The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review
Abstract
:1. Introduction
2. Persistent Organic Pollutants (POPs), Dyes, and Photocatalysts
3. Tin-Oxide-Synthesis, Structure, Properties, and Applications as Heterogeneous Photocatalysts
4. Synthesis Methods and the Influence of Experimental Parameters on the Characteristics and Photocatalytic Properties of SnO2-Based Materials
4.1. Pure SnO2-Based Photocatalysts
4.2. Doped SnO2 Photocatalysts
4.3. SnO2-Based Composite Photocatalysts
5. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Anastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-petriciolet, A.; Mittal, A.; Núnez-delgado, A. Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. J. Environ. Manag. 2020, 261, 110236. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, T.F.; Lhamby, A.R.; Beltrame, A. Wastewater, solid waste and environmental education: A discussion about the subject. Rev. Eletrônica Gestão Educ. Tecnol. Ambient. 2016, 20, 351–362. [Google Scholar]
- Kurade, M.B.; Há, Y.; Xiong, J.; Govindwar, S.P.; Jang, M.; Jeon, B. Phytoremediation as a green biotechnology tool for emerging environmental pollution: A step forward towards sustainable rehabilitation of the environment. Chem. Eng. J. 2021, 415, 129040. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, Y.; Zhou, J.; Wu, M.; Wang, S.; Zhang, L.; Xu, C. How to realize the effect of air pollution control? A hybrid decision framework under the fuzzy environment. J. Clean. Prod. 2021, 305, 127093. [Google Scholar] [CrossRef]
- Shi, Z.; She, Z.; Chiu, Y.; Shijiong, Q.S.; Zhang, L. Assessment and improvement analysis of economic production, water pollution, and sewage treatment efficiency in China. Socio-Econ. Plan. Sci. 2021, 74, 100956. [Google Scholar] [CrossRef]
- Kim, A.Y.; Park, J.B.; Woo, M.S.; Lee, S.Y.; Kim, H.Y.; Yoo, Y.H. Review: Persistent Organic Pollutant-Mediated Insulin Resistance. Int. J. Environ. Res. Pub. Health 2019, 16, 448. [Google Scholar] [CrossRef] [Green Version]
- Tyutikov, S.F. Migration and Biogeochemical Indication of Persistent Organic Pollutants. Geochem. Int. 2018, 56, 1028–1035. [Google Scholar] [CrossRef]
- Arthur, R.B.; Ahern, J.C.; Patterson, H.H. Review Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants. Catalysts 2018, 8, 604. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yanga, L.; Shic, M.; Liu, G. Persistent organic pollutants in typical lake ecosystems. Ecotoxicol. Environ. Saf. 2019, 180, 668–678. [Google Scholar] [CrossRef]
- Mansouri, E.H.; Reggabi, M. Association between type 2 diabetes and exposure to chlorinated persistent organic pollutants in Algeria: A case-control study. Chemosphere 2021, 264, 128596. [Google Scholar] [CrossRef]
- Ulutaş, O.K.; Çok, I.; Darendeliler, F.; Aydin, B.; Çoban, A.; Henkelmann, B.; Schramm, K. Blood concentrations and risk assessment of persistent organochlorine compounds in newborn boys in Turkey. A pilot study. Environ. Sci. Pollut. Res. 2015, 22, 19896–19904. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, F.P.; Kuno, R.; Lemes, V.G.R.; Kussumi, T.A.; Nakano, V.E.; Rocha, S.B.; Oliveira, M.C.C.; Kimura, I.A.; Gouveia, N. Organochlorine pesticides levels and associated factors in a group of blood donors in São Paulo, Brazil. Environ. Monit. Assess. 2017, 189, 380. [Google Scholar] [CrossRef] [PubMed]
- Stockholm Convention Secretariat United Nations Environment. An Introduction to the Chemicals Added to the Stockholm Convention as Persistent Organic Pollutants by the Conference of the Parties; International Environmental House: Vernier, Switzerland, 2017; pp. 2–25. [Google Scholar]
- Varakina, Y.; Lahmanov, D.; Aksenov, A.; Trofimova, A.; Korobitsyna, R.; Belova, N.; Sobolev, N.; Kotsur, D.; Sorokina, T.; Grjibovsk, A.M.; et al. Concentrations of Persistent Organic Pollutants in Women’s Serum in the European Arctic Russia. Toxics 2021, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Lin, K.A.; Oh, W.; Lisak, G. Metal-organic frameworks for pesticidal persistent organic pollutants detection and adsorption—A mini review. J. Hazard. Mater. 2021, 413, 125325. [Google Scholar] [CrossRef]
- Wang, S.; Hu, C.; Lu, A.; Wang, Y.; Cao, L.; Wu, W.; Li, H.; Wu, M.; Yan, C. Association between prenatal exposure to persistent organic pollutants and neurodevelopment in early life: A mother-child cohort (Shanghai, China). Ecotoxicol. Environ. Saf. 2021, 208, 111479. [Google Scholar] [CrossRef]
