Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Synthesis and Characterization
2.2. Electrochemical Activity
2.3. Mechanism Analysis of the Electrocatalytic Activity Enhancement
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Xiao, X.; Liu, S.; Chiang, C.L.; Kuai, X.; Peng, C.K.; Lin, Y.C.; Meng, X.; Zhao, J.; Choi, J.; et al. Structural and Electronic Optimization of MoS2 Edges for Hydrogen Evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, P.; Li, J.; Xiang, B. Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution. Catalysts 2017, 7, 285. [Google Scholar] [CrossRef]
- Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H.S.; Norskov, J.K.; Zheng, X.; Abild Pedersen, F. Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nat. Commun. 2017, 8, 15113. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Wang, Z.; Guan, J. A Review of Defect Engineering in Two-Dimensional Materials for Electrocatalytic Hydrogen Evolution Reaction. Chin. J. Catal. 2022, 43, 636–678. [Google Scholar] [CrossRef]
- Wan, K.; Xiang, Z.; Liu, W.; Wei, H.; Fu, Z.; Liang, Z. Recent Progress of Transition Metal Sulfides as Electrocatalysts for Hydrogen/Oxygen Evolution Reactions. Chin. Sci. Bull. 2022, 67, 2126–2141. [Google Scholar] [CrossRef]
- An, Y.R.; Fan, X.L.; Luo, Z.F.; Lau, W.M. Nanopolygons of Monolayer MS2: Best Morphology and Size for HER Catalysis. Nano Lett. 2017, 17, 368–376. [Google Scholar]
- Li, Y.; Zhang, R.; Zhou, W.; Wu, X.; Zhang, H.; Zhang, J. Hierarchical MoS2 Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano 2019, 13, 5533–5540. [Google Scholar] [CrossRef]
- Hua, S.; Qu, D.; An, L.; Xi, G.; Chen, G.; Li, F.; Zhou, Z.; Sun, Z. Highly Dispersed Few-Layer MoS2 Nanosheets on S, N Co-Doped Carbon for Electrocatalytic H2 Production. Chin. J. Catal. 2017, 38, 1028–1037. [Google Scholar]
- Aliaga, J.; Vera, P.; Araya, J.; Ballesteros, L.; Urzua, J.; Farias, M.; Paraguay-Delgado, F.; Alonso-Nunez, G.; Gonzalez, G.; Benavente, E. Electrochemical Hydrogen Evolution over Hydrothermally Synthesized Re-Doped MoS2 Flower-Like Microspheres. Molecules 2019, 24, 4631. [Google Scholar]
- Yang, Q.; Wang, Z.; Dong, L.; Zhao, W.; Jin, Y.; Fang, L.; Hu, B.; Dong, M. Activating MoS2 with Super-High Nitrogen-Doping Concentration as Efficient Catalyst for Hydrogen Evolution Reaction. J. Phys. Chem. C 2019, 123, 10917–10925. [Google Scholar]
- Li, H.; Chen, S.; Jia, X.; Xu, B.; Lin, H.; Yang, H.; Song, L.; Wang, X. Amorphous Nickel-Cobalt Complexes Hybridized with 1T-Phase Molybdenum Disulfide via Hydrazine-Induced Phase Transformation for Water Splitting. Nat. Commun. 2017, 8, 15377. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.F.; Feng, T.; Liu, Z.W.; Wu, D.Y.; Yang, J. Laser-Direct-Writing of 3D Self-Supported NiS2/MoS2 Heterostructures as an Efficient Electrocatalyst for Hydrogen Evolution Reaction in Alkaline and Neutral Electrolytes. Chin. J. Catal. 2019, 40, 1147–1152. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C. In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2020, 10, 977. [Google Scholar] [CrossRef]
- Choi, H.; Lee, S.; Kim, M.C.; Park, Y.; Jang, A.R.; Ahn, W.; Sohn, J.I.; Park, J.B.; Hong, J.; Lee, Y.W. Hierarchically Ordinated Two-Dimensional MoS2 Nanosheets on Three-Dimensional Reduced Graphene Oxide Aerogels as Highly Active and Stable Catalysts for Hydrogen Evolution Reaction. Catalysts 2021, 11, 182. [Google Scholar] [CrossRef]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, B.; Gao, Y.; Zhang, S.; Shin, H.; Zeng, H.; Park, J.H. Aligned Heterointerface-Induced 1T-MoS2 Monolayer with Near-Ideal Gibbs Free for Stable Hydrogen Evolution Reaction. Small 2019, 15, 1804903. [Google Scholar] [CrossRef]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef]
