CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review
Abstract
:1. Introduction
1.1. CO2 Emission Management
1.2. Methane Reforming
1.3. The General Strategy for Formulating the Catalyst
2. Ceria
2.1. Ceria as a Support
2.2. Ceria as a Promoter
3. Summary of DRM with CeO2-Based Catalysts from 2015 to 2021
4. Summary of SRM with CeO2-Based Catalysts from 2015 to 2021
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Noor, Z.; Yusuf, R.O.; Abba, A.H.; Abu Hassan, M.A.; Din, M.F.M. An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew. Sustain. Energy Rev. 2013, 20, 378–384. [Google Scholar] [CrossRef]
- Bian, Z.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. ChemPhysChem 2017, 18, 3117–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nation. Adoption of the Paris agreement. In Proceedings of the Conference of the Parties, Paris, France, 30 November–12 December 2015. [Google Scholar]
- Jang, W.-J.; Shim, J.-O.; Kim, H.-M.; Yoo, S.-Y.; Roh, H.-S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2018, 324, 15–26. [Google Scholar] [CrossRef]
- Shell Global Shell Accelerates Drive for Net-Zero Emissions with Customer-First Strategy. Available online: https://www.shell.com/media/news-and-media-releases/2021/shell-accelerates-drive-for-net-zero-emissions-with-customer-first-strategy.html (accessed on 3 July 2021).
- BP Sets Ambition for Net Zero by 2050, Fundamentally Changing Organisation to Deliver. Available online: https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bernard-looney-announces-new-ambition-for-bp.html (accessed on 3 July 2021).
- Petronas Declares Aspiration: To Achieve Net Zero Carbon Emissions by 2050. Available online: https://www.petronas.com/sustainability/net-zero-carbon-emissions (accessed on 3 July 2021).
- Bhattacharjee, R.B. Climate Action Window Closing soon. The Edge Malaysia. 31 December 2020, pp. 62–63. Available online: https://www.theedgemarkets.com/article/climate-action-window-closing-soon (accessed on 31 December 2020).
- Liu, Z.; Deng, Z.; Ciais, P.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; He, P.; et al. COVID-19 causes record decline in global CO2 emissions. arXiv 2004, arXiv:2004.13614. [Google Scholar]
- Whitesides, M.; Crabtree, G. Don’t Forget Long-Term Fundamental Research in Energy. Science 2007, 315, 796–798. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Hu, Y.H. Advances in catalytic conversion of methane and carbon dioxide to highly valuable products. Energy Sci. Eng. 2019, 7, 4–29. [Google Scholar] [CrossRef] [Green Version]
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in Global CO2 and Total Greenhouse Gas Emissions: Report 2019. PBL Neth. Environ. Assess. Agency 2020, 70, 1–11. [Google Scholar]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [Green Version]
- Wigley, T.M.L.; Richels, R.G.; Edmonds, J.A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 1996, 379, 240–243. [Google Scholar] [CrossRef]
- Steffen, W.; Hughes, L.; Pearce, A. Climate Council Climate Change 2015: Growing Risks, Critical Choices; Climate Council of Australia: Sydney, Australia, 2015; ISBN 978-099-430-107-9. [Google Scholar]
- Sokolov, S.; Kondratenko, E.V.; Pohl, M.-M.; Barkschat, A.; Rodemerck, U. Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst. Appl. Catal. B Environ. 2011, 113–114, 19–30. [Google Scholar] [CrossRef]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5, 7281–7305. [Google Scholar] [CrossRef] [Green Version]
- Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angew. Chem. Int. Ed. 2016, 55, 7296–7343. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, W.; Zhang, Z.; Zhang, S.; Tian, Z.; Liu, Y.; Ho, J.C.; Qu, Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018, 73, 1–36. [Google Scholar] [CrossRef]
- Ampelli, C.; Perathoner, S.; Centi, G. CO2 utilization: An enabling element to move to a resource- and energy-efficient chemical and fuel production. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2015, 373, 20140177. [Google Scholar] [CrossRef] [Green Version]
- Pienkowski, L.; Motak, M.; Dabek, R.; Jaszczur, M. Use of HTGR Process Heat with Catalysts for Dry Reforming of Methane Using CO2 to Singas for the Chemical Industry. 2018. Available online: https://www.semanticscholar.org/paper/Use-of-HTGR-process-heat-with-catalysts-for-dry-of-Motak-Dabek/b83f1ad63dff1a5e6aa0150a52b1b0a95e51784b (accessed on 23 August 2021).
