Sulfuration Temperature-Dependent Hydrogen Evolution Performance of CoS2 Nanowires
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Materials
3.2. Synthesis of the Catalysts
3.3. Characterizations
3.4. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jing, S.; Zhang, L.; Luo, L.; Lu, J.; Yin, S.; Shen, P.K.; Tsiakaras, P. N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2018, 224, 533–540. [Google Scholar] [CrossRef]
- Darshan, B.N.; Kareem, A.; Maiyalagan, T.; Edwin Geo, V. CoS2/MoS2 decorated with nitrogen doped reduced graphene oxide and multiwalled carbon nanotube 3D hybrid as efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 13952–13959. [Google Scholar] [CrossRef]
- Ji, K.; Matras-Postolek, K.; Shi, R.; Chen, L.; Che, Q.; Wang, J.; Yue, Y.; Yang, P. MoS2/CoS2 heterostructures embedded in N-doped carbon nanosheets towards enhanced hydrogen evolution reaction. J. Alloys Compd. 2021, 891, 161962. [Google Scholar] [CrossRef]
- Vikraman, D.; Akbar, K.; Hussain, S.; Yoo, G.; Jang, J.Y.; Chun, S.H.; Jung, J.; Park, H.J. Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: Optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy 2017, 35, 101–114. [Google Scholar] [CrossRef]
- Hussain, S.; Akbar, K.; Vikraman, D.; Karuppasamy, K.; Kim, H.S.; Chun, S.H.; Jung, J. Synthesis of MoS2(1-x)Se2x and WS2(1-x)Se2x alloys for enhanced hydrogen evolution reaction performance. Inorg. Chem. Front. 2017, 4, 2068–2074. [Google Scholar] [CrossRef]
- Weng, B.; Wei, W.; Yu, Y.; Wu, H.; Al-Enizi, A.M.; Zheng, G. Bifunctional CoP and CoN porous nanocatalysts derived from ZIF-67 in situ grown on nanowire photoelectrodes for efficient photoelectrochemical water splitting and CO2 reduction. J. Mater. Chem. A 2016, 4, 15353–15360. [Google Scholar]
- Shang, X.; Yan, K.L.; Liu, Z.Z.; Lu, S.S.; Dong, B.; Chi, J.Q.; Li, X.; Liu, Y.R.; Chai, Y.M.; Liu, C.G. Oxidized carbon fiber supported vertical WS2 nanosheets arrays as efficient 3D nanostructure electrocatalyts for hydrogen evolution reaction. Appl. Surf. Sci. 2017, 402, 120–128. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, X. Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions. Catal. Sci. Technol. 2017, 7, 3676–3691. [Google Scholar] [CrossRef]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhao, H.; Dai, X.; Nie, F.; Ren, Z.; Yin, X.; Gan, Y.; Wu, B.; Cao, Y.; Zhang, X. Phosphorus-doping induced electronic modulation of CoS2–MoS2 hollow spheres on MoO2 film-Mo foil for synergistically boosting alkaline hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 33388–33396. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Niu, Y.; Huang, J.; Qian, X.; Wong, K.Y. N-doped C-CoS2@CoS2/MoS2 nano polyhedrons with hierarchical yolk-shelled structures as bifunctional catalysts for enhanced photovoltaics and hydrogen evolution. Chem. Eng. J. 2021, 409, 128293. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Ren, H.; Pan, Y.; Yan, Y.; Sun, F.; Wang, X.; Wang, S.; Zhang, J. Mo doping induced metallic CoSe for enhanced electrocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 268, 118467. [Google Scholar] [CrossRef]
- Lin, J.; He, J.; Qi, F.; Zheng, B.; Wang, X.; Yu, B.; Zhou, K.; Zhang, W.; Li, Y.; Chen, Y. In-situ Selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2017, 247, 258–264. [Google Scholar] [CrossRef]