- Chen, Y.; Zhi, D.; Zhou, Y.; Huang, A.; Wu, S.; Yao, B.; Tang, Y.; Sun, C. Electrokinetic techniques, their enhancement techniques and composite techniques with other processes for persistent organic pollutants remediation in soil: A review. J. Ind. Eng. Chem. 2021, 97, 163–172. [Google Scholar] [CrossRef]
- Junior, J.C.A.P.; Albuquerque, L.S.; Delfino, N.M.; Muniz, E.P.; Rocha, S.M.S.; Porto, P.S.S. Treatment of synthetic methylene blue dye effluent by electrofloculation. Braz. J. Prod. Eng. 2017, 3, 105–113. [Google Scholar]
- Li, M.; Zhao, H.; Lu, Z. Porphyrin-based porous organic polymer, Py-POP, as a multifunctional platform for efficient selective adsorption and photocatalytic degradation of cationic dyes. Microporous Mesoporous Mater. 2020, 292, 109774. [Google Scholar] [CrossRef]
- Zhao, L.; Houb, H.; Iwasaki, K.; Terada, A.; Hosomi, M. Utilization of recycled charcoal as a thermal source and adsorbent for the treatment of PCDD/Fs contaminated sediment. J. Hazard. Mater. 2012, 225, 182–188. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; Gaayda, J.E.; Akbour, R.A.; Hamdani, M. Review Removal of Persistent Organic Pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundw. Sustain. Dev. 2021, 13, 100575. [Google Scholar] [CrossRef]
- Ji, S.; Yang, Y.; Zhou, Z.; Li, X.; Liu, Y. Photocatalysis-Fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB. J. Water Process Eng. 2021, 40, 101804. [Google Scholar] [CrossRef]
- Ajmal, A.; Majeedb, I.; Malika, R.N.; Iqbal, M.; Nadeemb, M.A.; Hussain, I.; Yousaf, S.; Mustafa, G.; Zafara, M.I.; Nadeem, M.A. Photocatalytic degradation of textile dyes on Cu2O CuO/TiO2 anatase powders. J. Environ. Chem. Eng. 2016, 4, 2138–2146. [Google Scholar] [CrossRef]
- Waki, M.; Shirai, S.; Yamanaka, K.; Maegawa, Y.; Inagaki, S. Heterogeneous water oxidation photocatalysis based on periodic mesoporous organosilica immobilizing a tris(2,20-bipyridine)ruthenium sensitizer. RSC Adv. 2020, 10, 13960. [Google Scholar] [CrossRef]
- Lima, A.S.; Rocha, R.D.C.; Pereira, E.C.; Sikora, M.S. Photodegradation of Ciprofoxacin antibiotic over TiO2 grown by PEO: Ecotoxicity response in Lactuca sativa L. and Lemna minor. Int. J. Environ. Sci. Technol. 2021, 19, 2771–2780. [Google Scholar] [CrossRef]
- Araújo, K.S.; Antonelli, R.; Gaydeczka, B.; Granato, A.C.; Malpass, G.R.P. Processos oxidativos avançados: Uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Rev. Ambient. Água 2016, 11, 387–401. [Google Scholar]
- Honorio, I.M.C.; Santos, M.V.B.; Filho, E.C.S.; Osajima, J.A.; Maia, A.S.; Santos, I.M.G. Alkaline earth stannates applied in photocatalysis: Prospection and review of literature. Cerâmica 2018, 64, 559–569. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, O.M.; Murrieta, M.F.; Castañeda, L.F.; Nava, J.L. Characterization of the reaction environment in flow reactors fitted with BDD electrodes for use in electrochemical advanced oxidation processes: A critical review. Electrochim. Acta 2020, 331, 135373. [Google Scholar] [CrossRef]
- Moradi, M.; Vasseghian, Y.; Khataee, A.; Kobya, M.; Arabzade, H.; Dragoi, E. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J. Ind. Eng. Chem. 2020, 87, 18–39. [Google Scholar] [CrossRef]
- Honorio, L.M.C.; Oliveira, A.L.M.; Silva-Filho, E.C.; Osajima, J.A.; Hakki, A.; Macphee, D.E.; Santos, I.M.G. Supporting the photocatalysts on ZrO2: An effective way to enhance the photocatalytic activity of SrSnO3. Appl. Surf. Sci. 2020, 528, 146991. [Google Scholar] [CrossRef]
- Sun, H.; Qin, P.; Wu, Z.; Liao, C.; Guo, J.; Luo, S.; Chai, Y. Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 pen heterojunction photocatalyst: Mechanistic insight and degradation pathways. J. Alloys Compd. 2020, 834, 155211. [Google Scholar] [CrossRef]
- Riente, P.; Fianchini, M.; Llanes, P.; Pericàs, M.A.; Noël, T. Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor. Nat. Commun. 2021, 12, 625. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Quang, N.D.; Majumder, S.; Jeong, M.J.; Park, J.H.; Cho, Y.J.; Kim, S.B.; Lee, K.; Kim, D.; Chang, H.S. Three-dimensional nanoporous SnO2/CdS heterojunction for high-performance photoelectrochemical water splitting. Appl. Surf. Sci. 2021, 560, 149904. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Sun, H.; Hua, W.; Liu, X. Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production. Int. J. Hydrog. Energy 2018, 43, 14121–14129. [Google Scholar] [CrossRef]