- Yusuf, M.; Farooqi, A.S.; Keong, L.K.; Hellgardt, K.; Abdullah, B. Latest Trends in Syngas Production Employing Compound Catalysts for Methane Dry Reforming. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 991. [Google Scholar]
- Muraza, O.; Galadima, A. A review on coke management during dry reforming of methane. Int. J. Energy Res. 2015, 39, 1196–1216. [Google Scholar] [CrossRef]
- Lavoie, J.-M. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front. Chem. 2014, 2, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asencios, Y.J.O.; Assaf, E.M. Combination of dry reforming and partial oxidation of methane on NiO-MgO-ZrO2 catalyst: Effect of nickel content. Fuel Process. Technol. 2013, 106, 247–252. [Google Scholar] [CrossRef]
- Van Beurden, P. On The Catalytic Aspects of Steam Reforming Methane—A Literature Survey. ECN 2004, 3, 1–27. [Google Scholar]
- Meloni, E.; Martino, M.; Palma, V. A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming. Catalysts 2020, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Shojaee, M.; Spivey, J.J. Catalytic bi-reforming of methane: From greenhouse gases to syngas. Curr. Opin. Chem. Eng. 2015, 9, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Guo, F.; Ran, J.; Qi, W.; Yang, Z. Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: From experimental study and DFT calculations. Int. J. Hydrogen Energy 2020, 45, 30267–30287. [Google Scholar] [CrossRef]
- Gao, J.; Hou, Z.; Lou, H.; Zheng, X. Dry (CO2) Reforming, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780444535634. [Google Scholar]
- Aramouni, N.A.K.; Touma, J.G.; Abu Tarboush, B.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Arora, S.; Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 2016, 6, 108668–108688. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Jang, W.-J.; Jeong, D.-W.; Shim, J.-O.; Kim, H.-M.; Roh, H.-S.; Son, I.H.; Lee, S.J. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application. Appl. Energy 2016, 173, 80–91. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Yao, L.; Deng, X.; Dong, H.; Tong, D.; Hu, C. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience. Int. J. Hydrogen Energy 2013, 38, 117–126. [Google Scholar] [CrossRef]
- Daza, C.; Cabrera, C.; Moreno, S.; Molina, R. Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method. Appl. Catal. A Gen. 2010, 378, 125–133. [Google Scholar] [CrossRef]
- Santos, D.B.L.; Noronha, F.B.; Hori, C.E. Science Direct Bi-reforming of methane for hydrogen production using LaNiO3/Ce x Zr1-x O2 as precursor material. Int. J. Hydrogen Energy 2020, 45, 13947–13959. [Google Scholar] [CrossRef]
- Littlewood, P. Low Temperature Dry Reforming of Methane with Nickel Manganese Oxide Catalysts; Technische Universitaet Berlin: Berlin, Germany, 2015. [Google Scholar]
- Fogler, H. Essential of Chemical Reaction Engineering; Pearson Education: London, UK, 2010; ISBN 978-013-714-612-3. [Google Scholar]
- Ashcroft, A.T.; Cheetham, A.K.; Green, M.L.H.; Vernon, P.D.F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991, 352, 225–226. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z.-J.; Gong, J. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B Environ. 2017, 202, 683–694. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y.S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Abdullah, B.; Ghani, N.A.A.; Vo, D.-V.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170–185. [Google Scholar] [CrossRef] [Green Version]
- Pawar, V.; Appari, S.; Monder, D.S.; Janardhanan, V.M. Study of the Combined Deactivation Due to Sulfur Poisoning and Carbon Deposition during Biogas Dry Reforming on Supported Ni Catalyst. Ind. Eng. Chem. Res. 2017, 56, 8448–8455. [Google Scholar] [CrossRef]
- Védrine, J.C. Importance, features and uses of metal oxide catalysts in heterogeneous catalysis. Chin. J. Catal. 2019, 40, 1627–1636. [Google Scholar] [CrossRef]
