Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects
Abstract
:1. Introduction
2. Nanocatalysts Used in AOPs for Wastewater Treatment
2.1. Graphene-Based Materials
2.2. Metals and Metal Oxides
2.3. Zeolites and Modified Zeolites
2.4. Carbon Nanotubes
2.5. Metal-Organic Frameworks
2.6. Clay-Based Materials
3. Conclusions
4. Challenges and Possible Solutions
4.1. Reuse Performance
4.2. Adsorption of Constituents
- ➢
- The degradation by-products of the targeted contaminants may be altered.
- ➢
- The stability of AOPs’ oxidants may be affected.
- ➢
- Change in the type of reactive oxygen species that may produce in AOPs.
- ➢
- The activity of a particular catalyst may be affected.
4.3. Reaction Conditions
4.4. Cost of Treatment
4.5. Metal Leach-Out
4.6. Clay-Based Catalyst
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richardson, S.D.; Kimura, S.Y. Emerging Environmental Contaminants: Challenges Facing Our next Generation and Potential Engineering Solutions. Environ. Technol. Innov. 2017, 8, 40–56. [Google Scholar] [CrossRef]
- Javaid, R.; Nanba, T. Effect of Texture and Physical Properties of Catalysts on Ammonia Synthesis. Catal. Today 2022, 397, 592–597. [Google Scholar] [CrossRef]
- Tahir, S.; Qazi, U.Y.; Naseem, Z.; Tahir, N.; Zahid, M.; Javaid, R.; Shahid, I. Deep Eutectic Solvents as Alternative Green Solvents for the Efficient Desulfurization of Liquid Fuel: A Comprehensive Review. Fuel 2021, 305, 121502. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review. J. Environ. Manag. 2011, 92, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Tabasum, A.; Alghuthaymi, M.; Qazi, U.Y.; Shahid, I.; Abbas, Q.; Javaid, R.; Nadeem, N.; Zahid, M. Uv-Accelerated Photocatalytic Degradation of Pesticide over Magnetite and Cobalt Ferrite Decorated Graphene Oxide Composite. Plants 2021, 10, 6. [Google Scholar] [CrossRef]
- Qazi, U.Y.; Javaid, R.; Zahid, M.; Tahir, N.; Afzal, A.; Lin, X.M. Bimetallic NiCo–NiCoO2 Nano-Heterostructures Embedded on Copper Foam as a Self-Supported Bifunctional Electrode for Water Oxidation and Hydrogen Production in Alkaline Media. Int. J. Hydrogen Energy 2021, 46, 18936–18948. [Google Scholar] [CrossRef]
- Maltos, R.A.; Holloway, R.W.; Cath, T.Y. Enhancement of Activated Sludge Wastewater Treatment with Hydraulic Selection. Sep. Purif. Technol. 2020, 250, 117214. [Google Scholar] [CrossRef]
- Butler, E.; Hung, Y.-T.; Al Ahmad, M.S.; Yeh, R.Y.-L.; Liu, R.L.-H.; Fu, Y.-P. Oxidation Pond for Municipal Wastewater Treatment. Appl. Water Sci. 2017, 7, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.K.; Majumder, C.B. Novel Biofiltration Methods for the Treatment of Heavy Metals from Industrial Wastewater. J. Hazard. Mater. 2008, 151, 1–8. [Google Scholar] [CrossRef]
- Saba, B.; Khalid, A.; Nazir, A.; Kanwal, H.; Mahmood, T. Reactive Black-5 Azo Dye Treatment in Suspended and Attach Growth Sequencing Batch Bioreactor Using Different Co-Substrates. Int. Biodeterior. Biodegrad. 2013, 85, 556–562. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int. J. Environ. Res. Public Health 2019, 16, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irfan, M.; Zahid, M.; Tahir, N.; Yaseen, M.; Qazi, U.Y.; Javaid, R.; Shahid, I. Enhanced photo-Fenton degradation of Rhodamine B using iodine-doped iron tungstate nanocomposite under sunlight. Int. J. Environ. Sci. Technol. 2022, 1–16. [Google Scholar] [CrossRef]
- Javaid, R.; Qazi, U.Y.; Ikhlaq, A.; Zahid, M.; Alazmi, A. Subcritical and Supercritical Water Oxidation for Dye Decomposition. J. Environ. Manag. 2021, 290, 112605. [Google Scholar] [CrossRef]
- Maleki, A.; Hayati, B.; Najafi, F.; Gharibi, F.; Joo, S.W. Heavy Metal Adsorption from Industrial Wastewater by PAMAM/TiO2 Nanohybrid: Preparation, Characterization and Adsorption Studies. J. Mol. Liq. 2016, 224, 95–104. [Google Scholar] [CrossRef]
- Al-Jassim, N.; Ansari, M.I.; Harb, M.; Hong, P.-Y. Removal of Bacterial Contaminants and Antibiotic Resistance Genes by Conventional Wastewater Treatment Processes in Saudi Arabia: Is the Treated Wastewater Safe to Reuse for Agricultural Irrigation? Water Res. 2015, 73, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Price, A.E.; Scott, W.C.; Kristofco, L.A.; Ramirez, A.J.; Chambliss, C.K.; Yelderman, J.C.; Brooks, B.W. Comparison of Contaminants of Emerging Concern Removal, Discharge, and Water Quality Hazards among Centralized and on-Site Wastewater Treatment System Effluents Receiving Common Wastewater Influent. Sci. Total Environ. 2014, 466, 976–984. [Google Scholar] [CrossRef]
- Khan, A.H.; Khan, N.A.; Ahmed, S.; Dhingra, A.; Singh, C.P.; Khan, S.U.; Mohammadi, A.A.; Changani, F.; Yousefi, M.; Alam, S. Application of Advanced Oxidation Processes Followed by Different Treatment Technologies for Hospital Wastewater Treatment. J. Clean. Prod. 2020, 269, 122411. [Google Scholar] [CrossRef]
