Improvement in the Environmental Stability of Haloalkane Dehalogenase with Self-Assembly Directed Nano-Hybrid with Iron Phosphate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Expression and Purification of DhaA
2.2. Preparation of Metal-DhaA Hybrid Nanocomposites
2.2.1. The Effects of Metal Ions
2.2.2. The Effects of Enzyme Concentration
2.2.3. The Effects of pH
2.2.4. The Effects of PB Buffer Concentration
2.2.5. The Effects of Incubation Time
2.3. Characterization of FeHN@DhaA
2.4. Optimum Reaction Temperature and pH
2.5. Stability and Reusability of FeHN@DhaA
3. Materials and Methods
3.1. Materials
3.2. Purification of Recombinant DhaA
3.3. Enzymatic Activity Assay
3.4. Preparation of Metal–DhaA Hybrid Nanocomposites
3.5. Characterization of Metal–DhaA Hybrid Nanocomposites
3.6. Effects of pH and Temperature
3.7. Storage Stability and Reusability of Free and Immobilized DhaA
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janssen, D.B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 2004, 8, 150–159. [Google Scholar] [CrossRef]
- Keuning, S.; Janssen, D.B.; Witholt, B. Purification and Characterization of Hydrolytic Haloalkane Dehalogenase from Xanthobacter autotrophicus GJ10. J. Bacteriol. 1985, 163, 635–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunka, A.; Damborsky, J.; Prokop, Z. Haloalkane Dehalogenases from Marine Organisms. Methods Enzymol. 2018, 605, 203–251. [Google Scholar] [PubMed]
- Koudelakova, T.; Chovancova, E.; Brezovsky, J.; Monincova, M.; Fortova, A.; Jarkovsky, J.; Damborsky, J. Substrate specificity of haloalkane dehalogenases. Biochem. J. 2011, 435, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, Y.; Ohtsubo, Y.; Tsuda, M. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl. Microbiol. Biotechnol. 2015, 99, 9865–9881. [Google Scholar] [CrossRef]
- Koudelakova, T.; Bidmanova, S.; Dvorak, P.; Pavelka, A.; Chaloupkova, R.; Prokop, Z.; Damborsky, J. Haloalkane dehalogenases: Biotechnological applications. Biotechnol. J. 2012, 8, 32–45. [Google Scholar] [CrossRef]
- Swanson, P.E. Dehalogenases applied to industrial-scale biocatalysis. Curr. Opin. Biotechnol. 1999, 10, 365–369. [Google Scholar] [CrossRef]
- Quintero, J.C.; Moreira, M.T.; Feijoo, G.; Lema, J.M. Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 2005, 61, 528–536. [Google Scholar] [CrossRef]
- Oakley, A.; Prokop, Z.; Boháč, M.; Kmuníček, J.; Jedlička, T.; Monincová, M.; Kutá-Smatanová, I.; Nagata, Y.; Damborský, J.; Wilce, M. Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: Evidence for product- and water-mediated inhibition. Biochemistry 2002, 41, 4847–4855. [Google Scholar] [CrossRef]
- Bidmanova, S.; Chaloupkova, R.; Damborsky, J.; Prokop, Z. Development of an enzymatic fiber-optic biosensor for detection of halogenated hydrocarbons. Anal. Bioanal. Chem. 2010, 398, 1891–1898. [Google Scholar] [CrossRef]
- Los, G.V.; Encell, L.P.; Mcdougall, M.G.; Hartzell, D.D.; Karassina, N.; Zimprich, C.; Wood, M.G.; Learish, R.; Ohana, R.F.; Urh, M. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373–382. [Google Scholar] [CrossRef]
- Pavlova, M.; Klvana, M.; Prokop, Z.; Chaloupkova, R.; Banas, P.; Otyepka, M.; Wade, R.C.; Tsuda, M.; Nagata, Y.; Damborsky, J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009, 5, 727–733. [Google Scholar] [CrossRef]
- Zou, S.; Gu, K.; Zheng, Y. Covalent immobilization of halohydrin dehalogenase for efficient synthesis of epichlorohydrin in an integrated bioreactor. Biotechnol. Prog. 2018, 34, 784–792. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, W.L.; Guo, X.; Zhao, Y.Z.; Cui, Y.; Hu, T.; Zhong, J.Y. An effective immobilized haloalkane dehalogenase DhaA from Rhodococcus rhodochrous by adsorption, crosslink and PEGylation on meso-cellular foam. Int. J. Biol. Macromol. 2019, 125, 1016–1023. [Google Scholar] [CrossRef]