- Usman, M.; Wan Daud, W.M.A.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, G.; Xu, Y.; Zhang, R. Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature. Int. J. Hydrogen Energy 2019, 44, 16424–16435. [Google Scholar] [CrossRef]
- Dębek, R.; Motak, M.; Grzybek, T.; Galvez, M.E.; Da Costa, P. A Short Review on the Catalytic Activity of Hydrotalcite-Derived Materials for Dry Reforming of Methane. Catalysts 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Ma, Z.; Lin, H.; Ding, L.; Qiu, J.; Frandsen, W.; Su, D. Template preparation of nanoscale CexFe1−xO2 solid solutions and their catalytic properties for ethanol steam reforming. J. Mater. Chem. 2009, 19, 1417–1424. [Google Scholar] [CrossRef]
- Kaneko, H.; Miura, T.; Ishihara, H.; Taku, S.; Yokoyama, T.; Nakajima, H.; Tamaura, Y. Reactive ceramics of CeO2-MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy. Energy 2007, 32, 656–663. [Google Scholar] [CrossRef]
- Chueh, W.C.; Haile, S.M. Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H2O and CO2. ChemSusChem 2009, 2, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Daza, C.E.; Moreno, S.; Molina, R. Ce-incorporation in mixed oxides obtained by the self-combustion method for the preparation of high performance catalysts for the CO2 reforming of methane. Catal. Commun. 2010, 12, 173–179. [Google Scholar] [CrossRef]
- Younis, A.; Chu, D.; Li, S. Cerium Oxide Nanostructures and their Applications. Funct. Nanomater. 2016, 3, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Malavasi, L.; Fisher, C.A.J.; Islam, M.S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 2010, 39, 4370–4387. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Grinter, D.C.; Liu, Z.; Palomino, R.M.; Senanayake, S.D. Ceria-based model catalysts: Fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824–1841. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic Properties of Ceria and CeO2-Containing Materials. Catal. Rev. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, G.; Xue, Q.; Chen, L.; Lu, Y. High carbon-resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 reforming. Appl. Catal. B Environ. 2013, 136-137, 260–268. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Boaro, M.; Fornasiero, P.; Trovarelli, A. Catalytic Applications of Cerium Dioxide; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-012-815-661-2. [Google Scholar]
- Shan, Y.; Liu, Y.; Li, Y.; Yang, W. A review on application of cerium-based oxides in gaseous pollutant purification. Sep. Purif. Technol. 2020, 250, 117181. [Google Scholar] [CrossRef]
- Dos Santos, R.G.; Alencar, A.C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. Int. J. Hydrogen Energy 2020, 45, 18114–18132. [Google Scholar] [CrossRef]
- Wang, X.; Shi, A.; Duan, Y.; Wang, J.; Shen, M. Catalytic performance and hydrothermal durability of CeO2–V2O5–ZrO2/WO3–TiO2 based NH3-SCR catalysts. Catal. Sci. Technol. 2012, 2, 1386–1395. [Google Scholar] [CrossRef]
- Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015, 70, 42–85. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Youn, J.-R.; Kim, H.J.; Seo, M.W.; Lee, D.; Go, K.S.; Lee, K.B.; Jeon, S.G. Effect of surface properties controlled by Ce addition on CO2 methanation over Ni/Ce/Al2O3 catalyst. Int. J. Hydrogen Energy 2020, 45, 24595–24603. [Google Scholar] [CrossRef]
- Di Monte, R.; Kašpar, J. Heterogeneous environmental catalysis—A gentle art: CeO2-ZrO2 mixed oxides as a case history. Catal. Today 2005, 100, 27–35. [Google Scholar] [CrossRef]
- Luisetto, I.; Tuti, S.; Romano, C.; Boaro, M.; Di Bartolomeo, E.; Kesavan, J.K.; Kumar, S.S.; Selvakumar, K. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation. J. CO2 Util. 2019, 30, 63–78. [Google Scholar] [CrossRef]
