Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Morphology Analysis
2.3. Surface Chemical Valence Analysis
2.4. Electrochemical Performance Test
- In the first voltage range, the charge capacity of the samples increases as LiNiO2 levels rise;
- The addition of LiNiO2 makes the voltage plateau of the sample 4.45 V shorter;
- The specific capacity of the samples decreases as LiNiO2 concentration rises.
3. Experimental
3.1. Material Synthesis
3.2. Measurements
3.3. Electrochemical Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ming, L.; Zhang, B.; Cao, Y.; Zhang, J.F.; Wang, C.H.; Wang, X.W.; Li, H. Effect of Nb and F co-doping on Li1.2Mn0.54Co0.13Ni0.13O2 cathode material for high-performance lithium-ion batteries. Front. Chem. 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Liu, J.; Huang, L.; Jiang, N.; Zheng, Q.; Lin, D. Sn-doped Li1.2Mn0.54Co0.13Ni0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance. J. Solid State Electrochem. 2017, 21, 3467–3477. [Google Scholar] [CrossRef]
- Nation, L.; Wu, Y.; James, C.; Qi, Y.; Powell, B.R.; Sheldon, B.W. Si-doped high-energy Li1.2Mn0.54Co0.13Ni0.13O2 cathode with improved capacity for lithium-ion batteries. J. Mater. Res. 2018, 33, 4182–4191. [Google Scholar] [CrossRef]
- Deng, B.; Lin, Z.; Chen, Y.; He, W.; Wang, J.; Xie, Q.; Wang, L.; Peng, D.-L. Preparation of porous Li1.2Mn0.54Co0.13Ni0.13O2 micro-cubes for high-capacity lithium-ion batteries. J. Alloys Compd. 2020, 834, 155152. [Google Scholar] [CrossRef]
- Leifer, N.; Penki, T.; Nanda, R.; Grinblat, J.; Luski, S.; Aurbach, D.; Goobes, G. Linking structure to performance of Li1.2Mn0.54Co0.13Ni0.13O2 (Li and Mn rich NMC) cathode materials synthesized by different methods. Phys. Chem. Chem. Phys. 2020, 22, 9098–9109. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Fan, S.S.; Yu, H.T.; Xie, Y.; Zhang, Q.; Zhu, Y.R.; Yi, T.F.; Tian, G.H. Mg-doped Li1.2Mn0.54Co0.13Ni0.13O2 nano flakes with improved electrochemical performance for lithium-ion battery application. J. Alloys Compd. 2018, 739, 607–615. [Google Scholar] [CrossRef]
- Susai, F.A.; Kovacheva, D.; Chakraborty, A.; Kravchuk, T.; Ravikumar, R.; Talianker, M.; Grinblat, J.; Burstein, L.; Kauffmann, Y.; Major, D.T.; et al. Improveing performance of LiNi0.8Co0.1Mn0.1O2 cahode materials for lithium-ion batteries by doping with molybdenum-ions: Theoretical and experiental studies. ACS Appl. Energy Mater. 2019, 2, 4521–4534. [Google Scholar] [CrossRef]
- Su, X.; Wang, X.; Chen, H.; Yu, Z.; Qi, J.; Tao, S.; Chu, W.; Song, L. Enhanced electrochemical performance of Ti-doping Li1.15Ni0.47Sb0.38O2 as lithium-excess cathode for lithium-ion batteries. Chin. J. Chem. 2017, 35, 1853–1860. [Google Scholar] [CrossRef]
- Wei, X.; Yang, P.; Li, H.; Wang, S.; Xing, Y.; Liu, X.; Zhang, S. Synthesis and properties of mesoporous Zn-doped Li1.2Mn0.54Co0.13Ni0.13O2 as cathode materials by a MOFs-assisted solvothermal method. RSC Adv. 2017, 7, 35055–35059. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.L.; Xiao, D.D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X.-D.; Yin, Y.-X.; Yang, X.-Q.; Guo, Y.-G.; et al. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. Adv. Mater. 2020, 30, 1705575. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Liu, J.; Wu, X.; Zhou, C.; Yan, W.; Zhou, C.; Fu, L.; Wu, Y. Hollow microspherical layered xLi2MnO3·(1-x)LiNiO2(x=0.3–0.7) as cathode material for lithium-ion batteries. J. Alloys Compd. 2019, 790, 1034–1042. [Google Scholar] [CrossRef]