- Ning, H.; Liu, Z.; Xie, Y.; Huang, H. CoS2 coatings for improving thermal stability and electrochemical performance of fes2 cathodes for thermal batteries. J. Electrochem. Soc. 2018, 165, A1725–A1733. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. Bifunctional and efficient CoS2-C@MoS2 core-shell nanofiber electrocatalyst for water splitting. ACS Sustain. Chem. Eng. 2019, 7, 2899–2905. [Google Scholar] [CrossRef]
- Guo, Y.; Gan, L.; Shang, C.; Wang, E.; Wang, J. A Cake-Style CoS2@MoS2/RGO hybrid catalyst for efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1602699. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, Y.; Zhu, Y.; Wang, W.; Wang, C.; Yu, A.; Pu, X.; Zhai, J. A flower-like CoS2/MoS2 heteronanosheet array as an active and stable electrocatalyst toward the hydrogen evolution reaction in alkaline media. RSC Adv. 2020, 10, 8973–8981. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Liu, K.; Shi, G.; Fu, X.; Chen, X.; Fan, Z.; Liu, M.; Yuan, M.; Wang, M. CoS2 nanowires supported graphdiyne for highly efficient hydrogen evolution reaction. J. Energy. Chem. 2021, 60, 272–278. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J.; Tian, W.; Hu, Z.; Lv, X.; Zhang, H.; Yue, H.; Zhang, Y.; Ji, J.; Jiang, W. Morphology-controlled synthesis of CoMoO4 nanoarchitectures anchored on carbon cloth for high-efficiency oxygen oxidation reaction. RSC Adv. 2019, 9, 1562–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Yao, S.; Wang, Y.; Yu, H.; Majeed, A.; Shen, X.; Li, T.; Qin, S. Hybrid cathode composed of pyrite-structure CoS2 hollow polyhedron and Ketjen black@sulfur materials propelling polysulfide conversion in lithium sulfur batteries. Ceram. Int. 2021, 47, 27122–27131. [Google Scholar] [CrossRef]
- Vijaya, S.; Landi, G.; Wu, J.J.; Anandan, S. Ni3S4/CoS2 mixed-phase nanocomposite as counter electrode for Pt-free dye-sensitized solar cells. J. Power Sour. 2020, 478, 229068. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, W.; Gao, S.; Gao, Y.; Sun, C.; Li, Q. Catalytic reduction of aqueous bromate by a non-noble metal catalyst of CoS2 hollow spheres in drinking water at room temperature. Sep. Purif. Technol. 2020, 251, 117353. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Fu, L.; Ye, G. Synthesis of nanosized ultrathin MoS2 on montmorillonite nanosheets by CVD method. Chem. Phys. Lett. 2021, 781, 138972. [Google Scholar] [CrossRef]
- Chen, F.; Yao, Y.; Su, W.; Zhao, S.; Ding, S.; Fu, L. The synthesis of 2D MoS2 flakes with tunable layer numbers via pulsed-Argon-flow assisted CVD approach. Ceram. Int. 2020, 46, 14523–14528. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. Decorated by Cu nanoparticles CoS2 nanoneedle array for effective water oxidation electrocatalysis. J. Alloys Compd. 2020, 821, 153219. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, W.; Zhang, M.; Shen, X.; Zhang, Z.; Meng, X.; Shen, X.; Zeng, X.; Zhou, M. Hetero-structured CoS2-MoS2 hollow microspheres with robust catalytic activity for alkaline hydrogen evolution. Appl. Surf. Sci. 2020, 527, 146847. [Google Scholar] [CrossRef]
- Yan, G.; Wu, C.; Tan, H.; Feng, X.; Yan, L.; Zang, H.; Li, Y. N-Carbon coated P-W2C composite as efficient electrocatalyst for hydrogen evolution reactions over the whole pH range. J. Mater. Chem. A 2017, 5, 765–772. [Google Scholar] [CrossRef]