- Benrabaa, R.; Löfberg, A.; Caballero, J.G.; Bordes-Richard, E.; Rubbens, A.; Vannier, R.-N.; Boukhlouf, H.; Barama, A. Sol-gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane. Catal. Commun. 2015, 58, 127–131. [Google Scholar] [CrossRef]
- Amjad, U.-E.; Quintero, C.W.M.; Ercolino, G.; Italiano, C.; Vita, A.; Specchia, S. Methane Steam Reforming on the Pt/CeO2 Catalyst: Effect of Daily Start-Up and Shut-Down on Long-Term Stability of the Catalyst. Ind. Eng. Chem. Res. 2019, 58, 16395–16406. [Google Scholar] [CrossRef]
- Jawad, A.; Rezaei, F.; Rownaghi, A.A. Highly efficient Pt/Mo-Fe/Ni-based Al2O3-CeO2 catalysts for dry reforming of methane. Catal. Today 2019, 350, 80–90. [Google Scholar] [CrossRef]
- Vita, A.; Pino, L.; Cipitì, F.; Laganà, M.; Recupero, V. Biogas as renewable raw material for syngas production by tri-reforming process over NiCeO2 catalysts: Optimal operative condition and effect of nickel content. Fuel Process. Technol. 2014, 127, 47–58. [Google Scholar] [CrossRef]
- Yan, X.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.; Chen, S.; Wang, P.; Lu, J.; et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B Environ. 2019, 246, 221–231. [Google Scholar] [CrossRef]
- Pérez, L.P.; Sepúlveda-Escribano, A. Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: On the effect of the Sn content. Fuel 2017, 194, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, A.S.; Al-Swai, B.M.; Ruslan, F.H.B.; Zabidi, N.A.M.; Saidur, R.; Muhammad, S.A.F.S.; Abdullah, B. Syngas production via dry reforming of methane over Nibased catalysts. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 042007. [Google Scholar] [CrossRef]
- Chein, R.-Y.; Fung, W.-Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts. Int. J. Hydrogen Energy 2019, 44, 14303–14315. [Google Scholar] [CrossRef]
- Huang, J.; Ma, R.; Gao, Z.; Shen, C.; Huang, W. Characterization and Catalytic Activity of CeO2-Ni/Mo/SBA-15 Catalysts for Carbon Dioxide Reforming of Methane. Chin. J. Catal. 2012, 33, 637–644. [Google Scholar] [CrossRef]
- Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. J. Phys. Chem. C 2012, 116, 10009–10016. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; et al. Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction. Angew. Chem. 2017, 129, 10901–10905. [Google Scholar] [CrossRef]
- Li, D.; Zeng, L.; Li, X.; Wang, X.; Ma, H.; Assabumrungrat, S.; Gong, J. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B Environ. 2015, 176-177, 532–541. [Google Scholar] [CrossRef]
- Jiang, X.; Nie, X.; Guo, X.; Song, C.; Chen, J.G. Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chem. Rev. 2020, 120, 7984–8034. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjun, G.; Sagar, T.; Swapna, S.; Raju, N.; Chandrashekar, P.; Lingaiah, N. Hydrogen rich syngas production by bi-reforming of methane with CO2 over Ni supported on CeO2-SrO mixed oxide catalysts. Catal. Today 2020, 356, 597–603. [Google Scholar] [CrossRef]
- Paksoy, A.I.; Caglayan, B.S.; Ozensoy, E.; Ökte, A.; Aksoylu, A.E. The effects of Co/Ce loading ratio and reaction conditions on CDRM performance of Co Ce/ZrO2 catalysts. Int. J. Hydrogen Energy 2018, 43, 4321–4334. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, G.; Xu, Y.; Zhang, R. Dry reforming of methane over Co-Ce-M/AC-N catalyst: Effect of promoters (Ca and Mg) and preparation method on catalytic activity and stability. Int. J. Hydrogen Energy 2019, 44, 22972–22982. [Google Scholar] [CrossRef]
- Ay, H.; Üner, D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Appl. Catal. B Environ. 2015, 179, 128–138. [Google Scholar] [CrossRef]