- Sun, Y.K.; Chen, Z.; Noh, H.J.; Lee, D.J.; Jung, H.G.; Ren, Y.; Wang, S.; Yoon, C.S.; Myung, S.-T.; Amine, K. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 2012, 11, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Bang, H.; Lee, K.S.; Amine, K.; Sun, Y.K. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for Lithium secondary batteries. J. Power Sources 2009, 189, 571–575. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, T.; Lin, L.; Yuan, M.; Li, H.; Sun, G.; Ma, S. Hierarchical Li1.2Mn0.54Co0.13Ni0.13O2 hollow spherical as cathode material for Li-ion battery. J. Nanopart. Res. 2017, 19, 373. [Google Scholar] [CrossRef]
- Zhou, Y.; Yan, W.; Li, S.; Mei, J.; Liu, G. Irregular micro-sized Li1.2Mn0.54Co0.13Ni0.13O2 particles as cathode material with a high volumetric capacity for Li-ion batteries. J. Alloys Compd. 2017, 695, 2951–2958. [Google Scholar] [CrossRef]
- Yang, F.; Lin, S.Z.; Guo, Z.M.; Shao, Y.R.; Zhang, B.; Zhang, X.D.; Zhang, X.D.; Yan, S.H.; Volinsky, A.A. Suppressed voltage decay and improved electrochemical performance by coating LiAl5O8 on the surface of Li1.2Mn0.54Ni0.13Co0.13O2. J. Alloys Compd. 2019, 15, 1034–1043. [Google Scholar] [CrossRef]
- Orlova, E.D.; Savina, A.A.; Abakumov, S.A.; Morozov, A.V.; Abakumov, A.M. Comprehensive Study of Li+/Ni2+ Disorder in Ni-Rich NMCs Cathodes for Li-Ion Batteries. Symmetry 2021, 13, 1628. [Google Scholar] [CrossRef]
- Chong, S.K.; Wu, Y.F.; Chen, Y.Z.; Shu, C.Y.; Liu, Y.N. A strategy of constructing spherical core-shell structure of Li1.2Ni0.2Mn0.6O2@ Li1.2Ni0.4Mn0.4O2 cathode material for high-performance lithium-ion batteries. J. Power Sources 2017, 356, 153–162. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Y.; Zhao, L.; Wu, J.; Dai, C.; Li, Y.; Wang, X.; Ding, F. Improving the electrochemical performance of lithium-rich cathode materials Li1.2Mn0.54Co0.13Ni0.13O2 by a method of tungsten doping. Ionics 2019, 25, 5239–5247. [Google Scholar] [CrossRef]
- Meng, F.B.; Wang, Z.X.; Li, X.H.; Deng, Y.G. Modification on improving the structural stabilities and cyclic properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with CePO4. Ionics 2020, 26, 2117–2127. [Google Scholar] [CrossRef]
- Li, H.L.; Jian, Z.X.; Yang, P.H.; Li, J.J.; Xing, Y.L.; Zhang, S.C. Niobium doping of Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials with enhanced structural stability and electrochemical performance. Ceram. Int. 2020, 46, 23773–23779. [Google Scholar] [CrossRef]
- Fu, X.Y.; Wang, J.Q.; Zhang, L.L.; Li, T.; Liu, J.; Yang, X.L. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by using activated carbon as template and carbon source. Ionics 2020, 26, 4423–4431. [Google Scholar] [CrossRef]
- Johnson, C.S.; Li, N.C.; Lefie, C.; Vaughey, J.T.; Thackeray, M.M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.33Ni0.33Co0.33O2(0≤x≤0.7). Chem. Mater. 2008, 20, 6095–6106. [Google Scholar] [CrossRef]
- Yu, Z.X.; Shang, S.L.; Gordin, M.L.; Mousharraf, A.; Liu, Z.K.; Wang, D. Ti-substituted Li[Li0.26Mn0.6TixNi0.07Co0.07]O2 layered cathode material with improved structural stability and suppressed voltage fading. J. Mater. Chem. A 2015, 3, 17376–17384. [Google Scholar] [CrossRef]
- Niu, B.B.; Li, J.L.; Liu, Y.Y.; Li, Z.Y.; Yang, Z. Re-understanding the function mechanism of surface coating: Modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries. Ceram. Int. 2019, 45, 12484–12494. [Google Scholar] [CrossRef]
