Boosted Catalytic Activity toward the Hydrolysis of Ammonia Borane by Mixing Co- and Cu-Based Catalysts
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Samples
3.2. Characterization
3.3. Hydrogen Production Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.L.; Han, Z.G.; Huo, T.T.; Yuan, Z.M.; Qi, Y.; Zhang, Y.H. Advances in activation property of hydrogen storage for TiFe-based alloy. Chin. J. Rare Metals 2020, 44, 337–351. [Google Scholar]
- Qin, P.L.; Zeng, K.; Lan, Z.Q.; Huang, X.T.; Liu, H.Z.; Guo, J. Enhanced hydrogen storage properties of Mg-Al alloy catalyzed with reduced graphene oxide supported with LaClO. Chin. J. Rare Metals 2020, 44, 499–507. [Google Scholar]
- Alpaydin, C.Y.; Gulbay, S.K.; Colpan, C.O. A review on the catalysts used for hydrogen production from ammonia borane. Int. J. Hydrog. Energy 2019, 45, 3414–3434. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, Y.; Fan, Y.; Lu, X.; Li, L.; Liu, B.; Li, B.; Lu, S. Metal-catalyzed hydrolysis of ammonia borane: Mechanism, catalysts, and challenges. Int. J. Hydrog. Energy 2020, 45, 30325–30340. [Google Scholar] [CrossRef]
- Rakap, M.; Kalu, E.; Özkar, S. Hydrogen generation from hydrolysis of ammonia-borane using Pd–PVB–TiO2 and Co–Ni–P/Pd–TiO2 under stirred conditions. J. Power Sources 2012, 210, 184–190. [Google Scholar] [CrossRef]
- Aksoy, M.; Metin, Ö. Pt nanoparticles supported on mesoporous graphitic carbon nitride as catalysts for hydrolytic dehydrogenation of ammonia borane. ACS Appl. Nano Mater. 2020, 3, 6836–6846. [Google Scholar] [CrossRef]
- Li, Y.T.; Zhang, X.L.; Peng, Z.K.; Liu, P.; Zheng, X.C. Highly efficient hydrolysis of ammonia borane using ultrafine bimetallic RuPd nanoalloys encapsulated in porous g-C3N4. Fuel 2020, 277, 118243–118253. [Google Scholar] [CrossRef]
- Guo, K.; Ding, Y.; Luo, J.; Gu, M.; Yu, Z. NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: Composition-dependent activity and support size effect. ACS Appl. Energy Mater. 2019, 2, 5851–5861. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Yu, X.; Lu, Z.; Zhang, X.; Wang, X.; Yang, X.; Zhao, J. Regulation of d-band electrons to enhance the activity of Co-based non-noble bimetal catalysts for hydrolysis of ammonia borane. ACS Sustain. Chem. Eng. 2020, 8, 8256–8266. [Google Scholar] [CrossRef]
- Yao, Q.; Lu, Z.H.; Zhang, Z.; Chen, X.; Lan, Y. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Sci. Rep. 2014, 4, 7597–7604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, K.; Zhong, J.; Zhao, B.; Zhang, H.; Xu, L.; Sun, X.; Lee, S.-T. CuxCo1−xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia–borane. Angew. Chem. Int. Ed. 2016, 55, 11950–11954. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Lu, D.; Diao, G.; Zhang, X.; Zhao, M.; Li, H. Co0.8Cu0.2MoO4 microspheres composed of nanoplatelets as a robust catalyst for the hydrolysis of ammonia borane. ACS Sustain. Chem. Eng. 2018, 6, 5843–5851. [Google Scholar] [CrossRef]
