CrossRef]
- Nayak, S.; Chaplin, B.P. Fabrication and characterization of porous, conductive, monolithic Ti4O7 electrodes. Electrochim. Acta 2018, 263, 299–310. [Google Scholar] [CrossRef]
- Pei, S.; Zhu, L.; Zhang, Z.; Teng, J.; Liu, X.; You, S. Electrochemical properties of titanium sub-oxide membrane electrode and application for electro-oxidation treatment of dyeing wastewater. Acta Sci. Circumstantiae 2020, 40, 3658–3665. (In Chinese) [Google Scholar]
- Geng, P.; Su, J.; Miles, C.; Comninellis, C.; Chen, G. Highly-Ordered Magnéli Ti4O7 Nanotube Arrays as Effective Anodic Material for Electro-oxidation. Electrochim. Acta 2015, 153, 316–324. [Google Scholar] [CrossRef]
- Lin, H.; Xiao, R.; Xie, R.; Yang, L.; Tang, C.; Wang, R.; Chen, J.; Lv, S.; Huang, Q. Defect Engineering on a Ti4O7 Electrode by Ce3+ Doping for the Efficient Electrooxidation of Perfluorooctanesulfonate. Environ. Sci. Technol. 2021, 55, 2597–2607. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Shen, C.; Zhang, C.; Ren, N.; You, S. Characterization of the Interfacial Joule Heating Effect in the Electrochemical Advanced Oxidation Process. Environ. Sci. Technol. 2019, 53, 4406–4415. [Google Scholar] [CrossRef]
- Xu, B.; Sohn, H.Y.; Mohassab, Y.; Lan, Y. Structures, preparation and applications of titanium suboxides. RSC Adv. 2016, 6, 79706–79722. [Google Scholar] [CrossRef]
- Malik, H.; Sarkar, S.; Mohanty, S.; Carlson, K. Modelling and synthesis of Magnéli Phases in ordered titanium oxide nanotubes with preserved morphology. Sci. Rep. 2020, 10, 8050. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Ye, J.; Zhu, R. Fabrication and characterisation of Magnéli phase Ti4O7 nanoparticles. Micro Nano Lett. 2013, 8, 251–253. [Google Scholar] [CrossRef]
- Xu, B.; Zhao, D.; Sohn, H.Y.; Mohassab, Y.; Yang, B.; Lan, Y.; Yang, J. Flash synthesis of Magnéli phase (TinO2n−1) nanoparticles by thermal plasma treatment of H2TiO3. Ceram. Int. 2018, 44, 3929–3936. [Google Scholar] [CrossRef]
- Han, W.-Q.; Wang, X.-L. Carbon-coated Magnéli-phase TinO2n-1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. Appl. Phys. Lett. 2010, 97, 243104. [Google Scholar] [CrossRef] [Green Version]
- Conze, S.; Veremchuk, I.; Reibold, M.; Matthey, B.; Michaelis, A.; Grin, Y.; Kinski, I. Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route. J. Solid State Chem. 2015, 229, 235–242. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Ye, J.; Qiu, W. Synthesis, microstructural characterization, and electrochemical performance of novel rod-like Ti4O7 powders. J. Alloy. Compd. 2017, 704, 18–25. [Google Scholar] [CrossRef]
- Toyoda, M.; Yano, T.; Tryba, B.; Mozia, S.; Tsumura, T.; Inagaki, M. Preparation of carbon-coated Magnéli phases TinO2n−1 and their photocatalytic activity under visible light. Appl. Catal. B-Environ. 2009, 88, 160–164. [Google Scholar] [CrossRef]
- You, S.; Liu, B.; Gao, Y.; Wang, Y.; Tang, C.Y.; Huang, Y.; Ren, N. Monolithic Porous Magnéli-phase Ti4O7 for Electro-oxidation Treatment of Industrial Wastewater. Electrochim. Acta 2016, 214, 326–335. [Google Scholar] [CrossRef]
- Gusev, A.; Avvakumov, E.; Medvedev, A.; Masliy, A. Ceramic electrodes based on Magnéli phases of titanium oxides. Sci. Sinter. 2007, 39, 51–57. [Google Scholar] [CrossRef]