- Cesaro, A.; Naddeo, V.; Belgiorno, V. Wastewater Treatment by Combination of Advanced Oxidation Processes and Conventional Biological Systems. J. Bioremediat. Biodegrad. 2013, 4, 208. [Google Scholar]
- Nawaz, M.S.; Ahsan, M. Comparison of Physico-Chemical, Advanced Oxidation and Biological Techniques for the Textile Wastewater Treatment. Alex. Eng. J. 2014, 53, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Oller, I.; Malato, S.; Sánchez-Pérez, J. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination—A Review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef] [PubMed]
- Javaid, R.; Qazi, U.Y.; Kawasaki, S.I. Highly Efficient Decomposition of Remazol Brilliant Blue R Using Tubular Reactor Coated with Thin Layer of PdO. J. Environ. Manag. 2016, 180, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Javaid, R.; Qazi, U.Y.; Kawasaki, S.I. Efficient and Continuous Decomposition of Hydrogen Peroxide Using a Silica Capillary Coated with a Thin Palladium or Platinum Layer. Bull. Chem. Soc. Jpn. 2015, 88, 976–980. [Google Scholar] [CrossRef] [Green Version]
- Qazi, U.Y.; Javaid, R. A Review on Metal Nanostructures: Preparation Methods and Their Potential Applications. Adv. Nanopart. 2016, 5, 27–43. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, A.; Gonzalez-Olmos, R.; Kopinke, F.-D.; Zarabadi-Poor, P.; Georgi, A. Natural and Synthetic Zeolites in Adsorption/Oxidation Processes to Remove Surfactant Molecules from Water. Sep. Purif. Technol. 2014, 127, 1–9. [Google Scholar] [CrossRef]
- Nazir, S.; Ikhlaq, A.; Javed, F.; Asif, Z.; Munir, H.M.S.; Sajjad, S. Catalytic ozonation on iron-loaded rice husk ash/peanut shell ash for the removal of erythromycin in water. Environ. Eng. Manag. J. 2020, 19, 829–837. [Google Scholar]
- Widiastuti, N.; Wu, H.; Ang, M.; Zhang, D. The Potential Application of Natural Zeolite for Greywater Treatment. Desalination 2008, 218, 271–280. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Anis, M.; Javed, F.; Ghani, H.; Munir, H.M.S.; Ijaz, K. Catalytic Ozonation for the Treatment of Municipal Wastewater by Iron Loaded Zeolite A. Desalin. Water Treat. 2019, 152, 108–115. [Google Scholar] [CrossRef]
- Gomes, H.T.; Miranda, S.M.; Sampaio, M.J.; Silva, A.M.T.; Faria, J.L. Activated Carbons Treated with Sulphuric Acid: Catalysts for Catalytic Wet Peroxide Oxidation. Catal. Today 2010, 151, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment–A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, J.; Kumar, M.; Sharma, M.; Joshi, M. High Adsorptivity and Visible Light Assisted Photocatalytic Activity of Silver/Reduced Graphene Oxide (Ag/RGO) Nanocomposite for Wastewater Treatment. Nano-Struct. Nano-Objects 2019, 17, 58–66. [Google Scholar] [CrossRef]
- Mahalingam, S.; Ahn, Y.-H. Improved Visible Light Photocatalytic Activity of RGO–Fe3O4–NiO Hybrid Nanocomposites Synthesized by in Situ Facile Method for Industrial Wastewater Treatment Applications. New J. Chem. 2018, 42, 4372–4383. [Google Scholar] [CrossRef]
- Sharma, V.K.; Feng, M. Water Depollution Using Metal-Organic Frameworks-Catalyzed Advanced Oxidation Processes: A Review. J. Hazard. Mater. 2019, 372, 3–16. [Google Scholar] [CrossRef]
- Chi, H.; Wan, J.; Ma, Y.; Wang, Y.; Ding, S.; Li, X. Ferrous Metal-Organic Frameworks with Stronger Coordinatively Unsaturated Metal Sites for Persulfate Activation to Effectively Degrade Dibutyl Phthalate in Wastewater. J. Hazard. Mater. 2019, 377, 163–171. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Degradation of the Antibiotics Amoxicillin, Ampicillin and Cloxacillin in Aqueous Solution by the Photo-Fenton Process. J. Hazard. Mater. 2009, 172, 1476–1481. [Google Scholar] [CrossRef]
- Dodd, M.C.; Kohler, H.P.E.; Gunten, U. Von Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological Activity during Aqueous Ozonation Processes. Environ. Sci. Technol. 2009, 43, 2498–2504. [Google Scholar] [CrossRef]
- Skoumal, M.; Rodríguez, R.M.; Cabot, P.L.; Centellas, F.; Garrido, J.A.; Arias, C.; Brillas, E. Electro-Fenton, UVA Photoelectro-Fenton and Solar Photoelectro-Fenton Degradation of the Drug Ibuprofen in Acid Aqueous Medium Using Platinum and Boron-Doped Diamond Anodes. Electrochim. Acta 2009, 54, 2077–2085. [Google Scholar] [CrossRef]
- El-Desoky, H.S.; Ghoneim, M.M.; El-Sheikh, R.; Zidan, N.M. Oxidation of Levafix CA Reactive Azo-Dyes in Industrial Wastewater of Textile Dyeing by Electro-Generated Fenton’s Reagent. J. Hazard. Mater. 2010, 175, 858–865. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, J.; Zhang, Y.; Lin, X.; Du, C.; Xiong, Y. FeVO4 as a Highly Active Heterogeneous Fenton-like Catalyst towards the Degradation of Orange II. Appl. Catal. B Environ. 2008, 84, 468–473. [Google Scholar] [CrossRef]
- AlHamedi, F.H.; Rauf, M.A.; Ashraf, S.S. Degradation Studies of Rhodamine B in the Presence of UV/H2O2. Desalination 2009, 239, 159–166. [Google Scholar] [CrossRef]