- Yamada, Y.; Yano, K.; Fukuzumi, S. Catalytic application of shape-controlled Cu2O particles protected by Co3O4 nanoparticles for hydrogen evolution from ammonia borane. Energy Environ. Sci. 2012, 5, 5356–5363. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, Y.; Li, Y.; Li, L.; Lv, F.; Li, Z.; Li, H.; He, M. Co3xCu3−3x(PO4)2 microspheres, a novel non-precious metal catalyst with superior catalytic activity in hydrolysis of ammonia borane for hydrogen production. Int. J. Hydrog. Energy 2020, 45, 17444–17452. [Google Scholar] [CrossRef]
- Katkar, P.K.; Marje, S.J.; Pujari, S.S.; Khalate, S.A.; Lokhande, A.C.; Patil, U.M. Enhanced energy density of all-solid-state asymmetric supercapacitors based on morphologically tuned hydrous cobalt phosphate electrode as cathode material. ACS Sustain. Chem. Eng. 2019, 7, 11205–11218. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, J.; Ye, H.; Wang, H.; Li, X.; Zhang, X.; Li, H. Ni0.5Cu0.5Co2O4 nanocomposites, morphology, controlled synthesis, and catalytic performance in the hydrolysis of ammonia borane for hydrogen production. Nanomaterials 2019, 9, 1334. [Google Scholar] [CrossRef] [Green Version]
- Kianpour, G.; Salavati-Niasari, M.; Emadi, H. Precipitation synthesis and characterization of cobalt molybdates nanostructures. Superlattice Microstruct. 2013, 58, 120–129. [Google Scholar] [CrossRef]
- Umapathy, V.; Neeraja, P. Sol–gel synthesis and characterizations of CoMoO4 nanoparticles: An efficient photocatalytic degradation of 4-chlorophenol. J. Nanosci. Nanotechnol. 2016, 16, 2960–2966. [Google Scholar] [CrossRef]
- Swain, B.; Lee, D.-H.; Park, J.; Lee, C.-G.; Lee, K.-J.; Kim, D.-W.; Park, K.-S. Synthesis of Cu3(MoO4)2(OH)2 nanostructures by simple aqueous precipitation: Understanding the fundamental chemistry and growth mechanism. CrystEngComm 2017, 19, 154–165. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, X.; Chen, L.; Qian, Y.; Zhang, Z. CuO shuttle-like nanocrystals synthesized by oriented attachment. J. Cryst. Growth 2006, 291, 196–201. [Google Scholar] [CrossRef]
- Gao, J.; Liu, H.; Pang, L.; Guo, K.; Li, J. Biocatalyst and colorimetric/fluorescent dual biosensors of H2O2 constructed via hemoglobin–Cu3(PO4)2 organic/inorganic hybrid nanoflowers. ACS Appl. Mater. Interfaces 2018, 10, 30441–30450. [Google Scholar] [CrossRef]
- Yuan, M.; Yang, Y.; Nan, C.; Sun, G.; Li, H.; Ma, S. Porous Co3O4 nanorods anchored on graphene nanosheets as an effective electrocatalysts for aprotic Li-O2 batteries. Appl. Surf. Sci. 2018, 444, 312–319. [Google Scholar] [CrossRef]
- Lu, D.; Liao, J.; Li, H.; Ji, S.; Pollet, B. Co3O4/CuMoO4 hybrid microflowers composed of nanorods with rich particle boundaries as a highly active catalyst for ammonia borane hydrolysis. ACS Sustain. Chem. Eng. 2019, 7, 16474–16482. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Liao, J.; Zhong, S.; Leng, Y.; Ji, S.; Wang, H.; Wang, R.; Li, H. Cu0.6Ni0.4Co2O4 nanowires, a novel noble-metal-free catalyst with ultrahigh catalytic activity towards the hydrolysis of ammonia borane for hydrogen production. Int. J. Hydrog. Energy 2018, 43, 5541–5550. [Google Scholar] [CrossRef]
