Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Characterization of Aqueous Suspensions of Co-Ni-Fe Oxides
2.2. Structure Analysis
2.3. Electrocatalytic Properties in OER
- 1.
- The lack of experimental data for the calculation of the Faradaic efficiency of the prepared electrocatalysts. The accurate quantitative measurements of the amount of oxygen evolved during OER are crucial to ensure the correctness of the calculated TOF values. In this work, the open-air electrochemical cell was employed and the amount of oxygen evolved was not experimentally determined. In many publications, one can find the estimations based on the observed current densities. However, it should be emphasized that most electrocatalytic reactions proceed through multiple steps, including continuous cycles of oxidation and the reduction of the catalyst itself [37], significantly lowering Faradaic efficiency. It is estimated [54] that, in the case of OER, the Faradaic efficiency ranges from 85 to 96% due to the fact that a considerable amount of applied charge is consumed in the self-redox reactions of the electrocatalysts;
- 2.
- The uncertainties related to the determination of the exact number of active sites. Various electrochemical methods are known to be applied for the estimation of the real surface area or the exact number of active sites, such as underpotential deposition, stripping, redox peak integration, double-layer capacitance, or redox probes. Unfortunately, these methods are very material specific, and cannot be applied universally for all types of electrocatalysts, especially multimetallic systems, as has been pointed out in critical review [54]. For example, the redox-peak integration method is applicable to only monometallic catalysts. In our opinion, the best option for the exact determination of TOF is the use of operando techniques, such as X-ray photoelectrons, X-ray absorption spectroscopies, or microscopic techniques (AFM, STM). In addition, performing experimental investigations under operando conditions elucidates the structural changes of the electrocatalysts and the kinetic peculiarities of the OER process as a function of the applied potential [37], which cannot be obtained by using ex situ techniques.
3. Materials and Methods
3.1. Synthesis of Coatings
3.2. Structure and Morphology
3.3. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kment, Š.; Sivula, K.; Naldoni, A.; Sarmah, S.P.; Kmentova, H.; Kulkarni, M.; Rambabu, Y.; Schmuki, P.; Zboril, R. FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Prog. Mater. Sci. 2020, 110, 100632. [Google Scholar] [CrossRef]
- Das, B.; Thapper, A.; Ott, S.; Colbran, S.B. Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy–recent advances. Sustain. Energy Fuels 2019, 3, 2159–2175. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Sustainable hydrogen production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Kothari, R.; Buddhi, D.; Sawhney, R.L. Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sustain. Energy Rev. 2008, 12, 553–563. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003. [Google Scholar] [CrossRef]
- Morales-Guio, C.G.; Stern, L.A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Tuysuz, H. Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 2014, 4, 3701–3714. [Google Scholar] [CrossRef]
- Bikkarolla, S.K.; Papakonstantinou, P. CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J. Power Sources 2015, 281, 243–251. [Google Scholar] [CrossRef]
- Miller, H.A.; Bouzek, K.; Hnat, J.; Loos, S.; Bernäcker, C.I.; Weißgärber, T.; Rontzsch, L.; Meier-Haack, J. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 2020, 4, 2114–2133. [Google Scholar] [CrossRef]