- Basfar, A.A.; Mohamed, K.A.; Al-Abduly, A.J.; Al-Kuraiji, T.S.; Al-Shahrani, A.A. Degradation of Diazinon Contaminated Waters by Ionizing Radiation. Radiat. Phys. Chem. 2007, 76, 1474–1479. [Google Scholar] [CrossRef]
- Pradhan, A.A.; Gogate, P.R. Degradation of P-Nitrophenol Using Acoustic Cavitation and Fenton Chemistry. J. Hazard. Mater. 2010, 173, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Mechanisms of Catalytic Ozonation: An Investigation into Superoxide Ion Radical and Hydrogen Peroxide Formation during Catalytic Ozonation on Alumina and Zeolites in Water. Appl. Catal. B Environ. 2013, 129, 437–449. [Google Scholar] [CrossRef]
- Deshpande, B.D.; Agrawal, P.S.; Yenkie, M.K.N.; Dhoble, S.J. Prospective of Nanotechnology in Degradation of Waste Water: A New Challenges. Nano-Struct. Nano-Objects 2020, 22, 100442. [Google Scholar] [CrossRef]
- Asghar, A.; Raman, A.A.A.; Daud, W.M.A.W. Advanced Oxidation Processes for In-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Textile Wastewater Treatment: A Review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef] [Green Version]
- Mook, W.T.; Chakrabarti, M.H.; Aroua, M.K.; Khan, G.M.A.; Ali, B.S.; Islam, M.S.; Hassan, M.A.A. Removal of Total Ammonia Nitrogen (TAN), Nitrate and Total Organic Carbon (TOC) from Aquaculture Wastewater Using Electrochemical Technology: A Review. Desalination 2012, 285, 1–13. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Tay, W.J.D.; Hidajat, K.; Uddin, M.S. Fe3O4/Cyclodextrin Polymer Nanocomposites for Selective Heavy Metals Removal from Industrial Wastewater. Carbohydr. Polym. 2013, 91, 322–332. [Google Scholar] [CrossRef]
- Hodges, B.C.; Cates, E.L.; Kim, J.-H. Challenges and Prospects of Advanced Oxidation Water Treatment Processes Using Catalytic Nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Kasprzyk-Hordern, B. Catalytic Ozonation of Chlorinated VOCs on ZSM-5 Zeolites and Alumina: Formation of Chlorides. Appl. Catal. B Environ. 2017, 200, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Ernst, M.; Lurot, F.; Schrotter, J.C. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Appl. Catal. B Environ. 2004, 47, 15–25. [Google Scholar] [CrossRef]
- Nawrocki, J.; Fijołek, L. Catalytic Ozonation-Effect of Carbon Contaminants on the Process of Ozone Decomposition. Appl. Catal. B Environ. 2013, 142–143, 307–314. [Google Scholar] [CrossRef]
- Nawrocki, J. Catalytic Ozonation in Water: Controversies and Questions. Discussion Paper. Appl. Catal. B Environ. 2013, 142–143, 465–471. [Google Scholar] [CrossRef]
- Jiao, T.; Guo, H.; Zhang, Q.; Peng, Q.; Tang, Y.; Yan, X.; Li, B. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Sci. Rep. 2015, 5, 11873. [Google Scholar] [CrossRef] [Green Version]
- Javaid, R.; Nanba, T. Stability of Cs/Ru/MgO Catalyst for Ammonia Synthesis as a Hydrogen and Energy Carrier. Energies 2022, 15, 3506. [Google Scholar] [CrossRef]
- Jumeri, F.A.; Lim, H.N.; Ariffin, S.N.; Huang, N.M.; Teo, P.S.; Fatin, S.O.; Chia, C.H.; Harrison, I. Microwave Synthesis of Magnetically Separable ZnFe2O4-Reduced Graphene Oxide for Wastewater Treatment. Ceram. Int. 2014, 40, 7057–7065. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Sun, H.; Xiao, J.; Cao, H.; Wang, S. Efficient Catalytic Ozonation over Reduced Graphene Oxide for P-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Appl. Mater. Interfaces 2016, 8, 9710–9720. [Google Scholar] [CrossRef]
- Pedrosa, M.; Pastrana-Martínez, L.M.; Pereira, M.F.R.; Faria, J.L.; Figueiredo, J.L.; Silva, A.M.T. N/S-Doped Graphene Derivatives and TiO2 for Catalytic Ozonation and Photocatalysis of Water Pollutants. Chem. Eng. J. 2018, 348, 888–897. [Google Scholar] [CrossRef]
- Ayoubi-Feiz, B.; Mashhadizadeh, M.H.; Sheydaei, M. Degradation of Diazinon by New Hybrid Nanocomposites N-TiO2/Graphene/Au and N-TiO2/Graphene/Ag Using Visible Light Photo-Electro Catalysis and Photo-Electro Catalytic Ozonation: Optimization and Comparative Study by Taguchi Method. Sep. Purif. Technol. 2019, 211, 704–714. [Google Scholar] [CrossRef]
- Hayati, F.; Isari, A.A.; Fattahi, M.; Anvaripour, B.; Jorfi, S. Photocatalytic Decontamination of Phenol and Petrochemical Wastewater through ZnO/TiO2 Decorated on Reduced Graphene Oxide Nanocomposite: Influential Operating Factors, Mechanism, and Electrical Energy Consumption. RSC Adv. 2018, 8, 40035–40053. [Google Scholar] [CrossRef] [Green Version]
- Pocostales, P.; Álvarez, P.; Beltrán, F.J. Catalytic Ozonation Promoted by Alumina-Based Catalysts for the Removal of Some Pharmaceutical Compounds from Water. Chem. Eng. J. 2011, 168, 1289–1295. [Google Scholar] [CrossRef]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-Based Advanced Oxidation Processes for Wastewater Treatment: A Review. Chem. Eng. Process. Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Javaid, R.; Tanaka, D.A.P.; Kawanami, H.; Suzuki, T.M. Silica Capillary with Thin Metal (Pd and Pt) Inner Wall: Application to Continuous Decomposition of Hydrogen Peroxide. Chem. Lett. 2009, 38, 146–147. [Google Scholar] [CrossRef]