- Chen, S.; Yang, J.; Wu, J. Three-Dimensional Undoped Crystalline SnO2 Nanodendrite Arrays Enable Efficient Charge Separation in BiVO4/SnO2 Heterojunction Photoanodes for Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2018, 1, 2143–2149. [Google Scholar] [CrossRef]
- Das, O.R.; Uddin, M.T.; Rahman, M.M.; Bhoumick, M.C. Highly active carbon supported Sn/SnO2 photocatalysts for degrading organic dyes. J. Phys. 2018, 1086, 012011. [Google Scholar] [CrossRef]
- Silva, G.N.; Martins, T.A.; Nogueira, I.C.; Santos, R.K.; Li, M.S.; Longo, E.; Botelho, G. Synthesis of Ag3PO4/SnO2 composite photocatalyst for improvements in photocatalytic activity under visible light. Mater. Sci. Semicond. Process. 2021, 135, 106064. [Google Scholar] [CrossRef]
- Xua, L.; Xiana, F.; Zhanga, Y.; Wang, W.; Qiua, K.; Xu, J. Synthesis of ZnO-decorated SnO2 nanopowder with enhanced photocatalytic performance. Opt. Int. J. Light Electron. Opt. 2019, 194, 162965. [Google Scholar] [CrossRef]
- Luque, P.A.; Garrafa-Galvez, H.E.; Nava, O.; Olivas, A.; Martínez-Rosas, M.E.; Vilchis-Nestor, A.R.; Villegas-Fuentes, A.; Chinchillas-Chinchillas, M.J. Efficient sunlight and UV photocatalytic degradation of Methyl Orange, Methylene Blue and Rhodamine B, using Citrus×paradisi synthesized SnO2 semiconductor nanoparticles. Ceram. Int. 2021, 5, 91. [Google Scholar] [CrossRef]
- Santos, J.E.L.; Moura, D.C.; Cerro-López, M.; Quiroz, M.A.; Martínez-Huitle, C.A. Electro- and photo-electrooxidation of 2,4,5-trichlorophenoxiacetic acid (2,4,5-T) in aqueous media with PbO2, Sb-doped SnO2, BDD and TiO2-NTs anodes: A comparative study. J. Electroanal. Chem. 2020, 873, 114438. [Google Scholar] [CrossRef]
- La Fourni‘ere, E.M.; Meichtry, J.M.; Gautier, E.A.; Leyva, A.G.; Litter, M.I. Treatment of ethylmercury chloride by heterogeneous photocatalysis with TiO2. J. Photochem. Photobiol. A Chem. 2021, 411, 113205. [Google Scholar] [CrossRef]
- Furtado, R.X.S.; Sabatini, C.A.; Zaiat, M.; Azevedo, E.B. Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO2/UV) using the response surface methodology (RSM). J. Water Process Eng. 2021, 41, 10198. [Google Scholar]
- Yanga, D.; Gondalb, M.A.; Yamani, Z.H.; Baig, U.; Qiao, Q.; Liua, G.; Xud, Q.; Xiange, D.; Maof, J.; Shen, K. 532 nm nanosecond pulse laser triggered synthesis of ZnO2 nanoparticles via a fast ablation technique in liquid and their photocatalytic performance. Mater. Sci. Semicond. Process. 2017, 57, 124–131. [Google Scholar] [CrossRef]
- Khatri, A.; Rana, P.S. Visible light assisted photocatalysis of Methylene Blue and Rose Bengal dyes by iron doped NiO nanoparticles prepared via chemical co-precipitation. Phys. B Phys. Condens. Matter. 2020, 579, 411905. [Google Scholar] [CrossRef]
- Mohite, S.V.; Ganbavle, V.V.; Rajpure, K.Y. Photoelectrocatalytic activity of immobilized Yb doped WO3 photocatalyst for degradation of methyl orange dye. J. Energy Chem. 2017, 26, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Omrani, N.; Nezamzadeh-Ejhieh, A. BiVO4/WO3 nano-composite: Characterization and designing the experiments in photodegradation of sulfasalazine. Environ. Sci. Pollut. Res. 2020, 27, 44292–44305. [Google Scholar] [CrossRef]
- Al-Hamdi, A.M.; Rinner, U.; Sillanpää, M. Tin dioxide as a photocatalyst for water treatment: A review. Process Saf. Environ. Prot. 2017, 107, 190–205. [Google Scholar] [CrossRef]
- Sun, C.; Yang, J.; Xu, M.; Cui, Y.; Ren, W.; Zhang, J.; Zhao, H.; Liang, B. Recent intensification strategies of SnO2-based photocatalysts: A review. Chem. Eng. J. 2022, 427, 131564. [Google Scholar] [CrossRef]
- Lavanya, N.; Fazio, E.; Neri, F.; Bonavita, A.; Leonardi, S.G.; Neri, G.; Sekar, C. Simulta neous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem. 2015, 221, 1412–1422. [Google Scholar] [CrossRef]
- Sakthiraj, K.; Balachandrakumar, K. Influence of Ti addition on the room temperature ferromagnetism of tin oxide (SnO2) nanocrystal. J. Magn. Magn. Mater. 2015, 395, 205–212. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G. Review on the Application of SnO2 in Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1802757. [Google Scholar] [CrossRef]