- Stroud, T.; Smith, T.; le Saché, E.; Santos, J.L.; Centeno, M.A.; Arellano-Garcia, H.; Odriozola, J.A.; Reina, T. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Catal. B Environ. 2017, 224, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Akiki, E.; Akiki, D.; Italiano, C.; Vita, A.; Abbas-Ghaleb, R.; Chlala, D.; Ferrante, G.D.; Laganà, M.; Pino, L.; Specchia, S. Production of hydrogen by methane dry reforming: A study on the effect of cerium and lanthanum on Ni/MgAl2O4 catalyst performance. Int. J. Hydrogen Energy 2020, 45, 21392–21408. [Google Scholar] [CrossRef]
- Jin, B.; Shang, Z.; Li, S.; Jiang, Y.-B.; Gu, X.; Liang, X. Reforming of methane with carbon dioxide over cerium oxide promoted nickel nanoparticles deposited on 4-channel hollow fibers by atomic layer deposition. Catal. Sci. Technol. 2020, 10, 3212–3222. [Google Scholar] [CrossRef]
- Karemore, A.L.; Sinha, R.; Chugh, P.; Vaidya, P.D. Mixed reforming of methane over Ni–K/CeO2–Al2O3: Study of catalyst performance and reaction kinetics. Int. J. Hydrogen Energy 2020, 46, 5223–5233. [Google Scholar] [CrossRef]
- Świrk, K.; Rønning, M.; Motak, M.; Beaunier, P.; Da Costa, P.; Grzybek, T. Ce- and Y-Modified Double-Layered Hydroxides as Catalysts for Dry Reforming of Methane: On the Effect of Yttrium Promotion. Catalysts 2019, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Liu, Z.; Chen, X.; Rui, N.; Betancourt, L.E.; Lin, L.; Xu, W.; Sun, C.-J.; Abeykoon, A.M.M.; Rodriguez, J.A.; et al. Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO2 Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS. ACS Catal. 2020, 10, 3274–3284. [Google Scholar] [CrossRef]
- Rad, S.J.H.; Haghighi, M.; Eslami, A.A.; Rahmani, F.; Rahemi, N. Sol-gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition. Int. J. Hydrogen Energy 2016, 41, 5335–5350. [Google Scholar] [CrossRef]
- Price, C.A.H.; Earles, E.; Pastor-Pérez, L.; Liu, J.; Reina, T.R. Advantages of Yolk Shell Catalysts for the DRM: A Comparison of Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3. Chemistry 2018, 1, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Silica-Ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Appl. Catal. B Environ. 2018, 230, 220–236. [Google Scholar] [CrossRef]
- Han, K.; Yu, W.; Xu, L.; Deng, Z.; Yu, H.; Wang, F. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst. Fuel 2021, 291, 120182. [Google Scholar] [CrossRef]
- Cárdenas-Arenas, A.; Bailón-García, E.; Lozano-Castelló, D.; Da Costa, P.; Bueno-López, A. Stable NiO-CeO2 nanoparticles with improved carbon resistance for methane dry reforming. J. Rare Earths 2020, 40, 57–62. [Google Scholar] [CrossRef]
- Marinho, A.L.; Toniolo, F.S.; Noronha, F.B.; Epron, F.; Duprez, D.; Bion, N. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane. Appl. Catal. B Environ. 2020, 281, 119459. [Google Scholar] [CrossRef]
- Padi, S.P.; Shelly, L.; Komarala, E.P.; Schweke, D.; Hayun, S.; Rosen, B.A. Coke-free methane dry reforming over nano-sized NiO-CeO2 solid solution after exsolution. Catal. Commun. 2020, 138, 105951. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, M.; Li, Y.; Yang, Y.; Huang, H.; Jiang, Z.; Hu, Q.; Wu, S.; Zhao, X. Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. Appl. Catal. B Environ. 2018, 239, 555–564. [Google Scholar] [CrossRef]
- Tu, P.; Sakamoto, M.; Sasaki, K.; Shiratori, Y. Synthesis of flowerlike ceria–zirconia solid solution for promoting dry reforming of methane. Int. J. Hydrogen Energy 2021. [Google Scholar] [CrossRef]
- Simonov, M.; Bespalko, Y.; Smal, E.; Valeev, K.; Fedorova, V.; Krieger, T.; Sadykov, V. Nickel-Containing Ceria-Zirconia Doped with Ti and Nb. Effect of Support Composition and Preparation Method on Catalytic Activity in Methane Dry Reforming. Nanomaterials 2020, 10, 1281. [Google Scholar] [CrossRef]
- Fedorova, V.; Simonov, M.; Valeev, K.; Bespalko, Y.; Smal, E.; Eremeev, N.; Sadovskaya, E.; Krieger, T.; Ishchenko, A.; Sadykov, V. Kinetic Regularities of Methane Dry Reforming Reaction on Nickel-Containing Modified Ceria-Zirconia. Energies 2021, 14, 2973. [Google Scholar] [CrossRef]