- Wang, M.; Yu, W.; Shen, L.; Zheng, H.; Hu, T. Conjugation of haloalkane dehalogenase DhaA with arabinogalactan to increase its stability. J. Biotechnol. 2021, 335, 47–54. [Google Scholar] [CrossRef]
- Shan, Y.; Yu, W.; Shen, L.; Guo, X.G.; Han, Y. Conjugation with inulin improves the environmental stability of haloalkane dehalogenase DhaA. Enzym. Microb. Technol. 2021, 149, 109832. [Google Scholar] [CrossRef]
- Zheng, H.; Zhong, J.Y.; Cui, Y.; Zhang, Z.; Zhao, C.L.; Zhao, Y.Z.; Zheng, Y.C.; Guo, X. Mesoporous support designed for DhaA adsorption with improved stability. J. Porous Mater. 2019, 26, 829–837. [Google Scholar] [CrossRef]
- Zhang, X.J.; Shi, P.X.; Deng, H.Z.; Wang, X.X.; Liu, Z.Q.; Zheng, Y.G. Biosynthesis of chiral epichlorohydrin using an immobilized halohydrin dehalogenase in aqueous and non-aqueous phase. Bioresour. Technol. 2018, 263, 483–490. [Google Scholar] [CrossRef]
- Ding, S.; Cargill, A.A.; Medintz, I.L.; Claussen, J.C. Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr. Opin. Biotechnol. 2015, 34, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Luckarift, H.R.; Spain, J.C.; Naik, R.R.; Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 2004, 22, 211–213. [Google Scholar] [CrossRef]
- An, J.; Li, G.; Zhang, Y.; Zhang, T.; Fan, H. Recent Advances in Enzyme-Nanostructure Biocatalysts with Enhanced Activity. Catalysts 2020, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Lei, J.; Zare, R.N. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef]
- Cui, J.; Jia, S. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 2017, 352, 249–263. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Su, Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord. Chem. Rev. 2020, 416, 213342. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Yang, C.; Ma, C.; Tang, J. Enzyme-inorganic hybrid nanoflowers: Classification, synthesis, functionalization and potential applications. Chem. Eng. J. 2021, 415, 129075. [Google Scholar] [CrossRef]
- Dube, S.; Rawtani, D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv. Colloid Interface Sci. 2021, 295, 102484. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Yang, J.; Han, H.; Tang, J. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis. J. Colloid Interface Sci. 2018, 514, 102–107. [Google Scholar]
- Hu, R.; Zhang, X.; Zhao, Z.; Zhu, G.; Chen, T.; Fu, T.; Tan, W. DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew. Chem. Int. Ed. Engl. 2014, 53, 5821–5826. [Google Scholar] [CrossRef]
- Rong, J.; Zhang, T.; Qiu, F.; Zhu, Y. Preparation of Efficient, Stable, and Reusable Laccase–Cu3(PO4)2 Hybrid Microspheres Based on Copper Foil for Decoloration of Congo Red. ACS Sustain. Chem. Eng. 2017, 5, 4468–4477. [Google Scholar] [CrossRef]
- Fu, M.; Xing, J.; Ge, Z. Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. Sci. Total Environ. 2018, 651, 2857–2865. [Google Scholar] [CrossRef]
- Lin, Z.; Xiao, Y.; Yin, Y.; Hu, W.; Liu, W.; Yang, H. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Its Application as a Colorimetric Platform for Visual Detection of Hydrogen Peroxide and Phenol. ACS Appl. Mater. Interfaces 2012, 6, 10775–10782. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.B.; Wang, Y.C.; He, R.; Zhuang, A.; Wang, X.; Jie, Z.; Hou, J.G. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 2013, 135, 1272. [Google Scholar] [CrossRef] [PubMed]
- Somturk, B.; Yilmaz, I.; Altinkaynak, C.; Karatepe, A.; Özdemir, N.; Ocsoy, I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzym. Microb. Technol. 2016, 86, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Z.; Zhang, H.; Xin, Y.; Shi, Y.; Gu, Z.; Zhang, L.; Zhong, J.; Guo, X.; Li, Y.; et al. Development of a multimetal-based phosphotriesterase hybrid nanoflowers for decontamination of environmental organophosphorus compounds pollution. Chem. Eng. J. 2022, 446, 136933. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, Y.; Liu, R.; Cheng, Z.; Jia, S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 2016, 6, 27928. [Google Scholar] [CrossRef] [Green Version]
