Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Baeyer–Villiger Reaction
2.2.1. Kinetics of the Process
2.2.2. Reaction Mechanism
2.2.3. Baeyer–Villiger Oxidation of Cyclic Lactones
3. Materials and Methods
3.1. Materials
3.1.1. Silica Microspheres
3.1.2. Hydrotalcite-Coated Microspheres
3.1.3. Two-Dimensional Hydrotalcite
3.2. Characterization
3.3. Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastas, P.T.; Williamson, T.C. Green Chemistry: An Overview; ACS: Wasington, DC, USA, 1996. [Google Scholar]
- Baeyer, A.; Villiger, V. Einwirkung des caro’schen reagens auf ketone. Berichte Der Deutschen Chemischen Gesellschaft 1899, 32, 3625–3633. [Google Scholar] [CrossRef] [Green Version]
- Krow, G.R. The Baeyer-Villiger Reaction. Comprehensive Organic Synthesis; Trost, B.M., Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Volume 7. [Google Scholar]
- Strukul, G. Transition metal catalysis in the Baeyer–Villiger oxidation of ketones. Angewandte Chemie Int. Ed. 1998, 37, 1198–1209. [Google Scholar] [CrossRef]
- Renz, M.; Meunier, B. 100 Years of Baeyer-Villiger Oxidations. Eur. J. Org. Chem. 1999, 1999, 737–750. [Google Scholar] [CrossRef]
- Jiménez-Sanchidrián, C.; Ruiz, J.R. The Baeyer–Villiger reaction on heterogeneous catalysts. Tetrahedron 2008, 9, 2011–2026. [Google Scholar] [CrossRef]
- Yan, F.; Li, C.; Liang, X.; Guo, S.; Fu, Y.; Chen, L. Baeyer-Villiger Reaction in Different Catalysis. Recent Pat. Chem. Eng. 2013, 6, 43–56. [Google Scholar] [CrossRef]
- Kaneda, K.; Ueno, S. Development of hydrotalcite catalysts in heterogeneous Baeyer—Villiger oxidation. In Heterogeneous Hydrocarbon Oxidation; ACS Publications: Washington, DC, USA, 1996; ISBN 1947-5918. [Google Scholar]
- Ueno, S.; Ebitani, K.; Ookubo, A.; Kaneda, K. The active sites in the heterogeneous Baeyer-Villiger oxidation of cyclopentanone by hydrotalcite catalysts. Appl. Surf. Sci. 1997, 122, 366–371. [Google Scholar] [CrossRef]
- Pillai, U.R.; Sahle-demessie, E. Sn-exchanged hydrotalcites as catalysts for clean and selective Baeyer-Villiger oxidation of ketones using hydrogen peroxide. J. Mol. Catal. A Chem. 2003, 191, 93–100. [Google Scholar] [CrossRef]
- Olszówka, J.; Karcz, R.; Napruszewska, B.D.; Duraczy, D.; Gawe, A.; Bahranowski, K.; Serwicka, E.M. Baeyer-Villiger oxidation of cyclohexanone with H2O2/acetonitrile over hydrotalcite-like catalysts: Effect of Mg/Al ratio on the ε-caprolactone yield. Catal. Commun. 2017, 100, 196–201. [Google Scholar] [CrossRef]
- Karcz, R.; Olszówka, J.E.; Napruszewska, B.D.; Kry, J.; Serwicka, E.M.; Klimek, A.; Bahranowski, K. Combined H2O2/nitrile/bicarbonate system for catalytic Baeyer-Villiger oxidation of cyclohexanone to ε -caprolactone over Mg e Al hydrotalcite catalysts. Catal. Commun. 2019, 132, 4–8. [Google Scholar] [CrossRef]
- Jimenez-Sanchidrian, C.; Hidalgo, J.M.; Llamas, R.; Ruiz, J.R. Baeyer–Villiger oxidation of cyclohexanone with hydrogen peroxide/benzonitrile over hydrotalcites as catalysts. Appl. Catal. A Gen. 2006, 312, 86–94. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Jimenez-Sanchidrian, C.; Llamas, R. Hydrotalcites as catalysts for the Baeyer–Villiger oxidation of cyclic ketones with hydrogen peroxide/benzonitrile. Tetrahedron 2006, 62, 11697–11703. [Google Scholar] [CrossRef]