- Hauf, C.; Kniep, R.; Pfaff, G. Preparation of various titanium suboxide powders by reduction of TiO2 with silicon. J. Mater. Sci. 1999, 34, 1287–1292. [Google Scholar] [CrossRef]
- Teng, J.; Liu, G.; Liang, J.; You, S. Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode. Electrochim. Acta 2019, 331, 135441. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Oturan, N.; Raffy, S.; Cretin, M.; Esmilaire, R.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Sub-stoichiometric titanium oxide (Ti4O7) as a suitable ceramic anode for electrooxidation of organic pollutants: A case study of kinetics, mineralization and toxicity assessment of amoxicillin. Water Res. 2016, 106, 171–182. [Google Scholar] [CrossRef]
- Han, Z.; Xu, Y.; Zhou, S.; Zhu, P. Preparation and electrochemical properties of Al-based composite coating electrode with Ti4O7 ceramic interlayer for electrowinning of nonferrous metals. Electrochimica Acta 2019, 325, 134940. [Google Scholar] [CrossRef]
- Geng, P.; Chen, G. Magnéli Ti4O7 modified ceramic membrane for electrically-assisted filtration with antifouling property. J. Membr. Sci. 2016, 498, 302–314. [Google Scholar] [CrossRef]
- Wong, M.-S.; Lin, Y.-J.; Pylnev, M.; Kang, W.-Z. Processing, structure and properties of reactively sputtered films of titanium dioxide and suboxides. Thin Solid Films 2019, 688, 137351. [Google Scholar] [CrossRef]
- Li, H.; Lu, S.; Li, Y.; Qin, W.; Wu, X. Tunable thermo-optical performance promoted by temperature selective sputtering of titanium oxide on MgO-ZrO2 coating. J. Alloy. Compd. 2017, 709, 104–111. [Google Scholar] [CrossRef]
- Ertekin, Z.; Tamer, K.; Pekmez, U. Cathodic electrochemical deposition of Magnéli phases TinO2n-1 thin films at different temperatures in acetonitrile solution. Electrochim. Acta 2015, 163, 77–81. [Google Scholar] [CrossRef]
- Paunović, P.; Popovski, O.; Fidančevska, E.; Ranguelov, B.; Gogovska, D.S.; Dimitrov, A.T.; Jordanov, S.H. Co-Magnéli phases electrocatalysts for hydrogen/oxygen evolution. Int. J. Hydrogen Energy 2010, 35, 10073–10080. [Google Scholar] [CrossRef]
- Regonini, D.; Adamaki, V.; Bowen, C.R.; Pennock, S.R.; Taylor, J.; Dent, A.C.E. AC electrical properties of TiO2 and Magnéli phases, TinO2n−1. Solid State Ion. 2012, 229, 38–44. [Google Scholar] [CrossRef]
- Guo, L.; Jing, Y.; Chaplin, B.P. Development and Characterization of Ultrafiltration TiO2 Magnéli Phase Reactive Electrochemical Membranes. Environ. Sci. Technol. 2016, 50, 1428–1436. [Google Scholar] [CrossRef]
- Liang, J.; You, S.; Yuan, Y.; Yuan, Y. A tubular electrode assembly reactor for enhanced electrochemical wastewater treatment with a Magnéli-phase titanium suboxide (M-TiSO) anode and in situ utilization. RSC Adv. 2021, 11, 24976–24984. [Google Scholar] [CrossRef]
- Matsuda, M.; Yamada, Y.; Himeno, Y.; Shida, K.; Mitsuhara, M.; Matsuda, M. Magnéli Ti4O7 thin film produced by stepwise oxidation of titanium metal foil. Scr. Mater. 2021, 198, 113829. [Google Scholar] [CrossRef]
- Zhang, L.; Kim, J.; Zhang, J.; Nan, F.; Gauquelin, N.; Botton, G.A.; He, P.; Bashyam, R.; Knights, S. Ti4O7 supported Ru@Pt core-shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Appl. Energy 2013, 103, 507–513. [Google Scholar] [CrossRef]