- Cui, B.; Zhang, M.; Zhao, Y.; Hu, S. Heterogenization of Few-Layer MoS2 with Highly Crystalline 3D Ni3S2 Nanoframes Effectively Synergizes the Electrocatalytic Hydrogen Generation in Alkaline Medium. Mater. Today Energy 2019, 13, 85–92. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Wei, Y.; Zhang, X.; Zhang, Q.; Gu, L.; Zhang, L.; Yang, N.; Yu, R. High Phase-Purity 1T-MoS2 Ultrathin Nanosheets by a Spatially Confined Template. Angew. Chem. Int. Ed. 2019, 58, 17621–17624. [Google Scholar] [CrossRef]
- Qin, Q.; Chen, L.; Wei, T.; Liu, X. MoS2/NiS Yolk-Shell Microsphere-Based Electrodes for Overall Water Splitting and Asymmetric Supercapacitor. Small 2018, 15, 1803639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bao, J.; Zhou, Y.; Zhang, Y.; Sheng, X.; Wu, B.; Wang, Y.; Zuo, C.; Bu, X. Heterostructural MoS2/NiS Nanoflowers Via Precise Interface Modification for Enhancing Electrocatalytic Hydrogen Evolution. New J. Chem. 2022, 46, 5505–5514. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, K.; Li, Y.; Yuan, S.; Huang, G.; Li, X.; Li, N. Activation Engineering on Metallic 1T-MoS2 by Constructing In-Plane Heterostructure for Efficient Hydrogen Generation. Appl. Catal. B Environ. 2022, 300, 120696. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, Q.; Chu, W.; Wan, Y.; Li, X.; Xu, W.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D.; et al. Electron-Doped 1T-MoS2 via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chem. Mater. 2017, 29, 4738–4744. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, T.; Zhang, J.; Fan, H.; He, C.; Song, J. 3D 1T-MoS2/CoS2 Heterostructure via Interface Engineering for Ultrafast Hydrogen Evolution Reaction. Small 2020, 16, 2002850. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Wang, Z.; Tan, L.; Wu, Z.; Liu, Z.; Gai, S.; Yang, P. NiS2/MoS2 on Carbon Cloth as a Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim. Acta 2019, 326, 134983. [Google Scholar] [CrossRef]
- Tian, Y.; He, Y.; Zhu, Y. Low Temperature Synthesis and Characterization of Molybdenum Disulfide Nanotubes and Nanorods. Mater. Chem. Phys. 2004, 87, 87–90. [Google Scholar] [CrossRef]
- Du, Z.; Yang, S.; Li, S.; Lou, J.; Zhang, S.; Wang, S.; Li, B.; Gong, Y.; Song, L.; Zou, X.; et al. Conversion of Non-Van Der Waals Solids to 2D Transition-Metal Chalcogenides. Nature 2020, 577, 492–496. [Google Scholar] [CrossRef]
- Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T Phase MoS2 Nanosheets as Supercapacitor Electrode Materials. Nat. Nanotechnol. 2015, 10, 313–318. [Google Scholar] [CrossRef]
- Shah, S.A.; Shen, X.; Xie, M.; Zhu, G.; Ji, Z.; Zhou, H.; Xu, K.; Yue, X.; Yuan, A.; Zhu, J.; et al. Nickel@Nitrogen-Doped Carbon@MoS2 Nanosheets: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Small 2019, 15, 1804545. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Y.; Yang, D.R.; Xu, W.X.; Wang, C.; Wang, F.B.; Xu, J.J.; Xia, X.H.; Chen, H.Y. Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485. [Google Scholar] [CrossRef]
- Yu, B.; Chen, Y.; Wang, Z.; Chen, D.; Wang, X.; Zhang, W.; He, J.; He, W. 1T-MoS2 Nanotubes Wrapped with N-Doped Graphene as Highly-Efficient Absorbent and Eectrocatalyst for Li-S Batteries. J. Power Sources 2020, 447, 227364. [Google Scholar] [CrossRef]
- Long, G.F.; Li, X.H.; Wan, K.; Liang, Z.X.; Piao, J.H.; Tsiakaras, P. Pt/CN-Doped Electrocatalysts: Superior Electrocatalytic Activity for Methanol Oxidation Reaction and Mechanistic Insight into Interfacial Enhancement. Appl. Catal. B Environ. 2017, 203, 541–548. [Google Scholar] [CrossRef]