- Batule, B.S.; Park, K.S.; Gautam, S.; Cheon, H.J.; Kim, M.I.; Park, H.G. Intrinsic peroxidase-like activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sens. Actuators B Chem. 2019, 283, 749–754. [Google Scholar] [CrossRef]
- Hao, M.; Fan, G.; Zhang, Y.; Xin, Y.; Zhang, L. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers. Int. J. Biol. Macromol. 2019, 126, 539–548. [Google Scholar] [CrossRef]
- Ocsoy, I.; Somturk, B.; Hancer, M.; Özdemir, N. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability. Dalton Trans. 2015, 44, 13845–13852. [Google Scholar]
- Nadar, S.S.; Gawas, S.D.; Rathod, V.K. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability. Int. J. Biol. Macromol. 2016, 92, 660–669. [Google Scholar] [CrossRef]
- Ke, C.; Fan, Y.; Chen, Y.; Xu, L.; Yan, Y. A new lipase–inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv. 2016, 6, 19413–19416. [Google Scholar] [CrossRef]
- Mesa, M.; Velasco-Lozano, S.; Bernal, C.; Lin; Y.-F.; Escobar, S. Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes. J. Mater. Chem. B Mater. Biol. Med. 2017, 5, 4478–4486. [Google Scholar] [CrossRef]
- Lin, Y.F.; Cheng, C.W.; Shih, C.S.; Hwang, J.K.; Yu, C.S.; Lu, C.H. MIB: Metal Ion-Binding Site Prediction and Docking Server. J. Chem. Inf. Modeling 2016, 56, 2287–2291. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, Z.; Zhu, Q.; Song, J.; Liu, X. Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes. J. Hazard. Mater. 2020, 399, 123088. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, J.; Šolević Knudsen, T.; Ma, B.; Liu, B.; Li, H.; Zhu, X.; Zhao, C.; Pang, W.; Cao, Y. Degradation of novel mineral flotation reagent 8-hydroxyquinoline by superparamagnetic immobilized laccase: Effect, mechanism and toxicity evaluation. Chem. Eng. J. 2022, 432, 134239. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Xin, Y.; Shi, Y.; Zhang, L. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides. Enzym. Microb. Technol. 2021, 146, 109766. [Google Scholar] [CrossRef]
- Wu, J.; Ma, X.; Li, C.; Zhou, X.; Han, J.; Wang, L.; Dong, H.; Wang, Y. A novel photon-enzyme cascade catalysis system based on hybrid HRP-CN/Cu3(PO4)2 nanoflowers for degradation of BPA in water. Chem. Eng. J. 2022, 427, 131808. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Ming, X.; Guo, Z.; Shi, Y.; Li, M.; Guo, Z.; Xin, Y.; Gu, Z.; Zhang, L.; Guo, X. Improvement in the Environmental Stability of Haloalkane Dehalogenase with Self-Assembly Directed Nano-Hybrid with Iron Phosphate. Catalysts 2022, 12, 825. https://doi.org/10.3390/catal12080825
Chen J, Ming X, Guo Z, Shi Y, Li M, Guo Z, Xin Y, Gu Z, Zhang L, Guo X. Improvement in the Environmental Stability of Haloalkane Dehalogenase with Self-Assembly Directed Nano-Hybrid with Iron Phosphate. Catalysts. 2022; 12(8):825. https://doi.org/10.3390/catal12080825
Chicago/Turabian StyleChen, Jianxiong, Xiaodong Ming, Zitao Guo, Yi Shi, Moying Li, Zhongpeng Guo, Yu Xin, Zhenghua Gu, Liang Zhang, and Xuan Guo. 2022. "Improvement in the Environmental Stability of Haloalkane Dehalogenase with Self-Assembly Directed Nano-Hybrid with Iron Phosphate" Catalysts 12, no. 8: 825. https://doi.org/10.3390/catal12080825
APA StyleChen, J., Ming, X., Guo, Z., Shi, Y., Li, M., Guo, Z., Xin, Y., Gu, Z., Zhang, L., & Guo, X. (2022). Improvement in the Environmental Stability of Haloalkane Dehalogenase with Self-Assembly Directed Nano-Hybrid with Iron Phosphate. Catalysts, 12(8), 825. https://doi.org/10.3390/catal12080825