- Banerjee, S.; Debata, S.; Madhuri, R.; Sharma, P.K. Electrocatalytic behavior of transition metal (Ni, Fe, Cr) doped metal oxide nanocomposites for oxygen evolution reaction. Appl. Surf. Sci. 2018, 449, 660–668. [Google Scholar] [CrossRef]
- Barauskiene, I.; Valatka, E. Layered nickel-cobalt oxide coatings on stainless steel as an electrocatalyst for oxygen evolution reaction. Electrocatalysis 2019, 10, 63–71. [Google Scholar] [CrossRef]
- Bose, R.; Jothi, V.R.; Karuppasamy, K.; Alfantazi, A.; Yi, S.C. High performance multicomponent bifunctional catalysts for overall water splitting. J. Mater. Chem. A 2020, 8, 13795–13805. [Google Scholar] [CrossRef]
- Sun, J.; Li, S.; Zhang, Q.; Guan, J. Iron–cobalt–nickel trimetal phosphides as high-performance electrocatalysts for overall water splitting. Sustain. Energy Fuels 2020, 4, 4531–4537. [Google Scholar] [CrossRef]
- Wang, J.; Cao, F.; Shen, C.; Li, G.; Li, X.; Yang, X.; Li, S.; Qin, G. Nanoscale nickel–iron nitride-derived efficient electrochemical oxygen evolution catalysts. Catal. Sci. Technol. 2020, 10, 4458–4466. [Google Scholar] [CrossRef]
- Cui, S.; Li, M.; Bo, X. Co/Mo2C composites for efficient hydrogen and oxygen evolution reaction. Int. J. Hydrog. Energy 2020, 45, 21221–21231. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, S.; Ren, J.; Jia, Y.A.; Chen, C.; Komarneni, S.; Yang, D.; Yao, X. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245–253. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Wang, C.; Wei, Y.; Lu, X. Fe doped CoO/C nanofibers towards efficient oxygen evolution reaction. Appl. Surf. Sci. 2020, 506, 144680. [Google Scholar] [CrossRef]
- Qin, F.; Zhao, Z.; Alam, M.K.; Ni, Y.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z.; Wang, Z.; Bao, J. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554. [Google Scholar] [CrossRef]
- Wu, Y.; Li, F.; Chen, W.; Xiang, Q.; Ma, Y.; Zhu, H.; Tao, P.; Song, C.; Shang, W.; Deng, T.; et al. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting. Adv. Mater. 2018, 30, 1803151. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.K.; Zhang, G.; Lu, W.T.; Cao, F.F. Amorphous Ni–Fe–Mo suboxides coupled with Ni network as porous nanoplate array on nickel foam: A highly efficient and durable bifunctional electrode for overall water splitting. Adv. Sci. 2020, 7, 1902034. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Y.; Sui, Y.W.; Qi, J.Q.; Chang, Y.; He, Y.Z.; Meng, Q.K.; Wei, F.X.; Sun, Z.; Jin, Y.X. Structure Dependence of Fe-Co Hydroxides on Fe/Co Ratio and Their Application for Supercapacitors. Part. Part. Syst. Charact. 2017, 34, 1600239. [Google Scholar] [CrossRef]
- Wu, M.-S.; Chan, D.-S.; Lin, K.-H.; Jow, J.-J. A simple route to electrophoretic deposition of transition metal-coated nickel oxide films for electrochemical capacitors. Mater. Chem. Phys. 2011, 130, 1239–1245. [Google Scholar] [CrossRef]
- Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Wu, M.-S.; Huang, C.-Y.; Lin, K.-H. Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J. Power Sources 2009, 186, 557–564. [Google Scholar] [CrossRef]
- Lu, F.; Zhou, M.; Zhou, Y.X.; Zeng, X.H. First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small 2017, 13, 1701931. [Google Scholar] [CrossRef] [Green Version]
- Lobbus, M.; Sonnfeld, J.; van Leeuwen, H.P.; Vogelsberger, W.; Lyklema, J. An improved method for calculating zeta-potentials from measurements of the electrokinetic sonic amplitude. J. Colloid Interface Sci. 2000, 229, 174–183. [Google Scholar] [CrossRef]
- Luxbacher, T. The Zeta Guide: Principles of the Streaming Potential Technique, 1st ed.; Anton Paar GmbH: Graz, Austria, 2014. [Google Scholar]
- Joseph, Y.; Ranke, W.; Weiss, W. Water on FeO(111) and Fe3O4(111): Adsorption behavior on different surface terminations. J. Phys. Chem. B 2000, 104, 3224–3236. [Google Scholar] [CrossRef]