- Javaid, R.; Kawanami, H.; Chatterjee, M.; Ishizaka, T.; Suzuki, A.; Suzuki, T.M. Fabrication of Microtubular Reactors Coated with Thin Catalytic Layer (M=Pd, Pd-Cu, Pt, Rh, Au). Catal. Commun. 2010, 11, 1160–1164. [Google Scholar] [CrossRef]
- Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H.H.M. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Appl. Catal. B Environ. 2018, 220, 171–181. [Google Scholar] [CrossRef]
- Suryavanshi, R.D.; Mohite, S.V.; Bagade, A.A.; Rajpure, K.Y. Photoelectrocatalytic Activity of Immobilized Fe2O3 Photoelectrode for Degradation of Salicylic Acid and Methyl Orange Dye under Visible Light Illumination. Ionics 2018, 24, 1841–1853. [Google Scholar] [CrossRef]
- Buthiyappan, A.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Recent Advances and Prospects of Catalytic Advanced Oxidation Process in Treating Textile Effluents. Rev. Chem. Eng. 2016, 32, 1–47. [Google Scholar] [CrossRef]
- Nawrocki, J.; Fijołek, L. Effect of Aluminium Oxide Contaminants on the Process of Ozone Decomposition in Water. Appl. Catal. B Environ. 2013, 142–143, 533–537. [Google Scholar] [CrossRef]
- Tian, L.; Nawrocki, W.J.; Liu, X.; Polukhina, I.; Van Stokkum, I.H.M.; Croce, R. PH Dependence, Kinetics and Light-Harvesting Regulation of Nonphotochemical Quenching in Chlamydomonas. Proc. Natl. Acad. Sci. USA 2019, 116, 8320–8325. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, S.; Ikhlaq, A.; Javed, F.; Ahmad, S.W.; Qi, F. A Study on the Influence of PH Changes during Catalytic Ozonation Process on Alumina, Zeolites and Activated Carbons for the Decolorization of Reactive Red-241. Water Sci. Technol. 2021, 83, 727–738. [Google Scholar] [CrossRef]
- Soltani, R.D.C.; Jorfi, S.; Safari, M.; Rajaei, M.-S. Enhanced Sonocatalysis of Textile Wastewater Using Bentonite-Supported ZnO Nanoparticles: Response Surface Methodological Approach. J. Environ. Manag. 2016, 179, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A.A.L.; Akhbari, A. Process Modeling and Kinetic Evaluation of Petroleum Refinery Wastewater Treatment in a Photocatalytic Reactor Using TiO2 Nanoparticles. Powder Technol. 2012, 221, 203–212. [Google Scholar] [CrossRef]
- Mishra, S.; Soren, S.; Debnath, A.K.; Aswal, D.K.; Das, N.; Parhi, P. Rapid Microwave—Hydrothermal Synthesis of CeO2 Nanoparticles for Simultaneous Adsorption/Photodegradation of Organic Dyes under Visible Light. Optik 2018, 169, 125–136. [Google Scholar] [CrossRef]
- Javaid, R.; Urata, K.; Furukawa, S.; Komatsu, T. Factors Affecting Coke Formation on H-ZSM-5 in Naphtha Cracking. Appl. Catal. A Gen. 2015, 491, 100–105. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Javaid, R.; Akram, A.; Qazi, U.Y.; Erfan, J.; Madkour, M.; Abdelbagi, M.E.M.; Shamsah, S.M.I.; Qi, F. Application of Attapulgite Clay-Based Fe-Zeolite 5A in UV- Assisted Catalytic Ozonation for the Removal of Ciprofloxacin. J. Chem. 2022, 2022, 27–30. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Fatima, R.; Yaqub Qazi, U.; Javaid, R.; Akram, A.; Shamsah, S.I.; Qi, F.; Todorova, S.; Lebeau, B.; Blin, J.-L.; et al. Combined Iron-Loaded Zeolites and Ozone-Based Process for the Purification of Drinking Water in a Novel Hybrid Reactor: Removal of Faecal Coliforms and Arsenic. Catalysts 2021, 11, 373. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Javed, F.; Akram, A.; Rehman, A.; Qi, F.; Javed, M.; Mehdi, M.J.; Waheed, F.; Naveed, S.; Aziz, H.A. Synergic Catalytic Ozonation and Electroflocculation Process for the Treatment of Veterinary Pharmaceutical Wastewater in a Hybrid Reactor. J. Water Process Eng. 2020, 38, 101597. [Google Scholar] [CrossRef]
- Gümüş, D.; Akbal, F. Comparison of Fenton and Electro-Fenton Processes for Oxidation of Phenol. Process Saf. Environ. Prot. 2016, 103, 252–258. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, X.; Elzatahry, A.A.; Chen, J.; Alghamdi, A.; Deng, Y. Recyclable Fenton-like Catalyst Based on Zeolite Y Supported Ultrafine, Highly-Dispersed Fe2O3 Nanoparticles for Removal of Organics under Mild Conditions. Chin. Chem. Lett. 2019, 30, 324–330. [Google Scholar] [CrossRef]
- Jorfi, S.; Pourfadakari, S.; Kakavandi, B. A New Approach in Sono-Photocatalytic Degradation of Recalcitrant Textile Wastewater Using MgO@Zeolite Nanostructure under UVA Irradiation. Chem. Eng. J. 2018, 343, 95–107. [Google Scholar] [CrossRef]
- Sapawe, N.; Jalil, A.A.; Triwahyono, S.; Sah, R.N.R.A.; Jusoh, N.W.C.; Hairom, N.H.H.; Efendi, J. Electrochemical Strategy for Grown ZnO Nanoparticles Deposited onto HY Zeolite with Enhanced Photodecolorization of Methylene Blue: Effect of the Formation of SiOZn Bonds. Appl. Catal. A Gen. 2013, 456, 144–158. [Google Scholar] [CrossRef]
