A Study on the Effects of Gallium Droplet Consumption and Post Growth Annealing on Te-Doped GaAs Nanowire Properties Grown by Self-Catalyzed Molecular Beam Epitaxy
Abstract
:1. Introduction
2. Result and Discussions
2.1. Droplet Consumption
2.2. Annealing Effects
3. Experimental Details
3.1. Nanowire Growth
3.2. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammad, S.N. Why self-catalyzed nanowires are most suitable for large-scale hierarchical integrated designs of nanowire nanoelectronics. J. Appl. Phys. 2011, 110, 084310. [Google Scholar] [CrossRef]
- Johansson, J.; Dick, K.A. Recent advances in semiconductor nanowire heterostructures. CrystEngComm 2011, 13, 7175–7184. [Google Scholar] [CrossRef] [Green Version]
- Cirlin, G.E.; Dubrovskii, V.G.; Soshnikov, I.P.; Sibirev, N.; Samsonenko, Y.B.; Bouravleuv, A.; Harmand, J.-C.; Glas, F. Critical diameters and temperature domains for MBE growth of III-V nanowires on lattice mismatched substrates. Phys. Status Solidi Rapid Res. Lett. 2009, 3, 112–114. [Google Scholar] [CrossRef]
- Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M.H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. Science 2013, 339, 1057–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Wei, C.-M.; Yang, L.; Chou, M.-Y. Quantum Confinement and Electronic Properties of Silicon Nanowires. Phys. Rev. Lett. 2004, 92, 236805. [Google Scholar] [CrossRef] [PubMed]
- Garnett, E.C.; Brongersma, M.L.; Cui, Y.; McGehee, M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269–295. [Google Scholar] [CrossRef] [Green Version]
- Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef]
- Kayes, B.M.; Atwater, H.A.; Lewis, N.S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J. Appl. Phys. 2005, 97, 114302. [Google Scholar] [CrossRef]
- Tian, B.; Zheng, X.; Kempa, T.J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M.; Dusastre, V. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889. [Google Scholar] [CrossRef]
- Nalamati, S.; Devkota, S.; Li, J.; Lavelle, R.; Huet, B.; Snyder, D.; Iyer, S. Hybrid GaAsSb/GaAs Heterostructure Core–Shell Nanowire/Graphene and Photodetector Applications. ACS Appl. Electron. Mater. 2020, 2, 3109–3120. [Google Scholar] [CrossRef]
- Pokharel, R.; Ramaswamy, P.; Devkota, S.; Parakh, M.; Dawkins, K.; Penn, A.N.; Cabral, M.; Reynolds, L.; Iyer, S. Epitaxial High-Yield Intrinsic and Te-Doped Dilute Nitride GaAsSbN Nanowire Heterostructure and Ensemble Photodetector Application. ACS Appl. Electron. Mater. 2020, 2, 2730–2738. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef]
- Tans, S.J.; Verschueren, A.R.M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52. [Google Scholar] [CrossRef]
- Cui, Y.; Zhong, Z.; Wang, D.; Wang, A.W.U.; Lieber, C.M. High Performance Silicon Nanowire Field Effect Transistors. Nano Lett. 2003, 3, 149–152. [Google Scholar] [CrossRef]
- Soci, C.; Zhang, A.; Bao, X.Y.; Kim, H.; Lo, Y.; Wang, D. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430–1449. [Google Scholar] [CrossRef] [Green Version]
- Joyce, H.J.; Gao, Q.; Tan, H.H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L.; Jackson, H.E.; Yarrison-Rice, J.M.; Parkinson, P.; et al. III–V semiconductor nanowires for optoelectronic device applications. Prog. Quantum Electron. 2011, 35, 23–75. [Google Scholar] [CrossRef]
- Logeeswaran, V.J.; Oh, J.; Nayak, A.P.; Katzenmeyer, A.M.; Gilchrist, K.H.; Grego, S.; Islam, M.S. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1002–1032. [Google Scholar]
- Wilhelm, C.; Larrue, A.; Dai, X.; Migas, D.; Soci, C. Anisotropic photonic properties of III–V nanowires in the zinc-blende and wurtzite phase. Nanoscale 2012, 4, 1446–1454. [Google Scholar] [CrossRef]
- Nalamati, S.; Sharma, M.; Deshmukh, P.; Kronz, J.; Lavelle, R.; Snyder, D.; Iyer, S. A Study of GaAs1–x Sb x Axial Nanowires Grown on Monolayer Graphene by Ga-Assisted Molecular Beam Epitaxy for Flexible Near-Infrared Photodetectors. ACS Appl. Nano Mater. 2019, 2, 4528–4537. [Google Scholar] [CrossRef]
- Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; i Morral, A.F. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 2008, 77, 155326. [Google Scholar] [CrossRef]
- Morral, A.F.I.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J.R. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 2008, 92, 063112. [Google Scholar] [CrossRef] [Green Version]