- Li, B.; Yuan, X.; Li, B.; Wang, X. Ceria-modified nickel supported on porous silica as highly active and stable catalyst for dry reforming of methane. Fuel 2021, 301, 121027. [Google Scholar] [CrossRef]
- Jeon, K.-W.; Kim, H.-M.; Kim, B.-J.; Lee, Y.-L.; Na, H.-S.; Shim, J.-O.; Jang, W.-J.; Roh, H.-S. Synthesis gas production from carbon dioxide reforming of methane over Ni-MgO catalyst: Combined effects of titration rate during co-precipitation and CeO2 addition. Fuel Process. Technol. 2021, 219, 106877. [Google Scholar] [CrossRef]
- Lustemberg, P.G.; Mao, Z.; Salcedo, A.; Irigoyen, B.; Ganduglia-Pirovano, M.V.; Campbell, C.T. Nature of the Active Sites on Ni/CeO2 Catalysts for Methane Conversions. ACS Catal. 2021, 11, 10604–10613. [Google Scholar] [CrossRef]
- Cifuentes, B.; Hernández, M.; Monsalve, S.; Cobo, M. Hydrogen production by steam reforming of ethanol on a RhPt/CeO2/SiO2 catalyst: Synergistic effect of the Si:Ce ratio on the catalyst performance. Appl. Catal. A Gen. 2016, 523, 283–293. [Google Scholar] [CrossRef]
- Iglesias, I.; Baronetti, G.; Mariño, F. Ni/Ce0.95M0.05O2−d (M = Zr, Pr, La) for methane steam reforming at mild conditions. Int. J. Hydrogen Energy 2017, 42, 29735–29744. [Google Scholar] [CrossRef]
- Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A Gen. 2010, 377, 16–26. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, L.; Fang, X.; Cheng, Q.; Liu, W.; Peng, H.; Gao, Z.; Zhou, W.; Wang, X. Ni/Y2B2O7 (B Ti, Sn, Zr and Ce) catalysts for methane steam reforming: On the effects of B site replacement. Int. J. Hydrogen Energy 2018, 43, 8298–8312. [Google Scholar] [CrossRef]
- Iglesias, I.; Baronetti, G.; Alemany, L.J.; Mariño, F. Insight into Ni/Ce1-xZrxO2-δ support interplay for enhanced methane steam reforming. Int. J. Hydrogen Energy 2019, 44, 3668–3680. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Lai, G.-H.; Lak, J.H.; Tsai, D.-H. Hydrogen Production via Low-Temperature Steam-Methane Reforming Using Ni-CeO2-Al2O3 Hybrid Nanoparticle Clusters as Catalysts. ACS Appl. Energy Mater. 2019, 2, 7963–7971. [Google Scholar] [CrossRef]
- Palma, V.; Meloni, E.; Renda, S.; Martino, M. Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO2 Addition to Alumina-Based Washcoat Slurry Formulation. C-J. Carbon Res. 2020, 6, 52. [Google Scholar] [CrossRef]
- Torimoto, M.; Ogo, S.; Hisai, Y.; Nakano, N.; Takahashi, A.; Ma, Q.; Gil Seo, J.; Tsuneki, H.; Norby, T.; Sekine, Y. Support effects on catalysis of low temperature methane steam reforming. RSC Adv. 2020, 10, 26418–26424. [Google Scholar] [CrossRef]
- Ghungrud, S.A.; Dewoolkar, K.D.; Vaidya, P.D. Cerium-promoted bi-functional hybrid materials made of Ni, Co and hydrotalcite for sorption-enhanced steam methane reforming (SESMR). Int. J. Hydrogen Energy 2018, 44, 694–706. [Google Scholar] [CrossRef]
- Moogi, S.; Lee, I.-G.; Hwang, K.-R. Catalytic steam reforming of glycerol over Ni-La2O3-CeO2/SBA-15 catalyst for stable hydrogen-rich gas production. Int. J. Hydrogen Energy 2020, 45, 28462–28475. [Google Scholar] [CrossRef]
- Liao, M.; Guo, C.; Guo, W.; Hu, T.; Xie, J.; Gao, P.; Xiao, H. One-step growth of CuO/ZnO/CeO2/ZrO2 nanoflowers catalyst by hydrothermal method on Al2O3 support for methanol steam reforming in a microreactor. Int. J. Hydrogen Energy 2021, 46, 9280–9291. [Google Scholar] [CrossRef]
- Salcedo, A.; Lustemberg, P.G.; Rui, N.; Palomino, R.M.; Liu, Z.; Nemsak, S.; Senanayake, S.D.; Rodriguez, J.A.; Ganduglia-Pirovano, M.V.; Irigoyen, B. Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO2 Catalyst: Active Sites and the Role of Metal-Support Interactions. ACS Catal. 2021, 11, 8327–8337. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Xiao, Z.; Wang, L.; Li, G.; Zhang, X.; Wang, L. Modulating oxidation state of Ni/CeO2 catalyst for steam methane reforming: A theoretical prediction with experimental verification. Catal. Sci. Technol. 2021, 11, 1965–1973. [Google Scholar] [CrossRef]