- Llamas, R.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Heterogeneous Baeyer–Villiger oxidation of ketones with H2O2/nitrile, using Mg/Al hydrotalcite as catalyst. Tetrahedron 2007, 63, 1435–1439. [Google Scholar] [CrossRef]
- Llamas, R.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Metal hydroxides as catalysts for the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide. React. Kinet. Catal. Lett. 2007, 90, 309–313. [Google Scholar] [CrossRef]
- Llamas, R.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO. Appl. Catal. B Environ. 2007, 72, 18–25. [Google Scholar] [CrossRef]
- Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Nalawade, P.; Aware, B.; Kadam, V.J.; Hirlekar, R.S. Layered double hydroxides: A review. J. Sci. Ind. Res. 2009, 68, 267–272. [Google Scholar]
- Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. [Google Scholar] [CrossRef]
- Kaneda, K.; Mizugaki, T. Design of high-performance heterogeneous catalysts using hydrotalcite for selective organic transformations. Green Chem. 2019, 21, 1361–1389. [Google Scholar] [CrossRef]
- Saifullah, B.; Hussein, M.Z.B. Inorganic nanolayers: Structure, preparation, and biomedical applications. Int. J. Nanomed. 2015, 10, 5609. [Google Scholar]
- Rives, V.; Arco, M.D.; Martín, C. Intercalation of drugs in layered double hydroxides and their controlled release: A review. Appl. Clay Sci. 2014, 88, 239–269. [Google Scholar] [CrossRef]
- Yue, X.; Li, C.; Ni, Y.; Xu, Y.; Wang, J. Flame retardant nanocomposites based on 2D layered nanomaterials: A review. J. Mater. Sci. 2019, 54, 13070–13105. [Google Scholar] [CrossRef]
- Hoxha, A.; Gillam, D.G.; Bushby, A.J.; Agha, A.; Patel, M.P. Layered double hydroxide fluoride release in dental applications: A systematic review. Dent. J. 2019, 7, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, W.J.; Gil, B.; Makowski, W.; Marszalek, B.; Eliášová, P. Layer like porous materials with hierarchical structure. Chem. Soc. Rev. 2016, 45, 3400–3438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevot, V.; Tokudome, Y. 3D hierarchical and porous layered double hydroxide structures: An overview of synthesis methods and applications. J. Mater. Sci. 2017, 52, 11229–11250. [Google Scholar] [CrossRef]
- Xie, W.; Li, Z.; Shao, M.; Wei, M. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Front. Chem. Sci. Eng. 2018, 12, 537–554. [Google Scholar] [CrossRef]
- Jiang, S.D.; Song, L.; Zeng, W.R.; Huang, Z.Q.; Zhan, J.; Stec, A.A.; Hull, T.R.; Hu, Y.; Hu, W.Z. Self-assembly fabrication of hollow mesoporous Silica@Co-Al Layered Double Hydroxide@Graphene and application in toxic effluents elimination. ACS Appl. Mater. Interfaces 2015, 7, 8506–8514. [Google Scholar] [CrossRef] [Green Version]