- Fan, X.; Restivo, J.; Órfão, J.J.M.; Pereira, M.F.R.; Lapkin, A.A. The Role of Multiwalled Carbon Nanotubes (MWCNTs) in the Catalytic Ozonation of Atrazine. Chem. Eng. J. 2014, 241, 66–76. [Google Scholar] [CrossRef]
- García, J.C.; Pedroza, A.M.; Daza, C.E. Magnetic Fenton and Photo-Fenton-like Catalysts Supported on Carbon Nanotubes for Wastewater Treatment. Water Air Soil Pollut. 2017, 228, 246. [Google Scholar] [CrossRef]
- Wang, J.; Quan, X.; Chen, S.; Yu, H.; Liu, G. Enhanced Catalytic Ozonation by Highly Dispersed CeO2 on Carbon Nanotubes for Mineralization of Organic Pollutants. J. Hazard. Mater. 2019, 368, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Indrawirawan, S.; Kang, J.; Tian, W.; Zhang, H.; Sun, H.; Wang, S. Temperature-Dependent Evolution of Hydroxyl Radicals from Peroxymonosulfate Activation over Nitrogen-Modified Carbon Nanotubes. Sustain. Mater. Technol. 2018, 18, e00082. [Google Scholar] [CrossRef]
- Kang, J.; Duan, X.; Wang, C.; Sun, H.; Tan, X.; Tade, M.O.; Wang, S. Nitrogen-Doped Bamboo-like Carbon Nanotubes with Ni Encapsulation for Persulfate Activation to Remove Emerging Contaminants with Excellent Catalytic Stability. Chem. Eng. J. 2018, 332, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M. Application of Metal Organic Framework in Wastewater Treatment and Detection of Pollutants: Review. Spec. Issue J. Indian Chem. Soc. 2019, 97, 507–512. [Google Scholar]
- Sun, Q.; Liu, M.; Li, K.; Han, Y.; Zuo, Y.; Wang, J.; Song, C.; Zhang, G.; Guo, X. Controlled Synthesis of Mixed-Valent Fe-Containing Metal Organic Frameworks for the Degradation of Phenol under Mild Conditions. Dalt. Trans. 2016, 45, 7952–7959. [Google Scholar] [CrossRef]
- Lin, K.Y.A.; Yang, M.T.; Zhang, Z.Y.; Wi-Afedzi, T.; Lin, Y.F. Prussian Blue Analogue Supported on Sulfur-Doped Carbon Nitride as an Enhanced Heterogeneous Catalyst for Activating Peroxymonosulfate. J. Colloid Interface Sci. 2018, 529, 161–170. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Jiang, F. In-Situ Ethylenediamine-Assisted Synthesis of a Magnetic Iron-Based Metal-Organic Framework MIL-53(Fe) for Visible Light Photocatalysis. J. Colloid Interface Sci. 2017, 494, 32–37. [Google Scholar] [CrossRef]
- Farrokhi, A.; Feizpour, F.; Asaadzadeh, M. Degradation of Hazardous Organic Dyes with Solar-Driven Advanced Oxidation Process Catalyzed by the Mixed Metal–Organic Frameworks. Appl. Organomet. Chem. 2019, 33, e4928. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.; Malgras, V.; Na, J.; Lin, J.; You, J.; Zhang, M.; Li, J.; Yamauchi, Y. Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicals-Based Advanced Oxidation Process in Water Purification. Small 2019, 15, 1900744. [Google Scholar] [CrossRef] [PubMed]
- Baloyi, J.; Ntho, T.; Moma, J. Advances Synthesis and Application of Pillared Clay Heterogeneous Catalysts for Wastewater Treatment: A Review. RSC Adv. 2018, 8, 5197–5211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudissa, F.; Mirilà, D.; Arus, V.-A.; Terkmani, T.; Semaan, S.; Proulx, M.; Nistor, I.-D.; Roy, R.; Azzouz, A. Acid-Treated Clay Catalysts for Organic Dye Ozonation—Thorough Mineralization through Optimum Catalyst Basicity and Hydrophilic Character. J. Hazard. Mater. 2019, 364, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, P.; Taghizadeh, M.M. On Using Clay and Nanoclay Ceramic Granules in Reducing Lead, Arsenic, Nitrate, and Turbidity from Water. Appl. Water Sci. 2018, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Herney-Ramirez, J.; Madeira, L.M. Pillared Clays and Related Catalysts; Gil, A., Korili, S.A., Trujillano, R., Vicente, M.A., Eds.; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6670-4. [Google Scholar]
- Kalmakhanova, M.S.; Diaz de Tuesta, J.L.; Kabykenovna, B.; Gomes, H.T. Pillared Clays from Natural Resources as Catalysts for Catalytic Wet Peroxide Oxidation: Characterization and Kinetic Insights. Environ. Eng. Res. 2020, 25, 186–196. [Google Scholar] [CrossRef] [Green Version]
- Catrinescu, C.; Arsene, D.; Teodosiu, C. Catalytic Wet Hydrogen Peroxide Oxidation of Para-Chlorophenol over Al/Fe Pillared Clays (AlFePILCs) Prepared from Different Host Clays. Appl. Catal. B Environ. 2011, 101, 451–460. [Google Scholar] [CrossRef]
- Lin, Y.I.N. Characteristics of Zn-Clays Catalysts for Catalytic Ozonation Degrading Process of Dye Wastewater. Geol. J. China Univ. 2000, 6, 260–264. [Google Scholar]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Catalytic Ozonation for the Removal of Organic Contaminants in Water on Alumina. Appl. Catal. B Environ. 2015, 165, 408–418. [Google Scholar] [CrossRef]
- Mecha, A.C.; Onyango, M.S.; Ochieng, A.; Momba, M.N.B. Ultraviolet and Solar Photocatalytic Ozonation of Municipal Wastewater: Catalyst Reuse, Energy Requirements and Toxicity Assessment. Chemosphere 2017, 186, 669–676. [Google Scholar] [CrossRef]
