Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optical Spectroscopy
2.2. Electrochemical Studies
2.3. Luminescence Quenching of QDs by Cu Complexes
2.4. Lifetime of QDs with Cu Complexes
2.5. Dynamic Light Scattering for QDs and Cu Complexes
3. Materials and Methods
3.1. Complex Synthesis
3.2. Sample Preparation and Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, H.; Fang, H.; Han, Y.; Lai, W.; Fu, X.; Cao, R. Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles. ACS Catal. 2015, 5, 5145–5153. [Google Scholar] [CrossRef]
- Liu, S.; Lei, Y.-J.; Xin, Z.-J.; Lu, Y.-B.; Wang, H.-Y. Water Splitting Based on Homogeneous Copper Molecular Catalysts. J. Photochem. Photobiol. A Chem. 2018, 355, 141–151. [Google Scholar] [CrossRef]
- Abudayyeh, A.M.; Schott, O.; Feltham, H.L.C.; Hanan, G.S.; Brooker, S. Copper Catalysts for Photo- and Electro-Catalytic Hydrogen Production. Inorg. Chem. Front. 2021, 8, 1015–1029. [Google Scholar] [CrossRef]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Majee, K.; Patel, J.; Das, B.; Padhi, S.K. μ-Pyridine-Bridged Copper Complex with Robust Proton-Reducing Ability. Dalton Trans. 2017, 46, 14869–14879. [Google Scholar] [CrossRef]
- Tong, L.; Duan, L.; Zhou, A.; Thummel, R.P. First-Row Transition Metal Polypyridine Complexes That Catalyze Proton to Hydrogen Reduction. Coord. Chem. Rev. 2020, 402, 213079. [Google Scholar] [CrossRef]
- Xie, Z.-L.; Jiang, W.-X.; Zhan, S.-Z.; Wu, S.-P. Design, Synthesis and Characterization of a Co-Photocatalyst Based on a Copper (II) Complex of S,S′-Bis(2-Pyridylmethyl)-1,2-Thioethane for Hydrogen Production under Visible Light. Inorg. Chem. Commun. 2019, 107, 107464. [Google Scholar] [CrossRef]
- Cao, S.; Wang, C.-J.; Wang, G.-Q.; Chen, Y.; Lv, X.-J.; Fu, W.-F. Visible Light Driven Photo-Reduction of Cu2+ to Cu2O to Cu in Water for Photocatalytic Hydrogen Production. RSC Adv. 2020, 10, 5930–5937. [Google Scholar] [CrossRef] [Green Version]
- Du, P.; Eisenberg, R. Catalysts Made of Earth-Abundant Elements (Co, Ni, Fe) for Water Splitting: Recent Progress and Future Challenges. Energy Environ. Sci. 2012, 5, 6012. [Google Scholar] [CrossRef]
- Drosou, M.; Kamatsos, F.; Ioannidis, G.; Zarkadoulas, A.; Mitsopoulou, C.A.; Papatriantafyllopoulou, C.; Tzeli, D. Reactivity and Mechanism of Photo- and Electrocatalytic Hydrogen Evolution by a Diimine Copper(I) Complex. Catalysts 2020, 10, 1302. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Lee, Y.-M.; Nam, W. Thermal and Photocatalytic Production of Hydrogen with Earth-Abundant Metal Complexes. Coord. Chem. Rev. 2018, 355, 54–73. [Google Scholar] [CrossRef]
- Liu, X.; Cui, S.; Sun, Z.; Du, P. Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production at Low Overpotential in Neutral Water. Chem. Commun. 2015, 51, 12954–12957. [Google Scholar] [CrossRef] [PubMed]
- Mirica, L.M.; Ottenwaelder, X.; Stack, T.D.P. Structure and Spectroscopy of Copper−Dioxygen Complexes. Chem. Rev. 2004, 104, 1013–1046. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.A.; Tolman, W.B. Reactivity of Dioxygen−Copper Systems. Chem. Rev. 2004, 104, 1047–1076. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Yang, Y.; Yao, T.; Sun, L. A Molecular Copper Catalyst for Electrochemical Water Reduction with a Large Hydrogen-Generation Rate Constant in Aqueous Solution. Angew. Chem. Int. Ed. 2014, 53, 13803–13807. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Zhou, Q.; Wang, W.; Hou, Y.; Zhang, B.; Wang, X. Photocatalytic Hydrogen Evolution by Cu(II) Complexes. Dalton Trans. 2016, 45, 5439–5443. [Google Scholar] [CrossRef]
- Xin, Z.-J.; Liu, S.; Li, C.-B.; Lei, Y.-J.; Xue, D.-X.; Gao, X.-W.; Wang, H.-Y. Hydrogen Production in a Neutral Aqueous Solution with a Water-Soluble Copper Complex. Int. J. Hydrog. Energy 2017, 42, 4202–4207. [Google Scholar] [CrossRef]
- Kankanamalage, P.H.A.; Ekanayake, D.M.; Singh, N.; de Morais, A.C.P.; Mazumder, S.; Verani, C.N.; Mukherjee, A.; Lanznaster, M. Effect of Ligand Substituents on Nickel and Copper [N4] Complexes: Electronic and Redox Behavior, and Reactivity towards Protons. New J. Chem. 2019, 43, 12795–12803. [Google Scholar] [CrossRef]
- Artero, V.; Fontecave, M. Solar Fuels Generation and Molecular Systems: Is It Homogeneous or Heterogeneous Catalysis? Chem. Soc. Rev. 2013, 42, 2338–2356. [Google Scholar] [CrossRef]