- Shirotori, M.; Nishimura, S.; Ebitani, K. Effect of SiO2 amount on heterogeneous base catalysis of SiO2@Mg-Al layered double hydroxide. RSC Adv. 2018, 8, 28024–28031. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.D.; Bai, Z.M.; Tang, G.; Song, L.; Stec, A.A.; Hull, T.R.; Hu, Y.; Hu, W.Z. Synthesis of mesoporous silica@Co-Al layered double hydroxide spheres: Layer-by-layer method and their effects on the flame retardancy of epoxy resins. ACS Appl. Mater. Interfaces 2014, 6, 14076–14086. [Google Scholar] [CrossRef]
- Yilmaz, M.S. Synthesis of novel amine modified hollow mesoporous silica@Mg-Al layered double hydroxide composite and its application in CO2 adsorption. Microporous Mesoporous Mater. 2017, 245, 109–117. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Soler-Illia, G.J.D.A.A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093–4138. [Google Scholar] [CrossRef]
- Jankiewicz, B.J.; Jamiola, D.; Choma, J.; Jaroniec, M. Silica—Metal core—Shell nanostructures. Adv. Colloid Interface Sci. 2012, 170, 28–47. [Google Scholar] [CrossRef]
- Chen, C.; Wang, P.; Lim, T.T.; Liu, L.; Liu, S.; Xu, R. A facile synthesis of monodispersed hierarchical layered double hydroxide on silica spheres for efficient removal of pharmaceuticals from water. J. Mater. Chem. A 2013, 1, 3877–3880. [Google Scholar] [CrossRef]
- Cosano, D.; Esquivel, D.; Puertas, A.J.; Romero-Salguero, F.J. Microstructural analysis of 3D hierarchical composites of hydrotalcite-coated silica microspheres. Microporous Mesoporous Mater. 2021, 323, 111247. [Google Scholar] [CrossRef]
- Aramendía, M.A.; Borau, V.; Jiménez, C.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.J. Catalytic hydrogen transfer from 2-propanol to cyclohexanone over basic Mg–Al oxides. Appl. Catal. A Gen. 2003, 255, 301–308. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Olszówka, J.; Karcz, R.; Napruszewska, B.; Bielańska, E.; Dula, R.; Krzan, M.; Nattich-Rak, M.; Socha, R.P.; Klimek, A.; Bahranowski, K.; et al. Magnesium and/or calcium-containing natural minerals as ecologically friendly catalysts for the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide. Appl. Catal. A Gen. 2016, 509, 52–65. [Google Scholar] [CrossRef]
- Karcz, R.; Napruszewska, B.D.; Michalik, A.; Kryściak-Czerwenka, J.; Duraczyńska, D.; Serwicka, E.M. Fine crystalline Mg-Al hydrotalcites as catalysts for baeyer-villiger oxidation of cyclohexanone with H2O2. Catalysts 2021, 11, 1493. [Google Scholar] [CrossRef]
- Li, J.; Le, Y.; Dai, W.L.; Li, H.; Fan, K. Self-assembled Mg5(CO3)4(OH)2·4H2O nanosheet as an effective catalyst in the Baeyer-Villiger oxidation of cyclohexanone. Catal. Commun. 2008, 9, 1334–1341. [Google Scholar] [CrossRef]
- Paul, M.; Pal, N.; Mondal, J.; Sasidharan, M.; Bhaumik, A. New mesoporous magnesium-aluminum mixed oxide and its catalytic activity in liquid phase Baeyer-Villiger oxidation reaction. Chem. Eng. Sci. 2012, 71, 564–572. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Phys. Ther. Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- JCPDS Joint Committee on Powder Diffraction Standards (Now: International Centre for Diffraction Data). 1991. Available online: www.icdd.com (accessed on 15 May 2022).