- Miceli, M.; Frontera, P.; Macario, A.; Malara, A. Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts 2021, 11, 591. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Effect of Inorganic Anions on the Performance of Advanced Oxidation Processes for Degradation of Organic Contaminants. Chem. Eng. J. 2021, 411, 128392. [Google Scholar] [CrossRef]
- Nawrocki, J.; Kasprzyk-Hordern, B. The Efficiency and Mechanisms of Catalytic Ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Ikhlaq, A.; Brown, D.R.; Kasprzyk-Hordern, B. Mechanisms of Catalytic Ozonation on Alumina and Zeolites in Water: Formation of Hydroxyl Radicals. Appl. Catal. B Environ. 2012, 123–124, 94–106. [Google Scholar] [CrossRef]
- Sable, S.S.; Ghute, P.P.; Álvarez, P.; Beltrán, F.J.; Medina, F.; Contreras, S. FeOOH and Derived Phases: Efficient Heterogeneous Catalysts for Clofibric Acid Degradation by Advanced Oxidation Processes (AOPs). Catal. Today 2015, 240, 46–54. [Google Scholar] [CrossRef]
- Paździor, K.; Bilińska, L.; Ledakowicz, S. A Review of the Existing and Emerging Technologies in the Combination of AOPs and Biological Processes in Industrial Textile Wastewater Treatment. Chem. Eng. J. 2019, 376, 120597. [Google Scholar] [CrossRef]
- Raji, M.; Mirbagheri, S.A.; Ye, F.; Dutta, J. Nano Zero-Valent Iron on Activated Carbon Cloth Support as Fenton-like Catalyst for Efficient Color and COD Removal from Melanoidin Wastewater. Chemosphere 2021, 263, 127945. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, N.; Wei, X.; Ding, Y.; Ke, Y.; Wu, P.; Liu, Z. Mechanism Insight into Efficient Peroxydisulfate Activation by Novel Nano Zero-Valent Iron Anchored YCo3O4 (NZVI/YCo3O4) Composites. J. Hazard. Mater. 2020, 400, 123157. [Google Scholar] [CrossRef]
- Iurascu, B.; Siminiceanu, I.; Vione, D.; Vicente, M.A.; Gil, A. Phenol Degradation in Water through a Heterogeneous Photo-Fenton Process Catalyzed by Fe-Treated Laponite. Water Res. 2009, 43, 1313–1322. [Google Scholar] [CrossRef]
- Sum, O.S.N.; Feng, J.; Hu, X.; Yue, P.L. Photo-Assisted Fenton Mineralization of an Azo-Dye Acid Black 1 Using a Modified Laponite Clay-Based Fe Nanocomposite as a Heterogeneous Catalyst. Top. Catal. 2005, 33, 233–242. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.; Yue, P.L.; Zhu, H.Y.; Lu, G.Q. Discoloration and Mineralization of Reactive Red HE-3B by Heterogeneous Photo-Fenton Reaction. Water Res. 2003, 37, 3776–3784. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, P.; Li, Y.; Zhu, N.; Dang, Z. Heterogeneous Photo-Fenton Photodegradation of Reactive Brilliant Orange X-GN over Iron-Pillared Montmorillonite under Visible Irradiation. J. Hazard. Mater. 2009, 168, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Bobu, M.; Yediler, A.; Siminiceanu, I.; Schulte-Hostede, S. Degradation Studies of Ciprofloxacin on a Pillared Iron Catalyst. Appl. Catal. B Environ. 2008, 83, 15–23. [Google Scholar] [CrossRef]
Wastewater Type | Treatment Methods | Steps Involved | Target Contaminants | Effluent Quality | Reference |
---|---|---|---|---|---|
Industrial | Heavy metal adsorption using PAMAM/TiO2 nanohybrid | Preparation, characterization, and adsorption | Heavy metals (Cd2+, Cu2+, and Pb2+) | Gradual process, Adsorption increased with the increase of nanohybrid dosage | [16] |
Local Community | Local wastewater treatment plant | Screening, primary clarifier, aeration tank, secondary clarifier, and chlorination | Bacterial and antibiotic resistance genes | Insufficient; antibiotic-resistant pathogens were identified | [17] |
Municipal | ATS, STS, MTP, and STS + WET | Permanent tank, aeration tank, return tank, and final clarifier | TSS, CBOD, NH3, and 19 CECs | Insufficient; TSS, CBOD, NH3, and various pharmaceuticals were identified | [18] |
Hospital | SAFF, CW, FAB, EBR EA, MBR, and SBR | Single treatment, secondary and tertiary treatment, and coupled treatment | Pharmaceuticals, micropollutants, and conventional pollutants | Insufficient; pharmaceuticals were identified | [19] |
Method | Hydroxyl Radical Production | Peroxone Based | Energy Transfer | Fenton Homogeneous and Heterogeneous Process | Catalytic Heterogeneous Process |
---|---|---|---|---|---|
Ultrasound | US-assisted cavitation | O3-H2O2-US Ultrasound peroxone | Sonolysis | H2O2-Fe(II)/Fe(III)-US Sono-Fenton method | Catalytic ultrasonic method |
Chemical | OH− alkaline | O3-H2O2 peroxone | - | H2O2-Fe(II)/Fe(III) Fenton method | Catalysts-O3 |
Electrochemical | Electrolytic generation | Electrolytic generation of O3 | Anodic oxidation | Electro-Fenton method | Wet electrolytic oxidation |
Photochemical | UV photolysis | O3-H2O2-UV Ultraviolet peroxone | Direct photolysis | H2O2-Fe(II)/Fe(III)-UV Photo-Fenton method | Catalysts-UV |
Target Contaminants | Contaminant | Applied AOP | Wastewater Type | Evaluated Parameters | Mechanism | Reactor Type | Efficacy | Reference |