- Kappera, R.; Voiry, D.; Yalcin, S.E.; Branch, B.; Gupta, G.; Mohite, A.D.; Chhowalla, M. Phase-Engineered Low-Resistance Contacts for Ultrathin MoS2 Transistors. Nat. Mater. 2014, 13, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Yu, S.; Ma, X.; Li, K.; Ding, L.; Wang, W.; Cullen, D.A.; Meyer, H.M.; Yu, H.; Tong, J.; et al. MoS2 Nanosheet Integrated Electrodes with Engineered 1T-2H Phases and Defects for Efficient Hydrogen Production in Practical PEM Electrolysis. Appl. Catal. B Environ. 2022, 313, 121458. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Angew. Chem. Int. Ed. 2016, 55, 6702–6707. [Google Scholar] [CrossRef]
- Wu, Y.; Li, F.; Chen, W.; Xiang, Q.; Ma, Y.; Zhu, H.; Tao, P.; Song, C.; Shang, W.; Deng, T.; et al. Coupling Interface Constructions of MoS2/Fe5Ni4S8 Heterostructures for Efficient Electrochemical Water Splitting. Adv. Mater. 2018, 30, 1803151. [Google Scholar] [CrossRef]
- Wan, K.; Luo, J.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X.; Mao, B.W.; Zhang, X.; Fransaer, J. Hierarchical Porous Ni3S4 with Enriched High-Valence Ni Sites as a Robust Electrocatalyst for Efficient Oxygen Evolution Reaction. Adv. Funct. Mater. 2019, 29, 1900315. [Google Scholar] [CrossRef]
- Ji, L.; Yan, P.; Zhu, C.; Ma, C.; Wu, W.; Wei, C.; Shen, Y.; Chu, S.; Wang, J.; Du, Y.; et al. One-Pot Synthesis of Porous 1T-Phase MoS2 Integrated with Single-Atom Cu Doping for Enhancing Electrocatalytic Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2019, 251, 87–93. [Google Scholar] [CrossRef]
- Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.; Cui, J.; Chen, T.P. Pure and Stable Metallic Phase Molybdenum Disulfide Nanosheets for Hydrogen Evolution Reaction. Nat. Commun. 2016, 7, 10672. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L. Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small 2015, 11, 5556–5564. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Ahn, H.S.; Bard, A.J. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy. J. Am. Chem. Soc. 2017, 139, 4854–4858. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liang, J.; Li, T.; Yue, L.; Liu, Q.; Luo, Y.; Hamdy, M.S.; Sun, Y.; Sun, X. Recent Advances in MoS2-Based Materials for Electrocatalysis. Chem. Commun. 2022, 58, 2259–2278. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, G.; Cui, P.; Cheng, N.; Lao, M.; Xu, X.; Dou, S.X.; Sun, W. Nickel Single Atom-Decorated Carbon Nanosheets as Multifunctional Electrocatalyst Supports Toward Efficient Alkaline Hydrogen Evolution. Nano Energy 2021, 83, 105850. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kobayashi, Y.; Wang, Z.; Ito, Y.; Ota, M.; Ida, H.; Kumatani, A.; Miyazawa, K.; Fujita, T.; Shiku, H. High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. Angew. Chem. Int. Ed. 2020, 132, 3629–3636. [Google Scholar] [CrossRef]
- Meng, X.; Ma, C.; Jiang, L.; Si, R.; Meng, X.; Tu, Y.; Yu, L.; Bao, X.; Deng, D. Distance Synergy of MoS2-Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 10502–10507. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Q.; Du, A. Activating Catalytic Inert Basal Plane of Molybdenum Disulfide to Optimize Hydrogen Evolution Activity via Defect Doping and Strain Engineering. J. Phys. Chem. C 2016, 120, 16761–16766. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.A.; Klysubun, W.; Wang, G.G.; Sattayaporn, S.; Li, F.; Cai, Y.W.; Zhang, F.; Yu, J.; Yang, Y. Interfacial Electronic Structure Engineering on Molybdenum Sulfide for Robust Dual-pH Hydrogen Evolution. Nat. Commun. 2021, 12, 5260. [Google Scholar] [CrossRef]
- Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71. [Google Scholar] [CrossRef]
- Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; et al. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, C.; Jiang, L.; Lin, H.; An, Y.; Zhou, D.; Leung, M.K.; Yang, S. Nanohybridization of MoS2 with Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media. Joule 2017, 1, 383–393. [Google Scholar] [CrossRef]