- Vivekanantha, M.; Senthil, C.; Kesavan, T.; Sasidharan, M. Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties. Electrochim. Acta 2019, 317, 398–407. [Google Scholar] [CrossRef]
- Du, Z.L.; Peng, W.J.; Wang, Z.X.; Guo, H.J.; Hu, Q.Y.; Li, X.H. Improving the electrochemical performance of Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material by LiF coating. Ionics 2018, 24, 3717–3724. [Google Scholar] [CrossRef]
- Yang, S.Q.; Wang, P.B.; Wei, H.X.; Tang, L.B.; Zhang, X.H. Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 2019, 63, 103889. [Google Scholar] [CrossRef]
- Mu, K.C.; Cao, Y.B.; Hu, G.R.; Du, K.; Yang, H.; Gan, Z.G.; Peng, Z.D. Enhanced electrochemical performance of Li-rich cathode Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with WO3 for lithium ion batteries. Electrochim. Acta 2018, 273, 88–97. [Google Scholar] [CrossRef]
- Zhu, Q.P.; Wang, X.; Fan, J.C.; Xu, Q.J.; Min, Y.L. MnO2 nanowires as precursor synthesis of lithium-rich cathode material with enhanced electrochemical performances. Ionics 2019, 25, 2477–2485. [Google Scholar] [CrossRef]
- Xu, C.S.; Yu, H.T.; Guo, C.F.; Xie, Y.; Ren, N.; Yi, T.F.; Zhang, G.X. Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics 2019, 25, 4567–4576. [Google Scholar] [CrossRef]
Samples | a/(Å) | c/(Å) | I(003)/I(104) |
---|---|---|---|
LMNCO | 2.8488 | 14.1826 | 1.4841 |
nLMNCO-1.0 | 2.8511 | 14.1923 | 1.8194 |
nLMNCO-2.0 | 2.8542 | 14.1954 | 1.7663 |
nLMNCO-3.0 | 2.8578 | 14.2143 | 1.8680 |
nLMNCO-4.0 | 2.8619 | 14.2276 | 2.0199 |
Samples | Charge Capacity below 4.45 V /(mAh g−1) | Charge Capacity above 4.45 V /(mAh g−1) | The Charging Capacity/(mAh g−1) | The Discharging Capacity/(mAh g−1) | Irreversible Capacity Loss /(mAh g−1) |
---|---|---|---|---|---|
LMNCO | 127.9 | 216.7 | 362.5 | 271.4 | 91.1 |
nLMNCO-1.0 | 143.0 | 179.0 | 322.2 | 248.9 | 73.3 |
nLMNCO-2.0 | 172.0 | 119.5 | 291.5 | 223.0 | 68.5 |
nLMNCO-3.0 | 187.3 | 85.1 | 272.4 | 204.8 | 67.6 |
nLMNCO-4.0 | 192.5 | 51.8 | 244.3 | 184.9 | 59.4 |
Samples | 0.2 C (mAh g−1) | 0.5 C (mAh g−1) | 1.0 C (mAh g−1) | 2.0 C (mAh g−1) | 3.0 C (mAh g−1) | 5.0 C (mAh g−1) |
---|---|---|---|---|---|---|
LMNCO | 249.9 | 204.4 | 150.6 | 42.8 | 0.2 | 0.1 |
nLMNCO-1.0 | 228.1 | 200.4 | 182.1 | 160.9 | 143.6 | 108.8 |
nLMNCO-2.0 | 212.8 | 195.6 | 182.8 | 165.6 | 148.6 | 105.5 |
nLMNCO-3.0 | 190.7 | 175.9 | 162.4 | 144.7 | 133.3 | 111.2 |
nLMNCO-4.0 | 167.9 | 137.3 | 105.8 | 70.4 | 45.2 | 16.6 |
Samples | Rs/Ω | Rct/Ω | DLi(cm2·s−1) |
---|---|---|---|
LMNCO | 3.455 | 192.50 | 7.75 × 10−16 |
nLMNCO-1.0 | 3.117 | 112.23 | 4.63 × 10−14 |
nLMNCO-2.0 | 2.894 | 90.18 | 1.51 × 10−13 |
nLMNCO-3.0 | 2.645 | 64.08 | 2.92 × 10−13 |
nLMNCO-4.0 | 3.216 | 137.52 | 8.36 × 10−14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhan, F.; Zhan, H.; Ming, X. Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content. Catalysts 2022, 12, 584. https://doi.org/10.3390/catal12060584
Wang H, Zhan F, Zhan H, Ming X. Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content. Catalysts. 2022; 12(6):584. https://doi.org/10.3390/catal12060584
Chicago/Turabian StyleWang, Hongyu, Feng Zhan, Haiqing Zhan, and Xianquan Ming. 2022. "Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content" Catalysts 12, no. 6: 584. https://doi.org/10.3390/catal12060584
APA StyleWang, H., Zhan, F., Zhan, H., & Ming, X. (2022). Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content. Catalysts, 12(6), 584. https://doi.org/10.3390/catal12060584