---|---|---|---|---|---|---|---|---|
Pharmaceuticals | Antibiotics (amoxicillin, ampicillin, cloxacillin) | Photo-Fenton | Aqueous solution | Effects of UV irradiation, antibiotics, initial concentration, irradiation time, and biodegradability | ·OH reaction | Batch 600 mL Pyrex | Antibiotics’ degradation in 2 min | [36] |
Pharmaceuticals | Antibacterial compounds | Ozonation | Aqueous solution | Analysis, interpretation, microdilution, and deactivation | O3 and ·OH reactions | - | Deactivated | [37] |
Pharmaceuticals | Ibuprofen | Solar photoelectro-Fenton, Electro- Fenton, UVA photoelectron Fenton | Acid aqueous solution | Process comparison, pH, kinetics, intermediates finding | ·OH reaction | One compartment cell | Solar photoelectron-Fenton has 92% mineralization | [38] |
Dyes | Levafix Blue CA, Levafix Red CA | Electro-Fenton | Industrial wastewater | Potential applied, pH, nature, electrolyte, kinetics | ·OH- oxidative species | Undivided glass electrochemical cell | Complete decolorization and 90–95% mineralization | [39] |
Dyes | Orange II | Heterogeneous Fenton process (FeVO4 + H2O2) | Aqueous solution | Characterization, catalytic activity, pH, stability of FeVO4 | FeVO4 produced ·OH radicals | Cylindrical Pyrex vessel | 94.2% after 60 min | [40] |
Dyes | Rhodamine B | UV/H2O2 | Dye solution | Effects of dye concentration, pH, H2O2 dose, irradiation time, and kinetics | ·OH reaction | Beaker | 73% decolorization | [41] |
Pesticides | Diazinon | γ-irradiation | Aqueous solution | Effects of initial concentration, irradiation doses, intermediates’ exposure | ·OH attack | Airtight cap vials | Complete degradation | [42] |
Aromatics | p-Nitrophenol | Sono-Fenton | Aqueous solution | Various operating conditions | ·OH reaction | Sono-chemical reactor | 66.4% degradation | [43] |
Catalyst | Wastewater Type | Target Contaminants | Removal Efficiency | AOPs | Reference |
---|---|---|---|---|---|
RGO | Aqueous solution | p-hydroxlbenzoic acid (PHBA) | TOC removal about 100% in 60 min, at pH 3, PHBA = 20 mg/L | Catalytic ozonation | [57] |
RGO-based silver nanoparticle | Aqueous dye solution | Methylene blue (MB), rhodamine B (RhB) | 100% in 70 min for RhB and 30 min for MB | Photocatalytic oxidation | [54] |
ZnFe2O4-reduced graphene oxide | Aqueous dye solution | Methylene blue (MB) | 70% MB removal | Photocatalytic process using H2O2 | [56] |
N/S-doped graphene derivatives | Aqueous solution | Oxalic acid | 96% in 15 min for photocatalytic ozonation and 20% for catalytic ozonation | Catalytic ozonation, photocatalytic ozonation | [58] |
Hybrid nanocomposites, N-TiO2/graphene/Au, N-TiO2/graphene/Ag | Aqueous solution | Diazinon | 76.7% for N-TiO2/G/Au and 81.1% for N-TiO2/G/Ag were observed at pH = 6 in 60 min | Photo-electro catalysis and photo-electro catalytic | [59] |
ZnO/TiO2 decorated on reduced graphene oxide nanocomposite | Real petro-chemical wastewater | Phenol | Complete degradation of phenol (pH =4), catalyst = 0.6 g/L, Phenol = 60 ppm in 160 min | Photocatalytic oxidation | [60] |
Challenges: 1. Lack of application on real wastewater. 2. Only limited to aqueous solution. 3. Not tested on real wastewater at a large scale. 4. Organic nature can be affected by AOPs. 5. Cost of treatment neither estimated nor compared with other treatment methods. |
Catalyst | Wastewater Type | Target Contaminants | Removal Efficiency | AOPs | Reference |
---|---|---|---|---|---|
TiO2 nanotube arrays (TNAs) | Aqueous solution | β-blocker metoprolol (MTP) | 87.09 ± 0.09% in 120 min, pH range = 3–11, nanotube diameter = 53 nm | Photocatalytic degradation | [65] |
Fe2O3 nanoparticles | Aqueous solution | Salicylic acid (SA) | 53% of SA | Photo- electrocatalytic process | [66] |
TiO2 nanoparticles | Petroleum refinery wastewater | COD | 83% in 120 min, pH = 4, COD = 100 mg/L | Photocatalyticoxidation | [72] |
ZnO nanoparticles | Textile wastewater | COD | 44% in 150 min, pH = 9, catalyst = 6 mg/L | Sonocatalysis | [71] |
CeO2 nanoparticles | Aqueous dye solution | Eriochrome black-T (EBT), Alizarin red S (ARS) | 100% in 120 min, dye = 100 mg/L, catalyst = 0.6 g/L | Photocatalytic oxidation | [73] |
Challenges: 1. Metals and metal oxides cannot exist independently. 2. This process is pH dependent. 3. Not tested on real wastewater at a large scale. 4. Cost of treatment neither estimated nor compared with other treatment methods. |
Catalyst | Wastewater Type | Target Contaminants | Removal Efficiency | AOPs | Reference |
---|---|---|---|---|---|
Fe-zeolite A | Veterinary pharmaceutical wastewater | COD | 85.12%, pH = 7, O3 = 0.4 mg/min, catalyst = 1.5 g/L | Synergic electro-flocculation– catalytic ozonation | [77] |
Fe2O3 nanoparticles- zeolites Y | Aqueous solution | Phenol | 90% at neutral pH in 2 h, catalyst = 0.0375 g/mL, H2O2 = 0.14 mol/L, phenol = 1.0 g/L | Fenton-like process | [79] |