- Reichle, W.T.; Kang, S.Y.; Everhardt, D.S. The nature of the thermal decomposition of a catalytically active anionic clay mineral. J. Catal. 1986, 101, 352–359. [Google Scholar] [CrossRef]
- Taniya, K.; Mori, R.; Okemoto, A.; Horie, T.; Ichihashi, Y.; Nishiyama, S. Role of Al3+ species in beta zeolites for Baeyer–Villiger oxidation of cyclic ketones by using H2O2 as an environmentally friendly oxidant. Catal. Today 2018, 307, 293–300. [Google Scholar] [CrossRef]
- Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Kirillova, M.V.; Pombeiro, A.J.L. Baeyer-Villiger oxidation of ketones catalysed by rhenium complexes bearing N- or oxo-ligands. Appl. Catal. A Gen. 2012, 443–444, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Liu, J.; Xiong, G.; Liu, X.; Liu, L.; Guo, H. Aerosol-seed-assisted hydrothermal synthesis of Sn-Beta zeolite and its catalytic performance in Baeyer–Villiger oxidation. Microporous Mesoporous Mater. 2018, 266, 242–251. [Google Scholar] [CrossRef]
- Olszówka, J.E.; Karcz, R.; Michalik-Zym, A.; Napruszewska, B.D.; Bielańska, E.; Kryściak-Czerwenka, J.; Socha, R.P.; Nattich-Rak, M.; Krzan, M.; Klimek, A.; et al. Effect of grinding on the physico-chemical properties of Mg-Al hydrotalcite and its performance as a catalyst for Baeyer-Villiger oxidation of cyclohexanone. Catal. Today 2019, 333, 147–153. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Ding, R.; Xu, W.; Zhang, G. Baeyer–Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg–Sn–W composite oxides. Chinese J. Chem. Eng. 2019, 27, 564–574. [Google Scholar] [CrossRef]
- Olszówka, J.E.; Karcz, R.; Napruszewska, B.D.; Michalik-Zym, A.; Duraczyńska, D.; Kryściak-Czerwenka, J.; Niecikowska, A.; Bahranowski, K.; Serwicka, E.M. Effect of Mg–Al hydrotalcite crystallinity on catalytic Baeyer-Villiger oxidation of cyclohexanone with H2O2/acetonitrile. Catal. Commun. 2018, 107, 48–52. [Google Scholar] [CrossRef]
Entry | Molar Ratio | Theoretical | Experimental |
---|---|---|---|
1 | Mg/Al | 2.00 | 1.97 |
2 | Si/Mg | 0.83 | 0.85 |
3 | Si/Al | 1.67 | 1.67 |
4 | Mg/Al a | - | 1.46 |
Entry | T (°C) | Conversion (%) b | k (min−1·gcat)·10−4 c |
---|---|---|---|
1 | 90 | 78 | 12.6 |
2 | 70 | 55 | 7.7 |
3 | 55 | 36 | 5 |
4 | 40 | 22 | 2.7 |
5 d | 90 | 30 | 1.9 |
6 e | 90 | 0 | 0 |
7 f | 90 | 28 | 1.7 |
8 g | 90 | 39 | 3.1 |
Entry | Name | Pubchem I.D. | Formule | φ (%) a | k (10−3) (min−1) b | S (%) c |
---|---|---|---|---|---|---|
1 | Cyclohexanone | 108-94-1 | 78 | 12.6 | 100 | |
2 | Cycloheptanone | 502-42-1 | 50 | 8.3 | 100 | |
3 | Cyclooctanone | 502-49-8 | 42 | 3.1 | 99 | |
4 | 2-Methylcyclohexanone | 583-60-8 | 59 | 9.9 | 67 | |
5 | 3-Methylcyclohexanone | 591-24-2 | 60 | 10.8 | 52 | |
6 | 4-Methylcyclohexanone | 589-92-4 | 78 | 12.3 | 99 | |
7 | 4-Ethylcyclohexanone | 5441-51-0 | 54 | 8.7 | 100 | |
8 | 2-terc-butylcyclohexanone | 98-53-3 | 52 | 6.4 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosano, D.; Esquivel, D.; Romero-Salguero, F.J.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide. Catalysts 2022, 12, 629. https://doi.org/10.3390/catal12060629
Cosano D, Esquivel D, Romero-Salguero FJ, Jiménez-Sanchidrián C, Ruiz JR. Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide. Catalysts. 2022; 12(6):629. https://doi.org/10.3390/catal12060629
Chicago/Turabian StyleCosano, Daniel, Dolores Esquivel, Francisco J. Romero-Salguero, César Jiménez-Sanchidrián, and José Rafael Ruiz. 2022. "Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide" Catalysts 12, no. 6: 629. https://doi.org/10.3390/catal12060629
APA StyleCosano, D., Esquivel, D., Romero-Salguero, F. J., Jiménez-Sanchidrián, C., & Ruiz, J. R. (2022). Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide. Catalysts, 12(6), 629. https://doi.org/10.3390/catal12060629