- Zang, Y.; Niu, S.; Wu, Y.; Zheng, X.; Cai, J.; Ye, J.; Xie, Y.; Liu, Y.; Zhou, J.; Zhu, J.; et al. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 2019, 10, 1217. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, B.; Li, Z.; Cao, S.; Sun, Y.; Wu, Y.; Gao, Z.; Sun, L. Vertically Aligned Oxygenated-CoS2–MoS2 Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catal. 2018, 8, 4612–4621. [Google Scholar] [CrossRef]
- Wu, W.; Niu, C.; Wei, C.; Jia, Y.; Li, C.; Xu, Q. Activation of MoS2 Basal Planes for Hydrogen Evolution by Zinc. Angew. Chem. Int. Ed. 2019, 58, 2029–2033. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, H.; Yu, Z.; Islam, S.M.; He, H.; Yuan, M.; Yue, Y.; Xu, K.; Hao, W.; Sun, G.; et al. Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range. J. Am. Chem. Soc. 2019, 141, 10417–10430. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Y.; Jiang, H.; Hu, Y.; Liu, H.; Li, C. Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS2 Nanosheet-Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation. Adv. Energy Mater. 2019, 9, 1802553. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, W.; Zhang, L.; Liu, G.; Du, Y. MoS2/NiS Heterostructure Grown on Nickel Foam as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Int. J. Hydrogen Energy 2020, 45, 17329–17338. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, K.; Li, W.; Cui, Z.; He, S.A.; Zhao, S.; Li, J.; He, G.; Shearing, P.R.; Brett, D.J.L. MoS2/NiS Core-Shell Structures for Improved Electrocatalytic Process of Hydrogen Evolution. J. Power Sources 2020, 472, 228497. [Google Scholar] [CrossRef]
- Gaur, A.P.; Zhang, B.; Lui, Y.H.; Tang, X.; Hu, S. Morphologically tailored nano-structured MoS2 catalysts via introduction of Ni and Co ions for enhanced HER activity. Appl. Surf. Sci. 2020, 516, 146094. [Google Scholar] [CrossRef]
- Kim, M.; Anjum, M.A.R.; Choi, M.; Jeong, H.Y.; Choi, S.H.; Park, N.; Lee, J.S. Covalent 0D-2D Heterostructuring of Co9S8-MoS2 for Enhanced Hydrogen Evolution in All pH Electrolytes. Adv. Funct. Mater. 2020, 30, 2002536. [Google Scholar] [CrossRef]
- Duan, H.; Wang, C.; Li, G.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q.; Wang, Y.; et al. Single-Atom-Layer Catalysis in a MoS2 Monolayer Activated by Long-Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Single-Atom Catalysis. Angew. Chem. Int. Ed. 2021, 60, 7251–7258. [Google Scholar] [CrossRef]
- Qin, J.; Xi, C.; Zhang, R.; Liu, T.; Zou, P.; Wu, D.; Guo, Q.; Mao, J.; Xin, H.; Yang, J. Activating Edge-Mo of 2H-MoS2 via Coordination with Pyridinic N–C for pH-Universal Hydrogen Evolution Electrocatalysis. ACS Catal. 2021, 11, 4486–4497. [Google Scholar] [CrossRef]
- Zhao, M. One Step Hydrothermal Synthesis of Ni-MoS2-RGO Bifunctional Electrocatalysts for HER and OER. Int. J. Electrochem. Sci. 2021, 16, 210323. [Google Scholar] [CrossRef]
- Vedhanarayanan, B.; Shi, J.; Lin, J.Y.; Yun, S.; Lin, T.W. Enhanced Activity and Stability of MoS2 through Enriching 1T-Phase by Covalent Functionalization for Energy Conversion Applications. Chem. Eng. J. 2021, 403, 126318. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Tan, A.; Liu, W.; Piao, J.; Wan, K.; Liang, Z.; Xiang, Z.; Fu, Z. Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts 2022, 12, 947. https://doi.org/10.3390/catal12090947
Wei H, Tan A, Liu W, Piao J, Wan K, Liang Z, Xiang Z, Fu Z. Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts. 2022; 12(9):947. https://doi.org/10.3390/catal12090947
Chicago/Turabian StyleWei, Helei, Aidong Tan, Wenbo Liu, Jinhua Piao, Kai Wan, Zhenxing Liang, Zhipeng Xiang, and Zhiyong Fu. 2022. "Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction" Catalysts 12, no. 9: 947. https://doi.org/10.3390/catal12090947
APA StyleWei, H., Tan, A., Liu, W., Piao, J., Wan, K., Liang, Z., Xiang, Z., & Fu, Z. (2022). Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts, 12(9), 947. https://doi.org/10.3390/catal12090947