- Mouly, T.A.; Toms, L.L. Breast cancer and persistent organic pollutants (excluding DDT): A systematic literature review. Environ. Sci. Pollut. Res. 2016, 23, 22385–22407. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. J. Environ. Manag. 2020, 270, 110906. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.H.; Zaini, M.A.A. Isotherm studies of malachite green removal by yarn processing sludge-based activated carbon. Chem. Didact. Ecol. Metrol. 2019, 24, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Adithya, S.; Jayaraman, R.S.; Krishnan, A.; Malolan, R.; Gopinath, K.P.; Arun, J.; Kim, W.; Govarthanan, M. A critical review on the formation, fate and degradation of the persistent organic pollutant hexachlorocyclohexane in water systems and waste streams. Chemosphere 2021, 271, 129866. [Google Scholar] [CrossRef]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef]
- Hernandez-Vargas, G.; Sosa-Hernández, J.E.; Hernandez, S.; Villalba-Rodríguez, A.M.; Parra-Saldivar, R.; Iqbal, H.M.N. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants. Biosensors 2018, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Assis, G.C.; Skovroinski, E.; Leite, V.D.; Rodrigues, M.O.; Galembeck, A.; Alves, M.C.F.; Eastoe, J.; Oliveira, R.J. Conversion of “Waste Plastic” into Photocatalytic Nanofoams for Environmental Remediation. Appl. Mater. Interfaces 2018, 10, 8077–8085. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.; Ali, N.; Khan, A.; Bilal, M.; Malik, S.; Khan, H. Chitosan-zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int. J. Biol. Macromol. 2020, 153, 502–512. [Google Scholar] [CrossRef]
- Rawat, D.; Mishra, V.; Sharma, R. Detoxification of azo dyes in the context of environmental processes. Chemosphere 2016, 155, 591–605. [Google Scholar] [CrossRef]
- Chu, D.; Zhu, S.; Wang, L.; Wang, G.; Zhang, N. Hydrothermal synthesis of hierarchical flower-like Zn-doped SnO2 architectures with enhanced photocatalytic activity. Mater. Lett. 2018, 224, 92–95. [Google Scholar] [CrossRef]
- Kim, S.; Kwang, H.-K.C.; Kim, B.; Hyun-Jong, K.; Lee, H.-N.; Park, T.J.; Park, Y.M. Highly Porous SnO2/TiO2 Heterojunction Thin-Film Photocatalyst Using Gas-Flow Thermal Evaporation and Atomic Layer Deposition. Catalysts 2021, 11, 1144. [Google Scholar] [CrossRef]
- Ono, S. High-pressure phase transitions in SnO2. J. Appl. Phys. 2005, 97, 073523. [Google Scholar] [CrossRef]
- Lian, Y.; Huang, X.; Yu, J.; Tang, T.B.; Zhang, W.; Gu, M. Characterization of scrutinyite SnO2 and investigation of the transformation with 119Sn NMR and complex impedance method. AIP Adv. 2018, 8, 125226. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.S.; Tsai, Y.; Bai, K. Structural and physical properties of tin oxide thin films for optoelectronic applications. Appl. Surf. Sci. 2016, 380, 203–209. [Google Scholar] [CrossRef]
- Feng, B.; Feng, Y.; Qin, J.; Wang, Z.; Zhang, Y.; Du, F.; Zhao, Y.; Wei, J. Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing. Sens. Actuators B Chem. 2021, 341, 12995. [Google Scholar] [CrossRef]
- Noha, M.F.M.; Soha, M.F.; Tehb, C.H.; Lim, E.L.; Yap, C.C.; Ibrahima, M.A.; Ludina, N.A.; Teridi, M.A.M. Effect of temperature on the properties of SnO2 layer fabricated via AACVD and its application in photoelectrochemical cells and organic photovoltaic devices. Sol. Energy 2017, 158, 474–482. [Google Scholar] [CrossRef]
- Das, M.; Roy, S. Preparation, Characterization and Properties of Newly Synthesized SnO2-Polycarbazole Nanocomposite via Room Temperature Solution Phase Synthesis Process. Mater. Today Proc. 2019, 18, 5438–5446. [Google Scholar] [CrossRef]
- Muthusamy, S.; Charles, J. In situ synthesis of ternary prussian blue, hierarchical SnO2 and polypyrrole by chemical oxidative polymerization and their sensing properties to volatile organic compounds. Optik 2021, 241, 166968. [Google Scholar] [CrossRef]
- Mallik, A.; Roy, I.; Chalapathi, D.; Narayana, C.; Das, T.D.; Bhattacharya, A.; Bera, S.; Bhattacharya, S.; De, S.; Das, B.; et al. Single step synthesis of reduced graphene oxide/SnO2 nanocomposites for potential optical and semiconductor applications. Mater. Sci. Eng. B 2021, 264, 114938. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Sharpe, A.G. Química Inorgânica, 4th ed.; LTC, 2013; Volume 1, p. 6. Available online: https://www.ifsc.edu.br/documents/35977/1670122/PPC+do+CST+em+Processos+Qu%C3%ADmicos/db5f1bdb-c035-471f-aa4f-8c8557f9a917 (accessed on 1 February 2022).