- Zhao, W.; Bajdich, M.; Carey, S.; Vojvodic, A.; Norskov, J.K.; Campbell, C.T. Water Dissociative Adsorption on NiO(111): Energetics and Structure of the Hydroxylated Surface. Acs Catal. 2016, 6, 7377–7384. [Google Scholar] [CrossRef]
- Chen, Z.; Kronawitter, C.X.; Waluyo, I.; Koel, B.E. Investigation of Water Dissociation and Surface Hydroxyl Stability on Pure and Ni-Modified CoOOH by Ambient Pressure Photoelectron Spectroscopy. J. Phys. Chem. B 2018, 122, 810–817. [Google Scholar] [CrossRef]
- Espinosa, R.B.; Duits, M.H.G.; Wijnperle, D.; Mugele, F.; Lefferts, L. Bubble formation in catalyst pores; curse or blessing? React. Chem. Eng. 2018, 3, 826–833. [Google Scholar] [CrossRef]
- Datsevich, L.B. Oscillation theory: Part 4. Some dynamic peculiarities of motion in catalyst pores. Appl. Catal. A Gen. 2005, 294, 22–33. [Google Scholar] [CrossRef]
- Si, Y.; Guo, C.; Xie, C.; Xiong, Z. An ultrasonication-assisted cobalt hydroxide composite with enhanced electrocatalytic activity toward oxygen evolution reaction. Materials 2018, 11, 1912. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Zhang, L.; Hsu, C.W.; Chuah, X.F.; Lu, S.Y. Mixed NiO/NiCo2O4 nanocrystals grown from the skeleton of a 3D porous nickel network as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mater. Interfaces 2018, 10, 417–426. [Google Scholar] [CrossRef]
- Favaro, M.; Drisdell, W.S.; Marcus, M.A.; Gregoire, J.M.; Crumlin, E.J.; Haber, J.A.; Yano, J. An Operando Investigation of (Ni-Fe–Co–Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Acs Catal. 2017, 7, 1248–1258. [Google Scholar] [CrossRef] [Green Version]
- Louie, M.W.; Bell, A.T. An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. [Google Scholar] [CrossRef] [Green Version]
- Bates, M.K.; Jia, Q.Y.; Doan, H.; Liang, W.T.; Mukerjee, S. Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. Acs Catal. 2016, 6, 155–161. [Google Scholar] [CrossRef]
- Trzesniewski, B.J.; Diaz-Morales, O.; Vermaas, D.A.; Longo, A.; Bras, W.; Koper, M.T.M.; Smith, W.A. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. J. Am. Chem. Soc. 2015, 137, 15112–15121. [Google Scholar] [CrossRef]
- Brodsky, C.N.; Hadt, R.G.; Hayes, D.; Reinhart, B.J.; Li, N.; Chen, L.X.; Nocera, D.G. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proc. Natl. Acad. Sci. USA 2017, 114, 3855–3860. [Google Scholar] [CrossRef] [Green Version]
- Tripkovic, V.; Hansen, H.A.; Vegge, T. From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. Acs Catal. 2017, 7, 8558–8571. [Google Scholar] [CrossRef] [Green Version]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.J.; Sokaras, D.; Weng, T.C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.S.; Liu, J.; Zhang, B.; Wan, H.Z.; Li, Z.S.; Ji, X.; Xu, K.; Chen, C.; Zha, D.; Miao, L.; et al. Synergistic effect of two actions sites on cobalt oxides towards electrochemical water-oxidation. Nano Energy 2017, 42, 98–105. [Google Scholar] [CrossRef]
- Li, G.; Anderson, L.; Chen, Y.; Pan, M.; Chuang, P.-Y.A. New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustain. Energy Fuels 2018, 2, 237–251. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39. [Google Scholar] [CrossRef]
- Haber, J.A.; Xiang, C.X.; Guevarra, D.; Jung, S.H.; Jin, J.; Gregoire, J.M. High-Throughput Mapping of the Electrochemical Properties of (Ni-Fe-Co-Ce)Ox Oxygen-Evolution Catalysts. Chemelectrochem 2014, 1, 524–528. [Google Scholar] [CrossRef] [Green Version]
- Lindstrom, M.L.; Gakhar, R.; Raja, K.; Chidambaram, D. Facile Synthesis of an Efficient Ni–Fe–Co Based Oxygen Evolution Reaction Electrocatalyst. J. Electrochem. Soc. 2020, 167, 046507. [Google Scholar] [CrossRef] [Green Version]