- Varkolu, M.; Kunamalla, A.; Jinnala, S.A.K.; Kumar, P.; Maity, S.K.; Shee, D. Role of CeO2/ZrO2 mole ratio and nickel loading for steam reforming of n-butanol using Ni-CeO2-ZrO2-SiO2 composite catalysts: A reaction mechanism. Int. J. Hydrogen Energy 2020, 46, 7320–7335. [Google Scholar] [CrossRef]
Active Metal | Preparation Method | Reaction Conditions | Conversion | Reference |
---|---|---|---|---|
Ni/CeO2, Ni-Co/CeO2, Co/CeO2 | Wetness impregnation method | 700 °C | XCO2 = 80% XCH4 = 80% (Ni/CeO2 and Ni-Co/CeO2) | Ay et al. [82] |
Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 | Impregnation method | 800 °C WHSV = 30,000 mlg−1 h−1 | XCO2 = 85% | T. Stroud et al. [83] |
Ni/CeO2-SrO | Impregnation method | 600 °C–800 °C | XCO2 = 78% XCH4 = 91% at 800 °C | Mallikarjun et al. [79] |
LaNi/MgAl2O4 CeNi/MgAl2O4 | Wet impregnation | 600 °C–750 °C CH4:CO2 = 1:1 WHSV = 60,000 mlg−1 h−1 | XCO2 = 96% XCH4 = 92% (1.5Ce-Ni5) | Akiki et al. [84] |
0.42CeNi/Al2O3HF ALD | Incipient wetness impregnation | 850 °C | XCH4 = 86.7% (1st cycle) XCH4 = 88.4% (2nd cycle) | Jin et al. [85] |
Ni-based Al2O3- CeO2 supported monometallic Mo, bimetallic Fe-Mo and Pt-Mo, and trimetallic Pt-Fe-Mo | Incipient wetness impregnation | 550–700 °C WHSV =12,000 mlg−1 h−1 Atmospheric pressure for 10 h | XCO2 = 86% XCH4 = 80% (co-doped Ni/ Al2O3-CeO2 with Mo and Fe | Jawad et al. [68] |
Ni-K/ CeO2-Al2O3 | Impregnation technique in two stages | 650–800 °C | XCO2 = 80.1% XCH4 = 91.2% | Karemore et al. [86] |
CeO2 modification on Ni/Al2O3 catalyst and O2 addition | Wetness incipient impregnation | 600–800 °C | XCO2 = 90% (800 °C) XCH4 = 80% (800 °C) | Chein et al. [73] |
HT Ce/Y0.2 HT Ce/Y0.4 HT Ce/Y0.6 | Double-layered hydroxides modified with cerium (co-precipitation) and Yttrium (incipient wetness impregnation) | 600–850 °C | Modification with the smallest loading of yttrium (0.2 wt%) led to highest CO2 and CH4 conversion XCO2 = 97.4% (850 °C) XCH4 = 96.2% (850 °C) | Swirk et al. [87] |
4 wt% Ni/CeO2 4 wt% Ni/CeZrO2 (consisting of 20 wt% Zr) | Impregnation method | 700 °C | Ni/CeZrO2 is the better catalyst with conversion at 700 °C XCO2 = 66% XCH4 = 51% | Zhang F et al. [88] |
Ni/Al2O3- CeO2 and Ni/Al2O3-MgO | Impregnation and sol-gel methods | 850 °C | H2/CO ratio of 1 and H2 yield of 94% | Hassani Rad SJ et al. [89] |
Ni/Al2O3, Ni/Al2O3- CeO2, Ni/Al2O3-La2O3 | Sol gel method | 800 °C | XCO2 = 90% XCH4 = 88% | Farooqi [72] |
Yolk Shell catalysts. Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3 | Encapsulation of metal nanoparticles | 850 °C | Conversion close to that equilibrium of CH4. Reaching equilibrium for CO2 conversion | Price et al. [90] |
Sandwiched core-shell structured Ni-SiO2@CeO2 | Nickel nanoparticles encapsulated between silica and ceria | 600 °C GHSV= 200 L h−1gcat−1 CH4:CO2 = 3:2 | CH4 conversion activity = 0.12 mol CH4 min−1g metal−1 | Das et al. [91] |
NiO-CeO2 nanoparticles | Microemulsion | 700 °C | XCO2 = above 80% XCH4 = above 80% | Cardenas et al. [93] |
Ni-based mesoporous mixed CeO2-Al2O3 oxide | One pot Evaporation Induced Self Assembly (EISA) | 800 °C | XCO2 = 85% XCH4 = 80% | Marinho et al. [94] |
Ni supported on metal doped ceria (Me-DC) catalyst Ni/Me0.15Ce0.85O2−ε With Me = Zr4+, La3+ or Sm3+ | Citric acid synthetic route | 800 °C | XCO2 = 75% (5 h), 67% (50 h) XCH4 = 53% (5 h), 49% (50 h) for Ni/CeO2 | Luisetto [65]. |
Nano-sized NiO-CeO2 solid solution | Exsolution method | 800 °C Feed gas composition: 50 vol% CH4/50 vol% CO2 5000 Lkgcat−1h−1 | XCO2 = 80% XCH4 = 70% | Padi et al. [95] |
Ni/CeO2 catalyst | Photothermo DRM. Focalized UV-vis-IR irradiation using isotope labelling | 450–700 °C | XCO2 = 92.7% XCH4 = 87.5% | Zhang, Q [96] |