- Stöwe, K.; Weber, M. Niobium, tantalum, and tungsten doped tin dioxides as potentialn support materials for fuel cell cata-lyst applications. Z. Anorg. Allg. Chem. 2020, 646, 1470–1480. [Google Scholar] [CrossRef] [Green Version]
- Bolzan, A.A.; Fong, C.; Kennedy, B.; Howard, J.C. Structural Studies of Rutile-Type Metal Dioxides. Acta Crystallogr. B 1995, 53, 373–380. [Google Scholar] [CrossRef]
- Yang, C.; Fan, Y.; Li, P.; Gu, Q.; Li, X. Freestanding 3-dimensional macro-porous SnO2 electrodes for efficient electrochemical degradation of antibiotics in wastewater. Chem. Eng. J. 2021, 422, 130032. [Google Scholar] [CrossRef]
- Liu, B.; Li, K.; Luo, Y.; Gao, L.; Duan, G. Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chem. Eng. J. 2021, 420, 129881. [Google Scholar] [CrossRef]
- Qiua, H.; Zhenga, H.; Jin, Y.; Yuana, Q.; Zhanga, X.; Zhao, C.; Wangb, H.; Jia, M. Mesoporous cubic SnO2-CoO nanoparticles deposited on graphene as anode materials for sodium ion batteries. J. Alloys Compd. 2021, 874, 159967. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, T.G. Fabrication of Metal-Deposited Indium Tin Oxides: Its Applications to 385 nm Light-Emitting Diodes. Appl. Mater. Interfaces 2016, 8, 5453–5457. [Google Scholar] [CrossRef]
- Haq, S.; Rehman, W.; Waseem, M.; Shah, A.; Khan, A.R.; Rehman, M.; Ahmad, P.; Khan, B.; Ali, G. Green synthesis and characterization of tin dioxide nanoparticles for photocatalytic and antimicrobial studies. Mater. Res. Express 2020, 7, 025012. [Google Scholar] [CrossRef]
- Hojamberdiev, M.; Czech, B.; Goktas, A.C.; Yubuta, K.; Kadirova, Z.C. SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. J. Alloys Compd. 2020, 827, 154339. [Google Scholar] [CrossRef]
- Bezzerrouk, M.A.; Bousmaha, M.; Akriche, A.; Kharroubi, B.; M’hamed, G. Hybrid structure comprised of SnO2, ZnO and Cu2S thin film semiconductors with controlled optoelectric and photocatalytic properties. Thin Solid Films 2013, 542, 31–37. [Google Scholar]
- Han, K.; Peng, X.-L.; Li, F.; Yao, M.-M. SnO2 Composite Films for Enhanced Photocatalytic Activities. Catalysts 2018, 8, 453. [Google Scholar] [CrossRef] [Green Version]
- Haya, S.; Brahmia, O.; Halimi, O.; Sebais, M.; Boudine, B. Sol–gel synthesis of Sr-doped SnO2 thin films and their photocatalytic properties. Mater. Res. Express 2017, 4, 106406. [Google Scholar] [CrossRef]
- Raj, I.L.P.; Revathy, M.S.; Christy, A.J.; Chidhambaram, N.; Ganesh, V.; AlFaify, S. Study on the synergistic effect of terbium-doped SnO2 thin film photocatalysts for dye degradation. J. Nanopart. Res. 2020, 22, 359. [Google Scholar] [CrossRef]
- Va-divel, S.; Rajarajan, G. Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J. Mater. Sci. Mater. Electron. 2015, 26, 3155–3162. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, H.; Sun, H.; Zhao, X.; Fan, W. Doubling the photocatalytic performance of SnO2 by carbon coating mixed-phase particles. RSC Adv. 2018, 8, 30366–30373. [Google Scholar] [CrossRef] [Green Version]
- Hermawan, A.; Asakura, Y.; Inada, M.; Yin, S. One-step synthesis of micro-/mesoporous SnO2 spheres by solvothermal method for toluene gas sensor. Ceram. Int. 2019, 45, 15435–15444. [Google Scholar] [CrossRef]
- Hermawan, A.; Asakura, Y.; Inada, M.; Yin, S. A facile method for preparation of uniformly decorated-spherical SnO2 by CuO nanoparticles for highly responsive toluene detection at high temperature. J. Mater. Sci. Technol. 2020, 51, 119–129. [Google Scholar] [CrossRef]
- Wang, X.; Fan, H.; Ren, P.; Li, M. Homogeneous SnO2 core–shell microspheres: Microwave-assisted hydrothermal synthesis, morphology control and photocatalytic properties. Mater. Res. Bull. 2014, 50, 191–196. [Google Scholar] [CrossRef]
- Rodrigues, E.C.P.E.; Olivi, P. Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors. J. Phys. Chem. Solids 2003, 64, 1105–1112. [Google Scholar] [CrossRef]
- Akram, M.; Saleh, A.T.; Ibrahim, W.A.W.; Awan, A.S.; Hussain, R. Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: Effect of precursor concentration. Ceram. Int. 2016, 42, 8613–8619. [Google Scholar] [CrossRef]
- Fatimah, I.; Purwiandono, G.; Jauhari, H.M.; Aisyah, A.A.; Sagadevan, P.; Oh, W.-C.; Doong, R.-A. Synthesis and control of the morphology of SnO2 nanoparticles via various concentrations of Tinospora cordifolia stem extract and reduction method. Arab. J. Chem. 2022, 15, 103738. [Google Scholar] [CrossRef]