- Zhao, J.; Li, W.; Wu, S.; Xu, F.; Du, J.; Li, J.; Li, K.; Ren, J.; Zhao, Y. Strong interfacial interaction significantly improving hydrogen evolution reaction performances of MoS2/Ti4O7 composite catalysts. Electrochim. Acta 2020, 337, 135850. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Zhang, K.; Li, Y.; Xu, B.; Liang, F.; Dai, Y.; Yao, Y. Enhancing the rate performance of high-capacity LiNi(0.8)Co(0.15)Al(0.05)O(2) cathode materials by using Ti4O7 as a conductive additive. J. Energy Storage 2020, 28, 101182. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Z.; Qiao, D.; Wang, L.; Xu, H.; Yan, W. Fabrication and characterization of titanium-based lead dioxide electrode by electrochemical deposition with Ti4O7 particles. Water Environ. Res. 2021, 93, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, K.; Niu, J.; Chu, C.; Weon, S.; Zhu, Q.; Lu, J.; Stavitski, E.; Kim, J.-H. Amorphous Pd-Loaded Ti4O7 Electrode for Direct Anodic Destruction of Perfluorooctanoic Acid. Environ. Sci. Technol. 2020, 54, 10954–10963. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Feng, Y.; Liu, J. Comparison of electrocatalytic performance of different anodes with cyclic voltammetry and Tafel curves. Chin. J. Catal. 2007, 28, 646–650. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, R.; Ma, J.; Liu, L. Advanced Electrochemical Oxidation Process with BDD Electrodes for Organic Wastewater Treatment. China Water Wastewater 2006, 22, 15–18. (In Chinese) [Google Scholar]
- Wei, Z.; Kang, X.; Xu, S.; Zhou, X.; Jia, B.; Feng, Q. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: Preparation, characterization, optimization, application. Chin. J. Chem. Eng. 2021, 32, 191–202. [Google Scholar] [CrossRef]
- Qiao, D.; Xu, Z.; Guo, H.; Wang, X.; Wan, D.; Li, X.; Xu, H.; Yan, W. Non-traditional power supply mode: Investigation of electrodeposition towards a better understanding of PbO2 electrode for electrochemical wastewater treatment. Mater. Chem. Phys. 2022, 284, 126066. [Google Scholar] [CrossRef]
- Han, J. Degradation of Sulfamerazine by NF/CNTF/Ti4O7 Electrochemical System and its Mechanism. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2019. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Ye, J.; Lin, Z.; Yang, X. Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode. Chemosphere 2019, 241, 125084. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Anodic Oxidation for Degradation of Dyeing Wastewater in Eleochemical Systems with Titanium Sub-Oxide Anode. Harbin Inst. Technol. 2016. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201701&filename=1016913685.nh&uniplatform=NZKPT&v=dl01S0dpi5oBa4sLKxvjDs9DEAi3BmuNaVpj_rsz9T2dfFtl53U0KdpUdR80Ru5s (accessed on 8 May 2022).
- Wang, J. Preparation of Titanium Sub-Oxide Electrode and Research on Degradation Efficiency of Phenol Wastewater by Three-dimensional Electrode System. Harbin Inst. Technol. 2020. [Google Scholar] [CrossRef]
- Tan, Y. Magnéli-phase Ti4O7 Conductive Membrane for Effective Electrochemical Degradation of 4-Chlorophenol Wastewater. Harbin Inst. Technol. 2018. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201901&filename=1018894521.nh&uniplatform=NZKPT&v=NX9XUuHDAefm1QlL7hWOo6L9Dfcwokx8EQsfUQ5NPnf6Wqe-A6luvnTUcpYkTcg4 (accessed on 8 May 2022).