- Nozari-Asbemarz, M.; Amiri, M.; Khodayari, A.; Bezaatpour, A.; Nouhi, S.; Hosseini, P.; Wark, M.; Boukherroub, R.; Szunerits, S. In Situ Synthesis of Co3O4/CoFe2O4 Derived from a Metal—Organic Framework on Nickel Foam: High-Performance Electrocatalyst for Water Oxidation. Acs Appl. Energy Mater. 2021, 4, 2951–2959. [Google Scholar] [CrossRef]
- Madakannu, I.; Patil, I.; Kakade, B.A.; Kasibhatta, K.R.D. Boosting oxygen evolution reaction performance by nickel substituted cobalt-iron oxide nanoparticles embedded over reduced graphene oxide. Mater. Chem. Phys. 2020, 252, 123238. [Google Scholar] [CrossRef]
- Hao, Z.W.; Wei, P.K.; Kang, H.Z.; Yang, Y.; Li, J.; Chen, X.; Guo, D.G.; Liu, L. Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction. Nanotechnology 2020, 31, 435707. [Google Scholar] [CrossRef]
- Anantharaj, S.; Karthik, P.E.; Noda, S. The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angew. Chem. Int. Ed. 2021, 60, 23051–23067. [Google Scholar] [CrossRef]
- Doyle, R.L.; Godwin, I.J.; Brandon, M.P.; Lyons, M.E.G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737–13783. [Google Scholar] [CrossRef]
- Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kotz, R.; Schmidt, T.J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015, 5, 12167. [Google Scholar] [CrossRef] [Green Version]
- Heli, H.; Yadegari, H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization. Electrochim. Acta 2010, 55, 2139–2148. [Google Scholar] [CrossRef]
Sample | ESA (mPa m V−1) | pH | Conductivity (mA m−1) | Zeta Potential (mV) | Electrophoretic Mobility (m2 V−1 s−1) |
---|---|---|---|---|---|
CoNiFe-1 | 0.09 | 7.13 | 14.4 | 40.6 | 2.95 × 10−13 |
CoNiFe-2 | 0.04 | 5.99 | 7.7 | 17.0 | 1.43 × 10−13 |
CoNiFe-3 | 0.02 | 6.03 | 4.0 | 11.0 | 0.90 × 10−13 |
CoNiFe-4 | 0.035 | 5.68 | 4.4 | 14.0 | 1.17 × 10−13 |
Sample | Average Crystallite Size (nm) | Percentage According to XRF | Percentage According to EDS | ||||
---|---|---|---|---|---|---|---|
Co (%) | Ni (%) | Fe (%) | Co (%) | Ni (%) | Fe (%) | ||
CoNiFe-1 | 28.1 | 31.59 | 35.35 | 33.06 | 31.54 | 37.85 | 30.61 |
CoNiFe-2 | 36.7 | 37.26 | 42.35 | 20.39 | 42.73 | 41.88 | 15.39 |
CoNiFe-3 | 38.2 | 41.97 | 46.66 | 11.37 | 41.32 | 47.11 | 11.57 |
CoNiFe-4 | 37.3 | 42.50 | 49.88 | 4.92 | 43.67 | 47.60 | 8.73 |
Parameter | CoNiFe-1 | CoNiFe-2 | CoNiFe-3 | CoNiFe-4 |
---|---|---|---|---|
Resistance Rs (Ω cm−2) | 1.16 | 1.82 | 1.37 | 2.23 |
Constant phase element CPEdl (mF·s(α−1) cm−2) | 0.248 | 0.151 | 0.982 | 0.238 |
Resistance Rct (Ω cm−2) | 75.6 | 224.2 | 56.0 | 23.9 |
Constant phase element CPEct (mF·s(α−1) cm−2) | - | 3.6 | 19.6 | 8.3 |
Resistance Rads (Ω cm−2) | 459.20 | 4.14 | 0.32 | 8.03 |
Constant phase element CPEads (mF·s(α−1) cm−2) | 0.702 | 2.13 | 0.127 | 0.019 |
Sample Notation | Cobalt(II) Nitrate | Nickel(II) Nitrate | Iron(III) Nitrate |
---|---|---|---|
CoNiFe-1 | 1 | 1 | 1 |
CoNiFe-2 | 1 | 1 | 0.5 |
CoNiFe-3 | 1 | 1 | 0.25 |
CoNiFe-4 | 1 | 1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barauskienė, I.; Valatka, E. Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution. Catalysts 2022, 12, 490. https://doi.org/10.3390/catal12050490
Barauskienė I, Valatka E. Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution. Catalysts. 2022; 12(5):490. https://doi.org/10.3390/catal12050490
Chicago/Turabian StyleBarauskienė, Ieva, and Eugenijus Valatka. 2022. "Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution" Catalysts 12, no. 5: 490. https://doi.org/10.3390/catal12050490
APA StyleBarauskienė, I., & Valatka, E. (2022). Water-Based Electrophoretic Deposition of Ternary Cobalt-Nickel-Iron Oxides on AISI304 Stainless Steel for Oxygen Evolution. Catalysts, 12(5), 490. https://doi.org/10.3390/catal12050490