- Abdelkader, E.; Nadjia, L.; Naceur, B.; Noureddine, B. SnO2 foam grain-shaped nanoparticles: Synthesis, characterization and UVA light induced photocatalysis. J. Alloys Compd. 2016, 679, 408–419. [Google Scholar] [CrossRef]
- Najjar, M.; Hosseini, H.A.; Masoudi, A.; Sabouri, Z.; Mostafapour, A.; Khatami, M.; Darroudi, M. Green chemical approach for the synthesis of SnO2 nanoparticles and its application in photocatalytic degradation of Eriochrome Black T dye. Optik 2021, 242, 167152. [Google Scholar] [CrossRef]
- Kumar, M.; Mehta, A.; Mishra, A.; Singh, J.; Rawat, M.; Basu, S. Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater. Lett. 2018, 215, 121–124. [Google Scholar] [CrossRef]
- Mahmood, H.; Khan, M.A.; Mohuddin, B.; Iqbal, T. Solution-phase growth of tin oxide (SnO2) nanostructures: Structural, optical and photocatalytic properties. Mater. Sci. Eng. B 2020, 258, 114568. [Google Scholar] [CrossRef]
- Wang, J.; Fan, H.-Q.; Yu, H.-W. Synthesis of Hierarchical SnO2 Microflowers Assembled by Nanosheets and Their Enhanced Photocatalytic Properties. Mater. Trans. 2015, 56, 1911–1914. [Google Scholar] [CrossRef] [Green Version]
- Costantino, F.; Armirotti, A.; Carzino, R.; Gavioli, L.; Athanassiou, A.; Fragouli, D. In situ formation of SnO2 nanoparticles on cellulose acetate fibrous membranes for the photocatalytic degradation of organic dyes. J. Photochem. Photobiol. A Chem. 2020, 398, 112599. [Google Scholar] [CrossRef]
- Mala, N.; Ravichandran, K.; Pandiarajan, S.; Srinivasan, N.; Ravikumar, B.; Nithiyadevi, K. Enhanced antibacterial and photocatalytic activity of (Mg+Co) doped tin oxide nanopowders synthesised using wet chemical route. Mater. Technol. 2017, 32, 1328082. [Google Scholar] [CrossRef]
- Chu, L.; Fangfang Duo, F.; Zhang, M.; Wu, Z.; Sun, Y.; Wang, C.; Donga, S.; Sun, J. Doping induced enhanced photocatalytic performance of SnO2:Bi3+quantum dots toward organic pollutants. Colloids Surf. A 2020, 589, 124416. [Google Scholar] [CrossRef]
- Ragupathy, S.; Manikandan, V.; Devanesan, S.; Ahmed, M.; Ramamoorthy, M.; Priyadharsan, A. Enhanced sun light driven photocatalytic activity of Co doped SnO2 loaded corn cob activated carbon for methylene blue dye degradation. Chemosphere 2022, 295, 133848. [Google Scholar] [CrossRef]
- Ragupathy, S.; Sathya, T. Photocatalytic decolorization of brilliant green by Ni doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 8710–8719. [Google Scholar] [CrossRef]
- Soltan, W.B.; Ammar, S.; Olivie, C.; Toupance, T.; Soltan, W.B. Influence of zinc doping on the photocatalytic activity of nanocrystalline SnO2 particles synthesized by the polyol method for enhanced degradation of organic dyes. J. Alloys Compd. 2017, 729, 638–647. [Google Scholar] [CrossRef]
- Baig, A.; Ali Baig, A.; Rathinam, V.; Palaninathan, J. Fabrication of Zr-doped SnO2 nanoparticles with synergistic influence for improved visible-light photocatalytic action and antibacterial performance. Appl. Water Sci. 2020, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Borker, P.; Salker, A.; Gaokar, R.D. Sunlight driven improved photocatalytic activity of Mn doped SnO2 nanowires. Mater. Chem. Phys. 2021, 270, 124797. [Google Scholar] [CrossRef]
- Abdel-Messih, M.F.; Ahmed, M.A.; El-Sayed, A.S. Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. J. Photochem. Photobiol. A Chem. 2013, 260, 1–8. [Google Scholar] [CrossRef]
- Subashri, K.; Santhi, N. Synthesis and characterization of CrO4-SnO2 nanocomposites and their industrial and electrochemical applications. Mater. Today Proc. 2022, 48, 443–453. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Xu, L.; Xia, Y.; Gang, R. SnO2 particles as efficient photocatalysts for organic dye degradation grown in-situ on g-C3N4 nanosheets by microwave-assisted hydrothermal method. Mater. Sci. Semicond. Process. 2021, 121, 105298. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Oyewo, O.A. Facile synthesis and structural characterization of zinc stannate/tin oxide and zinc stannate/tin composites for the removal of methylene blue from water. Mater. Res. Express 2019, 6, 125025. [Google Scholar] [CrossRef]
- Akti, F. Photocatalytic degradation of remazol yellow using polyaniline–doped tin oxide hybrid photocatalysts with diatomite support. Appl. Surf. Sci. 2018, 455, 931–939. [Google Scholar] [CrossRef]