- Wang, J.; Zhi, D.; Zhou, H.; He, X.; Zhang, D. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Res. 2018, 137, 324–334. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Zhang, F.; Wang, Y.; Zhang, X.; Wang, J.; He, X. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater. Sep. Purif. Technol. 2021, 266, 118600. [Google Scholar] [CrossRef]
- Barni, M.F.S.; Doumic, L.I.; Procaccini, R.A.; Ayude, M.A.; Romeo, H.E. Layered platforms of Ti4O7 as flow-through anodes for intensifying the electro-oxidation of bentazon. J. Environ. Manag. 2020, 263, 110403. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, H.; Habteselassie, M.Y.; Deng, X.; Teng, Y.; Wang, Y.; Huang, Q. Simultaneous removal of multidrug-resistant Salmonella enterica serotype typhimurium, antibiotics and antibiotic resistance genes from water by electrooxidation on a Magnéli phase Ti4O7 anode. Chem. Eng. J. 2021, 407, 127134. [Google Scholar] [CrossRef]
- Zhi, D.; Zhang, J.; Wang, J.; Luo, L.; Zhou, Y.; Zhou, Y. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti4O7 and Ti/RuO2-IrO2 anodes. J. Environ. Manag. 2020, 265, 110571. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, Z.; Guo, S.; Liu, J.; Xu, H.; Xu, X.; Gao, X.; Yan, W. Practical optimization of scale removal in circulating cooling water: Electrochemical descaling-filtration crystallization coupled system. Sep. Purif. Technol. 2022, 284, 120268. [Google Scholar]
- Liang, S.; Lin, H.; Yan, X.; Huang, Q. Electro-oxidation of tetracycline by a Magnéli phase Ti4O7 porous anode: Kinetics, products, and toxicity. Chem. Eng. J. 2018, 332, 628–636. [Google Scholar] [CrossRef]
- Zwane, B.N.; Orimolade, B.O.; Koiki, B.A.; Mabuba, N.; Gomri, C.; Petit, E.; Bonniol, V.; Lesage, G.; Rivallin, M.; Cretin, M.; et al. Combined Electro-Fenton and Anodic Oxidation Processes at a Sub-Stoichiometric Titanium Oxide (Ti4O7) Ceramic Electrode for the Degradation of Tetracycline in Water. Water 2021, 13, 2772. [Google Scholar] [CrossRef]
- Becerril-Estrada, V.; Robles, I.; Martinez-Sanchez, C.; Godinez, L.A. Study of TiO2/Ti4O7 photo-anodes inserted in an activated carbon packed bed cathode: Towards the development of 3D-type photo-electro-Fenton reactors for water treatment. Electrochim. Acta 2020, 340, 135972–135981. [Google Scholar] [CrossRef]
- Safajou, H.; Khojasteh, H.; Salavati-Niasari, M.; Mortazavi-Derazkola, S. Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Colloid Interface Sci. 2017, 498, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. Ultrasound Enhanced Electrochemical Oxidation of Chloramphenicol Wastewater with Titanium Sub-Oxide Anode. Harbin Inst. Technol. 2019. [Google Scholar] [CrossRef]
TinO2n−1 (s) | Electrical Conductivity (σ/S cm−1) | Lg (σ/S cm−1) |
---|---|---|
Ti3O5 | 630 | 2.8 |
Ti4O7 | 1035 | 3.0 |
Ti4O7 * | 1995 | 3.3 |
Ti5O9 | 631 | 2.8 |
Ti6O11 | 63 | 1.8 |
Ti8O15 | 25 | 1.4 |
Ti3O5 + Ti4O7 | 410 | 2.6 |
Ti4O7 + Ti5O9 | 330 | 2.5 |
Ti5O9 + Ti6O11 | 500 | 2.7 |
Sample | Electrolyte | 150 h Quality Loss/% | 350 h Quality Loss/% |
---|---|---|---|
Ti | HF | 22 | 100 |
Ti4O7 | 0.017 | 0.29 | |
Ti | HF/HNO3 | 100 | 100 |