- Liu, H.; Xia, G.; Zhang, R.; Jiang, P.; Chen, J.; Chen, Q. MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 2017, 7, 3686–3694. [Google Scholar] [CrossRef] [Green Version]
- Ashassi-Sorkhabi, H.; Rezaei-Moghadam, B.; Asghari, E.; Bagheri, R.; Hosseinpour, Z. Fabrication of bridge like Pt@MWCNTs/CoS2 electrocatalyst on conductive polymer matrix for electrochemical hydrogen evolution. Chem. Eng. J. 2017, 308, 275–288. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.B.; Zhu, R.H.; Zhou, L.; Cao, B.M.; Yu, Z.R.; Zeng, D.J.; Zhang, C.J.; Zhang, L.; Ma, D.Y. Ultra-thin CoS2 nanosheets synthesized by one-step hydrothermal process for hydrogen evolution. J. Mater. Sci. Mater. Electron. 2021, 32, 9149–9157. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping. ACS Energy Lett. 2018, 3, 779–786. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, X.; Li, H.; Hedhili, M.N.; Huang, K.W.; Li, L.J.; Zhang, W. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 15552–15558. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.-Y.; Cui, T.T.; Zhang, S.Y.; Cai, J.J.; Zheng, F.; Liu, Y.D.; Min, Y.G. Cross-nanoflower CoS2 in-situ self-assembled on rGO sheet as advanced anode for lithium/sodium ion battery. Electrochim. Acta 2019, 326, 134992. [Google Scholar] [CrossRef]
- Zeng, S.; Tang, R.; Duan, S.; Li, L.; Liu, C.; Gu, X.; Wang, S.; Sun, D. Kinetically controlled synthesis of bismuth tungstate with different structures by a NH4F assisted hydrothermal method and surface-dependent photocatalytic properties. J. Colloid Interface Sci. 2014, 432, 236–245. [Google Scholar] [CrossRef]
- Turgut, G.; Sonmez, E.; Aydin, S.; Dilber, R.; Turgut, U. The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin films. Ceram. Int. 2014, 40, 12891–12898. [Google Scholar] [CrossRef]
- Xu, Y.F.; Ma, D.K.; Chen, X.A.; Yang, D.P.; Huang, S.M. Bisurfactant-controlled synthesis of three-dimensional YBO3/Eu3+ architectures with tunable wettability. Langmuir 2009, 25, 7103–7108. [Google Scholar] [CrossRef]
- Jun, S.E.; Choi, S.; Choi, S.; Lee, T.H.; Kim, C.; Yang, J.W.; Choe, W.O.; Im, I.H.; Kim, C.J.; Jang, H.W. Direct synthesis of molybdenum phosphide nanorods on silicon using graphene at the heterointerface for efficient photoelectrochemical water reduction. Nano-Micro Lett. 2021, 13, 135–150. [Google Scholar] [CrossRef]
- Qi, K.; Yu, S.; Wang, Q.; Zhang, W.; Fan, J.; Zheng, W.; Cui, X. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity. J. Mater. Chem. A 2016, 4, 4025–4031. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-B.; Qing, Z.-J.; Zhu, H.; Zhou, L.; Ma, D.-Y. Sulfuration Temperature-Dependent Hydrogen Evolution Performance of CoS2 Nanowires. Catalysts 2022, 12, 663. https://doi.org/10.3390/catal12060663
Wang H-B, Qing Z-J, Zhu H, Zhou L, Ma D-Y. Sulfuration Temperature-Dependent Hydrogen Evolution Performance of CoS2 Nanowires. Catalysts. 2022; 12(6):663. https://doi.org/10.3390/catal12060663
Chicago/Turabian StyleWang, Hong-Bo, Zhuo-Jun Qing, Hao Zhu, Liang Zhou, and Da-Yan Ma. 2022. "Sulfuration Temperature-Dependent Hydrogen Evolution Performance of CoS2 Nanowires" Catalysts 12, no. 6: 663. https://doi.org/10.3390/catal12060663
APA StyleWang, H. -B., Qing, Z. -J., Zhu, H., Zhou, L., & Ma, D. -Y. (2022). Sulfuration Temperature-Dependent Hydrogen Evolution Performance of CoS2 Nanowires. Catalysts, 12(6), 663. https://doi.org/10.3390/catal12060663