- Palai, A.; Panda, N.R.; Sahu, D. Novel ZnO blended SnO2 nanocatalysts exhibiting superior degradation of hazardous pollutants and enhanced visible photoemission properties. J. Mol. Struct. 2021, 1244, 131245. [Google Scholar] [CrossRef]
- Lahmar, H.; Benamira, M.; Douafer, S.; Akika, F.Z.; Hamdi, M.; Avramova, I.; Trari, M. Photocatalytic degradation of Crystal Violet dye on the novel CuCr2O4/SnO2 hetero-system under sunlight. Optik 2020, 219, 165042. [Google Scholar] [CrossRef]
- Steplinpaulselvin, S.; Rajaram, R.; Silambarasan, T.S.; Chen, Y. Survival assessment of simple food webs for dye wastewater after photocatalytic degradation using SnO2/GO nanocomposites under sunlight irradiation. Sci. Total Environ. 2020, 721, 137805. [Google Scholar]
- Li, Z.; Zhao, Y.; Hua, L.; Bi, D.; Xie, J.; Zhou, Y. Hollow SnO2/Zn2SnO4 cubes with porous shells towards n-butylamine sensing and photocatalytic applications. Vacuum 2020, 182, 109693. [Google Scholar] [CrossRef]
- Rani, A.; Singh, K.; Patel, A.S.; Chakraborti, A.; Kumar, S.; Ghosh, K.; Sharma, P. Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chem. Phys. Lett. 2020, 738, 136874. [Google Scholar] [CrossRef]
- Manjunatha, A.S.; Pavithra, N.S.; Shivanna, M.; Nagaraju, G.; Ravikumar, C.R. Synthesis of Citrus Limon mediated SnO2-WO3 nanocomposite: Applications to photocatalytic activity and electrochemical sensor. J. Environ. Chem. Eng. 2020, 8, 104500. [Google Scholar] [CrossRef]
Oxide | Publications Attributed to Photocatalysis of POPs | Database | Publications Attributed to Photocatalysis of Dyes | Database |
---|---|---|---|---|
TiO2 | 9.103 | Scopus | 2.132 | Scopus |
1.369 | Web of Science | 3155 | Web of Science | |
2.492 | ScienceDirect | 3.933 | ScienceDirect | |
1.364 | ACS Journal Search | 1679 | ACS Journal Search | |
ZnO | 2.862 | Scopus | 1251 | Scopus |
252 | Web of Science | 1759 | Web of Science | |
4.558 | ScienceDirect | 7.659 | ScienceDirect | |
542 | ACS Journal Search | 806 | ACS Journal Search | |
NiO | 346 | Scopus | 93 | Scopus |
27 | Web of Science | 138 | Web of Science | |
1.164 | ScienceDirect | 1.500 | ScienceDirect | |
171 | ACS Journal Search | 174 | ACS Journal Search | |
SiO2 | 582 | Scopus | 149 | Scopus |
41 | Web of Science | 150 | Web of Science | |
228 | ScienceDirect | 343 | ScienceDirect | |
438 | ACS Journal Search | 439 | ACS Journal Search | |
WO3 | 951 | Scopus | 135 | Scopus |
10 | Web of Science | 191 | Web of Science | |
2.593 | ScienceDirect | 341 | ScienceDirect | |
2.570 | ACS Journal Search | 312 | ACS Journal Search | |
SnO2 | 425 | Scopus | 181 | Scopus |
21 | Web of Science | 239 | Web of Science | |
173 | ScienceDirect | 330 | ScienceDirect | |
191 | ACS Journal Search | 261 | ACS Journal Search |
Catalyst Type | Synthesis Method | Synthesis Conditions (Temperature/Time of Calcination) | Dye Solution Concentration (mg L−1) | Photocatalyst Concentration (g L−1) | Pollutant * | Irradiation | Efficiency/Time |
---|---|---|---|---|---|---|---|
SnO2 NPs [94] | Green solution synthesis | 400 °C/4 h | 40 | 1.0 | RY186 | Sunlight | 90%/3 h |
SnO2 NPs [90] | Continuous microwave flow synthesis (CMFS) | 200 °C/2 h | 50 | - | MB | UV | 93%/4 h |
SnO2 NPs [92] | Sol-gel | 650 °C/4 h | 20 | 0.5 | CR | UVA | 61.53%/1.66 h |
SnO2 NPs [40] | Green solution synthesis | 400 °C/1 h | 0.75 | 1.0 | MO MB RhB | UV | (MO) 00%/0.33 h (MB) 100%/1 h (RhB) 100%/1 h |
SnO2 NPs [93] | Green sol-gel | 700 °C/2 h | 4.61 | 0.21 | EBT | UV | 77%/4.5 h |
SnO2 NPs [91] | Green solution synthesis using Tinospora Cordifolia extracts | 400 °C/2 h | 20 | 2.0 | RhB | UV | 99.9%/0.75 h |
SnO2 NPs [78] | Green solution synthesis | 100 °C/6 h | 15 | 0.4 | R6G | Simulated sunlight | 99.7/6.5 h |
SnO2 microflowers [95] | One-pot hydrothermal | 190 °C/24 h | 10 | 1.0 | RhB | UV | 99%/2 h |
SnO2 nanocrystals [96] | Solution phase growth technique | 200 °C/24 h | 5 | 0.5 | RhB | UV-visible | 91.7%/2 h |
SnO2 NPs [97] | Electrospinning by precursor solution | 120 °C/48 h | 5 | 1.33 | MO MB | UV | (MO) 92%/4 h (MB) 95%/4 h |
SnO2 nanorods [85] | Chemical precipitation/hydrothermal | 550 °C/4 h | 20 | 0.6 | MO | UV | 52%/1 h |
SnO2 multilayered films [93] | Microwave hydrothermal | 800 °C/2 h | 10 | - | RhB | UV | 100%/4 h |
SnO2 thin films [88] | SPD using microscopy | 500 °C/6 h | 3.99 | - | MB MO | UVA/H2O2 | (MB) 42%/6 h (MO) 26%/6 h |