MgO-zeolite nano-structure | Textile wastewater | COD | 61.5%, COD = 2650 mg/L, pH = 6.4, catalyst = 0.7 g/L | Sono- photocatalytic degradation | [80] |
ZnO-HY zeolites | Aqueous solution | MB | 80% in 6 h, catalyst 10 mg/L, pH = 3 | Electrochemical | [81] |
Challenges: 1. May leach out in wastewater. 2. Lack of research in reuse performance. 3. Not tested on real wastewater at a large scale. 4. Cost of treatment neither estimated nor compared with other treatment methods. |
Catalyst | Wastewater Type | Target Contaminants | Removal Efficiency | AOPs | References |
---|---|---|---|---|---|
Multi-walled carbon nanotubes | Aqueous solution | Atrazine (TOC removal) | 80% in 180 min, Co = 10 ppm, mMWCNTs = 100 mg, ozone = 50 g/L | Catalytic ozonation | [82] |
CeO2-carbon nanotubes | Aqueous solution | Phenol (TOC removal) | 96% in 60 min, Phenol = 20 mg/L, catalyst = 0.10 g/L, ozone = 12 mg/L, pH = 6.2 | Catalytic ozonation | [84] |
Fe-CNTs | Real wastewater contaminated with dyes | TOC removal | 40% TOC removal, 5% Fe, catalyst = 200 mg, H2O2 = 0.4 M | Fenton-like and photo-Fenton process | [83] |
CNTs | Aqueous solution | Nitrobenzene, benzoquinone, phenol | 45% benzoquinone and 60% nitrobenzene, in 180 min, 100% phenol in 60 min, Co = 20 mg/L, temperature = 25 °C, catalyst = 0.2 g | Peroxy-monosulfate activation | [85] |
Nitrogen-doped bamboo-like CNTs | Aqueous solution | Sulfachloro-pyridazine | 90% oxidation in 180 min, catalyst = 0.2 g/L, SCP = 20 mg/L, pH = 7 | Persulfate activation | [86] |
Challenges: 1. Not tested on real wastewater at a large scale. 2. Multiple pollutants can be a challenge. 3. Cost of treatment neither estimated nor compared with other treatment methods. |
Catalyst | Wastewater Type | Target Contaminants | Removal Efficiency | AOPs | References |
---|---|---|---|---|---|
NF/ZIF-67 | Solution | Rhodamine B | 99% in 30 min | Sulfur radical -AOPs | [89] |
MIL-53(Fe) | Matrix solution | Methylene blue (MB) | 87% in 240 min, MB = 10 mg/L, catalyst = 0.4 g/L | Photocatalytic process | [90] |
Magnetic (γ-Fe3O4) | Matrix solution | Methylene blue (MB) | 72% in 240 min | Photocatalytic process | [90] |
Fe(BDC) (DMF,F) | Solution | Phenol | High removal efficiency (>99%) | Catalyzed Fenton process | [88] |
STA-12 (Fe, Mn) | Aqueous solution | Rhodamine B and methylene blue (MB) | 93% in natural sunlight in 40 min | Photo-Fenton oxidation | [91] |
ZIF-67 | Solution | Rhodamine B | 80% in 60 min RhB = 50 mg/L, catalyst = 50 mg/L, PMS = 150 mg/L, T = 20 °C | Sulfate radical (SO4•−) based AOP | [92] |
Challenges: 1. They themselves leach out. 2. Degraded during processes. 3. Cost of treatment neither estimated nor compared with other treatment methods. |
Catalyst | Wastewater Type | Target Contaminants | Removal Efficiency | AOPs | Reference |
---|---|---|---|---|---|
Pillared interlayered clay | Aqueous solutions/ wastewater | Phenols | >80% | Catalytic wet air oxidation, Fenton-like process, photocatalytic treatment | [93] |
Zr and Fe/Cu/Zr polycations-pillared clay | Aqueous solutions | 4-nitrophenol | 78% TOC removal, C4-NP = 5 g/L, CH2O2CH2O2 = 17.8 g/L, catalyst = 2.5 g/L, pH = 3.0, T = 50 ℃ | Catalytic wet peroxide oxidation | [97] |
Al/Fe pillared clay | Aqueous solutions | p-chlorophenol | 60% TOC removal | Catalytic wet hydrogen peroxide oxidation | [98] |
Acid-treated clay catalyst | Aqueous solutions | Methylene blue, methyl green, methyl orange, methyl-thymol blue | 49–96% removal in 20 min | Catalytic ozonation | [94] |
Zn-clays catalyst | Dye wastewater | Dyes | >50% COD removal | Catalytic ozonation | [99] |
Challenges: 1. Not tested on real wastewater at large scale. 2. Multiple pollutants can be a challenge. 3. Cost of treatment neither estimated nor compared with other treatment methods. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, Z.; Ikhlaq, A.; Akram, A.; Qazi, U.Y.; Rizvi, O.S.; Javaid, R.; Alazmi, A.; Madkour, M.; Qi, F. Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects. Catalysts 2022, 12, 741. https://doi.org/10.3390/catal12070741
Masood Z, Ikhlaq A, Akram A, Qazi UY, Rizvi OS, Javaid R, Alazmi A, Madkour M, Qi F. Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects. Catalysts. 2022; 12(7):741. https://doi.org/10.3390/catal12070741
Chicago/Turabian StyleMasood, Zafar, Amir Ikhlaq, Asia Akram, Umair Yaqub Qazi, Osama Shaheen Rizvi, Rahat Javaid, Amira Alazmi, Metwally Madkour, and Fei Qi. 2022. "Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects" Catalysts 12, no. 7: 741. https://doi.org/10.3390/catal12070741
APA StyleMasood, Z., Ikhlaq, A., Akram, A., Qazi, U. Y., Rizvi, O. S., Javaid, R., Alazmi, A., Madkour, M., & Qi, F. (2022). Application of Nanocatalysts in Advanced Oxidation Processes for Wastewater Purification: Challenges and Future Prospects. Catalysts, 12(7), 741. https://doi.org/10.3390/catal12070741