Ti4O7 | 0.56 | 12.7 |
Synthesis Method | Principle | Process Condition and Results | References |
---|---|---|---|
Carbothermal reduction | nTiO2(s) + C(s) = TinO2n−1(s) + CO(g) | C-Ti4O7 was obtained at 1025 °C in N2 gas flow. | [72] |
Hydrogen reduction | nTiO2(s) + H2(g) = TinO2n−1(s) + H2O(g) | Ti4O7 was obtained at 1050 °C in H2 gas flow. | [73] |
Metallothermic reduction | nTiO2(s) + Me(s) = TinO2n−1(s) + MeO(s) | Ti4O7and Ti6O11 were obtained by mechanical activation of Ti and TiO2 powder and annealing at 1333–1353 K in Ar gas flow for 4 h. | [74] |
(2n−1) TiO2(s) + Ti(s) = 2TinO2n−1(s)(n = 1,2,3…) | With silicon as reducing agent and calcium chloride as additive, TiO2 powder was reduced to various mixed phases of titanium sub-oxide under different experimental conditions. | [75] |
Type | Oxygen Evolution Potential (OEP V vs. Ag/AgCl) | Accelerated Life * (h) | Type |
---|---|---|---|
Graphite | 1.0 | - | [93] |
Pt | 1.51 | - | [93] |
BDD | 2.5 | - | [94] |
Ti/PbO2 | 1.85 | 0.5 | [95] |
Ti/SnO2 | 1.81 | 12 | [93] |
Ti/SnO2 + Sb2O3/PbO2 | 1.98 | 16 | [96] |
Ti4O7 | 2.28 | 31.2 | [78] |
Organic Matter | Electrode | Processing Conditions | Treatment Effect | Reference |
---|---|---|---|---|
Sulfamerazine (SMR) | TF/Ti4O7 | Current density 10 mA·cm−2, pH 2. | After 60 min, the removal rate of SMR was 48.09%. | [97] |
Tetracycline (TC) | Ti4O7 | Current density 10 mA·cm−2, initial pH 4.51. | The degradation rate of TC within 3 h was 97.95%. | [77] |
Methyl orange (MO) | Ti4O7 | Current density 10 mA·cm−2, initial dye concentration is 100 mg L−1. | COD removal rate reaches 91.7%. | [98] |
Acid red B | Ti4O7 | Voltage 0.5 V, pH 7.0, acid red B concentration 400 mg L−1. | After 7 h, the dye removal rate can reach 91.95%. | [99] |
Phenol | Titanium Sub-Oxide | Initial concentration is 100 mg L−1, voltage 12 V, pH 3.0. | The degradation rate of phenol within 3 h was 92.22%, COD removal rate 94.26%. | [100] |
4-Chlorophenol | Titanium Sub-Oxide Membrane | Initial concentration is 20 mg L−1, current density 5 mA·cm−2. | After 2 h, COD met the discharge standard, and the mineralization rate of 4-chlorophenol was 64%. | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Xu, Z.; Hu, W.; Yang, D.; Wang, X.; Xu, H.; Xu, X.; Long, Z.; Yan, W. Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment. Catalysts 2022, 12, 618. https://doi.org/10.3390/catal12060618
Guo S, Xu Z, Hu W, Yang D, Wang X, Xu H, Xu X, Long Z, Yan W. Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment. Catalysts. 2022; 12(6):618. https://doi.org/10.3390/catal12060618
Chicago/Turabian StyleGuo, Siyuan, Zhicheng Xu, Wenyu Hu, Duowen Yang, Xue Wang, Hao Xu, Xing Xu, Zhi Long, and Wei Yan. 2022. "Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment" Catalysts 12, no. 6: 618. https://doi.org/10.3390/catal12060618
APA StyleGuo, S., Xu, Z., Hu, W., Yang, D., Wang, X., Xu, H., Xu, X., Long, Z., & Yan, W. (2022). Progress in Preparation and Application of Titanium Sub-Oxides Electrode in Electrocatalytic Degradation for Wastewater Treatment. Catalysts, 12(6), 618. https://doi.org/10.3390/catal12060618