SnO2 thin films [80] | Ultrasonic spray pyrolysis technique | 450 °C | - | - | MB | UV | 98%/0.66 h |
Catalyst Type | Synthesis Method | Synthesis Conditions (Temperature/Time of Calcination) | Dye Solution Concentration (mg L−1) | Photocatalyst Concentration (g L−1) | Pollutant * | Irradiation | Efficiency/Time |
---|---|---|---|---|---|---|---|
SnO2:Mg2+Co 3+ NPs [84] | Wet chemical method | 550 °C/2 h | - | 0.5 | MB MG | Near UV | (MB) 89%/1 h (MG) 92%/1 h |
SnO2:Sr2+ thin films [82] | Sol–gel method using a dip-coating technique | 500 °C/2 h | 5 | - | MB | UV | 37.90%/2 h |
SnO2:Tb3+ thin films [83] | Nebulized spray pyrolysis (NSP) technique | 400 °C | 3.2 | - | MB | UV | 85%/2.08 h |
SnO2:Bi3+ quantum dots [99] | One-step hydrothermal | 180 °C/24 h | 20 | 1.0 | RhB | UV | 98.58%/1.66 h |
SnO2:Mg2+ thin films [84] | Chemical bath deposition | 500 °C/2 h | 15 | - | MB | UV | (MB) 80%/2 h |
SnO2:Co3+ [100] | Chemical solution | 400 °C/2 h | 60 | 0.2 | MB | UV-visible | 95.38%/2 h |
SnO2:Ni2+ NPs [101] | Chemical precipitation | 410 °C/2 h | 5 | 0.15 | BG | UV | 97.54%/1.75 h |
SnO2:Zn2+ NPs [102] | Combustion | 600 °C/8 h | 10 | 1.0 | MB MO | UV | 1.6%/1 h 40%/1 h |
SnO2:Zr4+ NPs [103] | Co-precipitation | 200 °C/24 h | 20 | - | MO | UV | 89.6%/3 h |
SnO2:Mn2+ nanowires [104] | Co-precipitation | 400 °C/4 h | 61 | 1.0 | NBB | Solar irradiation | 99%/3 h |
Catalyst Type | Synthesis Method | Synthesis Conditions (Temperature/Time of Calcination) | Dye Solution Concentration (mg L−1) | Photocatalyst Concentration (mg L−1) | Pollutant * | Irradiation | Efficiency/Time |
---|---|---|---|---|---|---|---|
CrO4-SnO2 spherical NPs [106] | Coprecipitation | 150, 300 and 450 °C/3 h | 1 × 10−4 mol L−1 | 1.6 g L−1 | TB | Sunlight | 80%/1 h |
g-C3N4/SnO2 nanosheets decorated with NPs [107] | Microwave-assisted hydrothermal method | 550 °C/2 h | 10 mg L−1 | 0.5 g L−1 | RhB | UV and visible lights | 100%/4 h (UV) and 98.5% (visible light) |
Zn2SnO4–SnO4 and Zn2SnO4–Sn spherical NPs [108] | Solid state reaction | 800 °C/1 h | 20 mg L−1 | 0.2 g L−1 | MB | UV | 92%/2 h |
Polyaniline SnO2 nanoneedles and nanograins [109] | Chemical oxidation polymerization method using aniline monomer | 500 °C/2 h | 50 mg L−1 | 1 g L−1 | RY | UV | 96%/1 h |
ZnO-SnO2 thin films [81] | Sol-gel | 550 °C/1 h | 16 mg L−1 | - | MeG | UV | 42%/45 min |
ZnO-SnO2/NPs hexagonal nanopillar [110] | Sol-gel | 600 °C/2 h | 10 mg L−1 | 0.025 g L−1 | MO MB CR | UV | 91.78%/3 h (MO) 93.21%/3 h (MB) 85.14%/3 h (CR) |
CuCr2O4/SnO2 [111] | Sol-gel/solid state reaction | 900 °C/6 h and 600 °C | 15 mg L−1 | 1 g L−1 | CV | Sunlight | 100%/1.5 h |
SnO2/GO spherical NPs [112] | Sonochemical method | 180 °C/6 h and 100 °C/6 h | 1 × 10−5 mol L−1 | 0.5 g L−1 | RhB TDW | Sunlight | 95%/2 h (RhB) 100%/2.5 h (TDW) |
SnO2/Zn2SnO4 cube-like NPs [113] | Hydrothermal | 150 °C/12 h and 700 °C/2 h | 10−5 mol L−1 | 1 g L−1 | MB MO EBT | Simulated sunlight | 97.1%/2.5 h (MB) 93.7%/3 h (MO) 87.9%/3.5 h (EBT) |
SnO2-MoS2 spherical NPs [114] | Sonochemical liquid exfoliation method | 80 °C/2 h | 100 ppm | 1 mL of SnO2-MoS2 added in 50 mL of dye solution | MR MB | Visible light | 94.0%/2 h (MR) 58.5%/2 h (MB) |
SnO2-WO3 NPs [115] | Green combustion method | 500 °C/1 h | 5 ppm | 0.8 g L−1 | MB | Visible light | 70%/3 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Nascimento, J.L.A.; Chantelle, L.; dos Santos, I.M.G.; Menezes de Oliveira, A.L.; Alves, M.C.F. The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts 2022, 12, 428. https://doi.org/10.3390/catal12040428
do Nascimento JLA, Chantelle L, dos Santos IMG, Menezes de Oliveira AL, Alves MCF. The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts. 2022; 12(4):428. https://doi.org/10.3390/catal12040428
Chicago/Turabian Styledo Nascimento, Jéssica Luisa Alves, Lais Chantelle, Iêda Maria Garcia dos Santos, André Luiz Menezes de Oliveira, and Mary Cristina Ferreira Alves. 2022. "The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review" Catalysts 12, no. 4: 428. https://doi.org/10.3390/catal12040428
APA Styledo Nascimento, J. L. A., Chantelle, L., dos Santos, I. M. G., Menezes de Oliveira, A. L., & Alves, M. C. F. (2022). The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts, 12(4), 428. https://doi.org/10.3390/catal12040428