- Güsken, N.A.; Rieger, T.; Mussler, G.; Lepsa, M.I.; Grützmacher, D. Influence of Te-Doping on Catalyst-Free VS InAs Nanowires. Nanoscale Res. Lett. 2019, 14, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suomalainen, S.; Hakkarainen, T.V.; Salminen, T.; Koskinen, R.; Honkanen, M.; Luna, E.; Guina, M. Te-doping of self-catalyzed GaAs nanowires. Appl. Phys. Lett. 2015, 107, 012101. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Park, D.W.; Lee, S.J. Gallium-droplet behaviors of self-catalyzed GaAs nanowires: A transmission electron microscopy study. Appl. Phys. Lett. 2012, 100, 033117. [Google Scholar] [CrossRef]
- Dastjerdi, M.H.T.; Boulanger, J.P.; Kuyanov, P.; Aagesen, M.; LaPierre, R.R. Methods of Ga droplet consumption for improved GaAs nanowire solar cell efficiency. Nanotechnology 2016, 27, 475403. [Google Scholar] [CrossRef] [PubMed]
- Devkota, S.; Parakh, M.; Johnson, S.; Ramaswamy, P.; Lowe, M.; Penn, A.; Reynolds, L.; Iyer, S. A study of n-doping in self-catalyzed GaAsSb nanowires using GaTe dopant source and ensemble nanowire near-infrared photodetector. Nanotechnology 2020, 31, 505203. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Ahmad, E.; Dev, D.; Li, J.; Reynolds, C.L.; Liu, Y.; Iyer, S. Improved performance of GaAsSb/AlGaAs nanowire ensemble Schottky barrier based photodetector via in situ annealing. Nanotechnology 2018, 30, 034005. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.R.; Magno, R.; Papanicolaou, N. Controlled n-type doping of antimonides and arsenides using GaTe. J. Cryst. Growth 2003, 251, 532–537. [Google Scholar] [CrossRef]
- Houng, Y.-M.; Low, T. Te doping of GaAs and AlxGa1−xAs using diethyltellurium in low pressure OMVPE. J. Cryst. Growth 1986, 77, 272–280. [Google Scholar] [CrossRef]
- Sun, S.; Armour, E.; Zheng, K.; Schaus, C. Zinc and tellurium doping in GaAs and AlxGa1−xAs grown by MOCVD. J. Cryst. Growth 1991, 113, 103–112. [Google Scholar] [CrossRef]
- Kasanaboina, P.; Sharma, M.; Deshmukh, P.; Reynolds, C.L.; Liu, Y.; Iyer, S. Effects of annealing on GaAs/GaAsSbN/GaAs core-multi-shell nanowires. Nanoscale Res. Lett. 2016, 11, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, P.; Devkota, S.; Pokharel, R.; Nalamati, S.; Stevie, F.; Jones, K.; Reynolds, L.; Iyer, S. A study of dopant incorporation in Te-doped GaAsSb nanowires using a combination of XPS/UPS, and C-AFM/SKPM. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Hakala, M.; Puska, M.J.; Nieminen, R.M. Native defects and self-diffusion in GaSb. J. Appl. Phys. 2002, 91, 4988–4994. [Google Scholar] [CrossRef] [Green Version]
- Hurle, D.T.J. A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide. J. Appl. Phys. 1999, 85, 6957–7022. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, X.; Kim, H.-S.; Kim, T.; Jeon, S.; Kang, H.K.; Choi, W.; Song, J.; Doh, Y.-J.; Yu, D. Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory. Nano Lett. 2015, 15, 5875–5882. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devkota, S.; Parakh, M.; Ramaswamy, P.; Kuchoor, H.; Penn, A.; Reynolds, L.; Iyer, S. A Study on the Effects of Gallium Droplet Consumption and Post Growth Annealing on Te-Doped GaAs Nanowire Properties Grown by Self-Catalyzed Molecular Beam Epitaxy. Catalysts 2022, 12, 451. https://doi.org/10.3390/catal12050451
Devkota S, Parakh M, Ramaswamy P, Kuchoor H, Penn A, Reynolds L, Iyer S. A Study on the Effects of Gallium Droplet Consumption and Post Growth Annealing on Te-Doped GaAs Nanowire Properties Grown by Self-Catalyzed Molecular Beam Epitaxy. Catalysts. 2022; 12(5):451. https://doi.org/10.3390/catal12050451
Chicago/Turabian StyleDevkota, Shisir, Mehul Parakh, Priyanka Ramaswamy, Hirandeep Kuchoor, Aubrey Penn, Lewis Reynolds, and Shanthi Iyer. 2022. "A Study on the Effects of Gallium Droplet Consumption and Post Growth Annealing on Te-Doped GaAs Nanowire Properties Grown by Self-Catalyzed Molecular Beam Epitaxy" Catalysts 12, no. 5: 451. https://doi.org/10.3390/catal12050451
APA StyleDevkota, S., Parakh, M., Ramaswamy, P., Kuchoor, H., Penn, A., Reynolds, L., & Iyer, S. (2022). A Study on the Effects of Gallium Droplet Consumption and Post Growth Annealing on Te-Doped GaAs Nanowire Properties Grown by Self-Catalyzed Molecular Beam Epitaxy. Catalysts, 12(5), 451. https://doi.org/10.3390/catal12050451