- Dalle, K.E.; Warnan, J.; Leung, J.J.; Reuillard, B.; Karmel, I.S.; Reisner, E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 2019, 119, 2752–2875. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qiu, F.; Peterson, J.J.; Krauss, T.D. Aqueous Photogeneration of H2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics. J. Phys. Chem. B 2015, 119, 7349–7357. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-J.; Li, X.-B.; Wang, J.-J.; Yu, S.; Li, C.-B.; Tung, C.-H.; Wu, L.-Z. A Robust “Artificial Catalyst” in Situ Formed from CdTe QDs and Inorganic Cobalt Salts for Photocatalytic Hydrogen Evolution. Energy Environ. Sci. 2013, 6, 465–469. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.-G.; Wang, X.-J.; Wang, H.-Y.; Tung, C.-H.; Wu, L.-Z. A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. Angew. Chem. Int. Ed. 2011, 50, 3193–3197. [Google Scholar] [CrossRef]
- Botcha, N.K. Chemical Oxidation and Photoinduced Electron Transfer by Nickel and Copper Complexes: A Dissertation; The University of Alabama in Huntsville: Huntsville, AL, USA, 2021. [Google Scholar]
- Khazanov, T.M.; Botcha, N.K.; Yergeshbayeva, S.; Shatruk, M.; Mukherjee, A. Investigating Reactivity and Electronic Structure of Copper(II)-Polypyridyl Complexes and Hydrogen Peroxide. Inorg. Chim. Acta 2021, 516, 120168. [Google Scholar] [CrossRef]
- Singh, N.; Botcha, N.K.; Jones, T.M.; Ertem, M.Z.; Niklas, J.; Farquhar, E.R.; Poluektov, O.G.; Mukherjee, A. Reactivity of Bio-Inspired Cu(II) (N2/Py2) Complexes with Peroxide at Room Temperature. J. Inorg. Biochem. 2019, 197, 110674. [Google Scholar] [CrossRef]
- Singh, N.; Niklas, J.; Poluektov, O.; Van Heuvelen, K.M.; Mukherjee, A. Mononuclear Nickel (II) and Copper (II) Coordination Complexes Supported by Bispicen Ligand Derivatives: Experimental and Computational Studies. Inorg. Chim. Acta 2017, 455, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Pella, B.J.; Niklas, J.; Poluektov, O.G.; Mukherjee, A. Effects of Denticity and Ligand Rigidity on Reactivity of Copper Complexes with Cumyl Hydroperoxide. Inorg. Chim. Acta 2018, 483, 71–78. [Google Scholar] [CrossRef]
- Gimbert-Suriñach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M.-N.; Deronzier, A.; Palomares, E.; Llobet, A. Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems Using Molecular Catalysts and Quantum Dots. J. Am. Chem. Soc. 2014, 136, 7655–7661. [Google Scholar] [CrossRef]
- Boulesbaa, A.; Issac, A.; Stockwell, D.; Huang, Z.; Huang, J.; Guo, J.; Lian, T. Ultrafast Charge Separation at CdS Quantum Dot/Rhodamine B Molecule Interface. J. Am. Chem. Soc. 2007, 129, 15132–15133. [Google Scholar] [CrossRef]
- Fraiji, L.K.; Hayes, D.M.; Werner, T.C. Static and Dynamic Fluorescence Quenching Experiments for the Physical Chemistry Laboratory. J. Chem. Educ. 1992, 69, 424. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 1983. [Google Scholar] [CrossRef]
- Botcha, N.K.; Gutha, R.R.; Sadeghi, S.M.; Mukherjee, A. Synthesis of Water-Soluble Ni(II) Complexes and Their Role in Photo-Induced Electron Transfer with MPA-CdTe Quantum Dots. Photosynth. Res. 2019, 143, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
Complex | Peak Position λmax (nm) | Molar Absorptivity (M−1cm−1) | ipa/ipc | E1/2 vs. Ag/AgCl (V) | E1/2 vs. NHE (V) |
---|---|---|---|---|---|
1 | 631 | 140 | 0.68 | −0.33 | −0.042 |
2 | 630 | 128 | 0.68 | −0.40 | −0.112 |
3 | 593 | 95 | 0.67 | −0.38 | −0.092 |
Complex | QD + 0.10 mM (Complex) nm | QD + 0.20 mM (Complex) nm | QD + 0.30 mM (Complex) nm | QD + 0.40 mM (Complex) nm |
---|---|---|---|---|
1 | N/R | 164 (50) | 822 (439) | 3112 (548) |
2 | N/R | N/R | 473 (72) | 460 (84) |
3 | N/R | N/R | 379 (164) | 492 (157) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botcha, N.K.; Gutha, R.R.; Sadeghi, S.M.; Mukherjee, A. Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer. Catalysts 2022, 12, 422. https://doi.org/10.3390/catal12040422
Botcha NK, Gutha RR, Sadeghi SM, Mukherjee A. Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer. Catalysts. 2022; 12(4):422. https://doi.org/10.3390/catal12040422
Chicago/Turabian StyleBotcha, Niharika Krishna, Rithvik R. Gutha, Seyed M. Sadeghi, and Anusree Mukherjee. 2022. "Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer" Catalysts 12, no. 4: 422. https://doi.org/10.3390/catal12040422
APA StyleBotcha, N. K., Gutha, R. R., Sadeghi, S. M., & Mukherjee, A. (2022). Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer. Catalysts, 12(4), 422. https://doi.org/10.3390/catal12040422