- Lu, D.; Li, J.; Lin, C.; Liao, J.; Feng, Y.; Ding, Z.; Li, Z.; Liu, Q.; Li, H. A simple and scalable route to synthesize CoxCu1−xCo2O4@CoyCu1−yCo2O4 yolk–shell microspheres, a high-performance catalyst to hydrolyze ammonia borane for hydrogen production. Small 2019, 15, 1805460–1805468. [Google Scholar] [CrossRef]
- Liao, J.; Feng, Y.; Wu, S.; Ye, H.; Zhang, J.; Zhang, X.; Xie, F.; Li, H. Hexagonal CuCo2O4 nanoplatelets, a highly active catalyst for the hydrolysis of ammonia borane for hydrogen production. Nanomaterials 2019, 9, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Xiao, X.; Yu, X.; Huang, X.; Jiang, Y.; Fan, X.; Chen, L. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane. J. Alloy. Compd. 2018, 741, 501–508. [Google Scholar] [CrossRef]
- Xu, M.; Huai, X.; Zhang, H. Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis. J. Nanopart. Res. 2018, 20, 329–341. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Wang, Z.; Li, X.; Chi, Y.; Wang, M.; Gao, D.; Zhao, Z. Mo remarkably enhances catalytic activity of Cu@MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane. Int. J. Hydrog. Energy 2018, 43, 7347–7355. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Yang, W.; Sun, X.; Liu, J. Self-supported Cu(OH)2@Co2CO3(OH)2 core–shell nanowire array as a robust catalyst for ammonia-borane hydrolysis. Nanotechnology 2017, 28, 045606–045611. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Guan, H.; Zhao, Y.; Yang, J.H.; Zhang, B. Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Appl. Surf. Sci. 2018, 427, 106–113. [Google Scholar] [CrossRef]
- Liao, J.; Lv, F.; Feng, Y.; Zhong, S.; Wu, X.; Zhang, X.; Wang, H.; Li, J.; Li, H. Electromagnetic-field-assisted synthesis of Ni foam film-supported CoCu alloy microspheres composed of nanosheets: A high performance catalyst for the hydrolysis of ammonia borane. Catal. Commun. 2019, 122, 16–19. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Q.-L.; Xu, Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: Synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catal. Sci. Technol. 2015, 5, 525–530. [Google Scholar] [CrossRef]
- Sun, L.; Li, X.; Xu, Z.; Xie, K.; Liao, L. Synthesis and catalytic application of magnetic Co–Cu nanowires. Beilstein J. Nanotechnol. 2017, 8, 1769–1773. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Y.; Cheng, F.; Tao, Z.; Chen, J. Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6, 3443–3448. [Google Scholar] [CrossRef]
- Sang, W.; Wang, C.; Zhang, X.; Yu, X.; Yu, C.; Zhao, J.; Wang, X.; Yang, X.; Li, L. Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane. Int. J. Hydrog. Energy 2017, 42, 30691–30703. [Google Scholar]
- Kalidindi, S.; Sanyal, U.; Jagirdar, B. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane. Phys. Chem. Chem. Phys. 2008, 10, 5870–5874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.-H.; Li, J.; Feng, G.; Yao, Q.; Zhang, F.; Zhou, R.; Tao, D.; Chen, X.; Yu, Z. Synergistic catalysis of MCM-41 immobilized Cu–Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane. Int. J. Hydrog. Energy 2014, 39, 13389–13395. [Google Scholar] [CrossRef]
- Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. J. Power Sources 2006, 163, 364–370. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Mao, S.; Su, D.; Jin, H.; Wang, Y.; Xu, F.; Li, H.; Wang, Y. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catal. 2015, 5, 4783–4789. [Google Scholar] [CrossRef]
- Ma, X.; Yu, X.; Yang, X.; Lin, M.; Ge, M. Hydrothermal synthesis of a novel double-sided nanobrush Co3O4 catalyst and its catalytic performance for benzene oxidation. ChemCatChem 2019, 11, 1214–1221. [Google Scholar] [CrossRef]
Catalysts | TOF(molH2·molcat.−1·min−1) | Conditions | Ref. |
---|---|---|---|
Cu0.6Ni0.4Co2O4 nanowires | 119.5 | T = 298 K, nAB = 3 mmol, Mcat. = 5 mg | [24] |
CoxCu1−xCo2O4@CoyCu1−yCo2O4 yolk–shell microspheres | 81.8 | T = 298 K, nAB = 3 mmol, Mcat. = 10 mg | [25] |
Ni0.5Cu0.5Co2O4 nanoplatelets | 80.2 | T = 298 K, nAB = 3 mmol, Mcat. = 5 mg | [16] |
Co3O4 and Cu3(MoO4)2(OH)2 mixture | 77.3 | T = 298 K, nAB = 3 mmol, Mcat. = 10 mg | This work |
CuCo2O4 nanoplatelets | 73.4 | T = 298 K, nAB = 2.6 mmol, Mcat. = 10 mg | [26] |
Cu0.8Ni0.1Co0.1@MIL–101 | 72.1 | T = 298 K, nAB = 1 mmol, Mcat. = 50 mg | [27] |
Cu0.2Co0.8 nanoparticles/RGO | 50.6 | T = 298 K, nAB = 1.3 mmol, ncat. = 0.065 mmol | [28] |
Cu@MoCo core–shell nanoparticles | 49.6 | T = 298 K, nAB = 2 mmol, ncat. = 0.08 mmol | [29] |
Cu(OH)2@Co2CO3(OH)2/CF | 39.72 | T = 298 K, nAB = 0.63 mmol, ncat. = 0.0055 mmol | [30] |
Cu-Co/PDDA–HNTs | 30.8 | T = 298 K, nAB = 1.04 mmol, Vcat. = 4 ml | [31] |
CoCu/Ni foam | 30.5 | T = 298 K, nAB = 2.6 mmol, Scat. = 5 × 3 cm | [32] |
CuCo | 19.6 | T = 298 K, nAB = 1 mmol, Mcat. = 100 mg | [33] |
Co–Cu NWs | 6.17 | T = 298 K, nAB = 0.76 mmol, Mcat. = 5 mg | [34] |
Co@N–C–700 | 5.6 | T = 298 K, nAB = 1.3 mmol, Mcat. = 20 mg | [35] |
Co0.52Cu0.48 | 3.4 | T = 298 K, nAB = 0.16 mmol, Mcat. = 29.7 mg | [36] |
Cu/SiO2 | 3.24 | T = 298 K, nAB = 1 mmol, ncat. = 0.09 mmol | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wu, Y.; Feng, Y.; Hu, H.; Zhang, L.; Qiu, J.; Li, J.; Liu, Q.; Li, H. Boosted Catalytic Activity toward the Hydrolysis of Ammonia Borane by Mixing Co- and Cu-Based Catalysts. Catalysts 2022, 12, 426. https://doi.org/10.3390/catal12040426
Liao J, Wu Y, Feng Y, Hu H, Zhang L, Qiu J, Li J, Liu Q, Li H. Boosted Catalytic Activity toward the Hydrolysis of Ammonia Borane by Mixing Co- and Cu-Based Catalysts. Catalysts. 2022; 12(4):426. https://doi.org/10.3390/catal12040426
Chicago/Turabian StyleLiao, Jinyun, Yujie Wu, Yufa Feng, Haotao Hu, Lixuan Zhang, Jingchun Qiu, Junhao Li, Quanbing Liu, and Hao Li. 2022. "Boosted Catalytic Activity toward the Hydrolysis of Ammonia Borane by Mixing Co- and Cu-Based Catalysts" Catalysts 12, no. 4: 426. https://doi.org/10.3390/catal12040426
APA StyleLiao, J., Wu, Y., Feng, Y., Hu, H., Zhang, L., Qiu, J., Li, J., Liu, Q., & Li, H. (2022). Boosted Catalytic Activity toward the Hydrolysis of Ammonia Borane by Mixing Co- and Cu-Based Catalysts. Catalysts, 12(4), 426. https://doi.org/10.3390/catal12040426