Ni/CeO2-SiO2-P (CeO2 close contact with Ni NP) Ni/CeO2-SiO2-C (CeO2 away from Ni NP) | Plasma decompose approach | 700 °C | Ni/CeO2-SiO2-P XCO2 = 87.3% XCH4 = 78.5% Ni/CeO2-SiO2-C XCO2 = 80.5% XCH4 = 67.8% | X. Yan et al. [70] |
Ce0.5Zr0.5O2 | Two step hydrothermal process | 750 °C | XCO2 = 80% XCH4 = 88.4% | Tu, P.H [97] |
Ni-MgO-CeO2 | Combined effects of titration rate during co-precipitation | 800 °C | XCH4 = 83.3% | Jeon et al. [101] |
Active Metal | Preparation Method | Reaction Conditions | Conversion/H2 Yield | Reference |
---|---|---|---|---|
RhPt/CeSi-33 | Co-impregnation Response Surface Methodology (RSM) determined the most appropriate metal loadings | 400–700 °C GHSV = 65,200 h−1 | Ethanol conversion = 100% | Cifuentes et al. [103] |
Ni/Y2Ti2O7 Ni/Y2Sn2O7 Ni/Y2Zr2O7 Ni/Y2CeO7 | Co-precipitation | 600 °C | CH4 conversion and H2 yields of all catalyst follow the sequence Ni/Y2Ti2O7 > Ni/Y2CeO7 ~ Ni/Y2Zr2O7 > Ni/Y2Sn2O7 XCH4 = 85% for Ni/Y2CeO7 XCH4 = 98% for Ni/Y2Ti2O7 | Zhang et al. [106] |
Ni/Ce1−xZrxO2−ε | Co-precipitation method employing the homogenous thermal decomposition of urea | 537–784 °C | XCH4 = 70% H2 yield = 65% | Iglesias, et al. [107] |
Ni-CeO2-Al2O3 hybrid nanoparticles clusters | (1) Gas phase evaporation-induced self- assembly (2) Two stage aerosol based thermal treatment | 500–700 °C | Ideal H2 yield (~3 times of the converted methane) | Lai et al. [109] |
Al2O3-CeO2 based washcoat slurries with loaded Ni | Wet impregnation | 500–850 °C Atmospheric pressure WHSV = 15.8 mlg−1 h−1 | Methane conversion increased with the ceria content at the same temperature XCH4 = almost 100% Selectivity to hydrogen | Palma et al. [110] |
Pd/CeO2 Pd/Nb2O5 Pd/Ta2O5 | Impregnation method | 200–500 °C SRM was conducted with and without electric field over Pd catalyst loaded with various oxides as support | The electric field promoted the activity drastically even at low temperature of 200 °C. Specific activity at 200 °C Pd/CeO2 = 1 Pd/Nb2O5 = 0.66 Pd/Ta2O5 = 0.53 | Torimoto et al. [111] |
Promotion of Co-Ni/HTlc with Ce | Incipient wetness impregnation | 450–600 °C | XCH4 for: HM1 = 88.2% (550 °C) HM2 = 86.1% (550 °C) Ce-HM1 = 95.7% (500 °C) Ce-HM2 = 90.1% (500 °C) | Ghungrud SA et al. [112] |
Ni/SBA-15 Ni-La2O3/SBA-15 Ni-La2O3-CeO2/SBA-15 Ni-La2O3-CeO2/KIT-6 | incipient wetness impregnation | 650 °C | Ni-La2O3-CeO2/SBA-15 shown highest H2 concentration of 62 mol% at LHSV of 5.8 h−1 | Moogi et al. [113] |
CuO/ZnO/CeO2/ZrO2 | Hydrothermal | 310 °C | 99.8% methanol conversion rate 0.16 mol/h H2 production. | Liao et al. [114] |
nanoflowers catalyst on Al2O3 foam seramic | ||||
Ni/CeO2 | Experiment of Ambient-Pressure XPS and DFT framework | 26.85 °C–426.85 °C Low activation barrier (0.3–0.7 eV) for CH4 dehydrogenation and H2O activation | H2 formation at low energy barrier | Salcedo et al. [115] |
NiO/CeO2-364 °C | DFT calculations | 700 °C | XCH4 = 96% H2 production rate well maintained | Wu et al. [116] |
Ni-CeO2-ZrO2-SiO2 composite catalysts | One step EISA method using a block-copolymer | 600 °C | n-butanol conversion = almost 100% | Varkolu et al. [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manan, W.N.; Wan Isahak, W.N.R.; Yaakob, Z. CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts 2022, 12, 452. https://doi.org/10.3390/catal12050452
Manan WN, Wan Isahak WNR, Yaakob Z. CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts. 2022; 12(5):452. https://doi.org/10.3390/catal12050452
Chicago/Turabian StyleManan, Wan Nabilah, Wan Nor Roslam Wan Isahak, and Zahira Yaakob. 2022. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review" Catalysts 12, no. 5: 452. https://doi.org/10.3390/catal12050452
APA StyleManan, W. N., Wan Isahak, W. N. R., & Yaakob, Z. (2022). CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts, 12(5), 452. https://doi.org/10.3390/catal12050452