Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors
Abstract
:1. Introduction
2. Results
2.1. N2 Physisorption Results
2.2. Temperature-Programmed Reduction Studies (H2-TPR)
2.3. X-ray Diffraction Results
2.4. Transmission Electron Microscopy (TEM) Results
2.5. Catalytic Tests Results
2.5.1. Catalytic Hydrogenation of Nitrocyclohexane in Liquid Flow Conditions
2.5.2. Catalytic Hydrogenation of Nitrocyclohexane in Gas Flow Conditions under Atmospheric Pressure
2.6. Catalytic Hydrogenation of Nitrocyclohexane–Mechanism
3. Discussion
4. Materials and Methods
4.1. Catalysts Synthesis
4.2. Surface Analysis—BET
4.3. Temperature-Programmed Reduction
4.4. X-ray Diffraction (XRD)
4.5. Transmission Electron Microscopy (TEM)
4.6. Catalytic Activity Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stoffels, M.A.; Klauck, F.J.R.; Hamadi, T.; Glorius, F.; Leker, J. Technology Trends of Catalysts in Hydrogenation Reactions: A Patent Landscape Analysis. Adv. Synth. Catal. 2020, 362, 1258–1274. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Ishitani, H.; Kobayashi, S. Catalytic Hydrogenation of Aliphatic Nitro Compounds with Polysilane/Bone Charcoal-Supported Palladium Catalysts under Continuous-Flow Conditions. Asian J. Org. Chem. 2016, 5, 1124–1127. [Google Scholar] [CrossRef]
- Rapp, G.; Fuchs, H.; Thomas, E. Manufacture of Cyclohexanone Oxime. U.S. Patent No. 403,113,9, 26 January 1975. [Google Scholar]
- Thomas, D.C.; Adams, J.T. Chromium Amine Complex Catalyzed Oxidation of Cycloc Hydrocarbons to Ketones. U.S. Patent No. 3,404,185, 1 October 1964. [Google Scholar]
- Musser, M.T. Cyclohexanol and Cyclohexanone. Ullmann’s Encycl. Ind. Chem. 2011, 11, 49–60. [Google Scholar] [CrossRef]
- Danker, L.J.; Permoda, D. Production of Dicyclohexylamine. U.S. Patent No. 2,571,016, 16 May 1949. [Google Scholar]
- Goetz, N.; Jacobs, P.; Hupfer, L.; Toussaint, H.; Reiss, W. Method for producing Cycloaliphatic and/or Aromatic Amines. DE Patent No. DE3045719A1, 4 December 1980. [Google Scholar]
- Kuhn, K. Methoden Der Organischen Chemie (Houben-Weyl), 4th ed.; Eugene, M., Ed.; Elsevier: Amsterdam, The Netherlands, 1958; Volume 11/1. [Google Scholar]
- Poehler, G.; Corr, H.; Friedrichsen, W. Process for Catalytic Hydrogenation. DE Patent No. DE1921467A1, 26 April 1969. [Google Scholar]
- Kowalewski, E.; Śrębowata, A. Catalytic Hydrogenation of Nitrocyclohexane as an Alternative Pathway for the Synthesis of Value-Added Products. Catal. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Serna, P.; López-Haro, M.; Calvino, J.J.; Corma, A. Selective Hydrogenation of Nitrocyclohexane to Cyclohexanone Oxime with H2 on Decorated Pt Nanoparticles. J. Catal. 2009, 263, 328–334. [Google Scholar] [CrossRef]
- Shimizu, K.I.; Yamamoto, T.; Tai, Y.; Satsuma, A. Selective Hydrogenation of Nitrocyclohexane to Cyclohexanone Oxime by Alumina-Supported Gold Cluster Catalysts. J. Mol. Catal. A Chem. 2011, 345, 54–59. [Google Scholar] [CrossRef]
- Liao, H.G.; Xiao, Y.J.; Zhang, H.K.; Liu, P.L.; You, K.Y.; Wei, C.; Luo, H. Hydrogenation of Nitrocyclohexane to Cyclohexanone Oxime over Pd/CNT Catalyst under Mild Conditions. Catal. Commun. 2012, 19, 80–84. [Google Scholar] [CrossRef]
- Liu, P.L.; Zhang, H.K.; Liu, S.H.; Yao, Z.J.; Hao, F.; Liao, H.G.; You, K.Y.; Luo, H.A. Palladium Supported Catalysts for Nitrocyclohexane Hydrogenation to Cyclohexanone Oxime with High Selectivity. ChemCatChem 2013, 5, 2932–2938. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, S.; Hao, F.; Liu, P.; Luo, H. Nitrocyclohexane Hydrogenation to Cyclohexanone Oxime over Mesoporous Carbon Supported Pd Catalyst. Catal. Commun. 2014, 50, 9–12. [Google Scholar] [CrossRef]
- Liu, S.; Hao, F.; Liu, P.; Luo, H. The Influences of Preparation Methods on the Structure and Catalytic Performance of Single-Wall Carbon Nanotubes Supported Palladium Catalysts in Nitrocyclohexane Hydrogenation. RSC Adv. 2015, 5, 22863–22868. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Dong, J.; Liu, Y.M.; Cao, Y.; He, H.Y.; Wang, Y.D. An Efficient Noble-Metal-Free Supported Copper Catalyst for Selective Nitrocyclohexane Hydrogenation to Cyclohexanone Oxime. Chem. Commun. 2017, 53, 2930–2933. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Liu, S.; Cui, H.; Lv, Y.; Zhang, Y.; Liu, P.; Hao, F.; Xiong, W.; Luo, H. Activated Carbon Supported Non-Noble Bimetallic Ni-Based Catalysts for Nitrocyclohexane Hydrogenation to Cyclohexanone Oxime under Mild Conditions. ACS Sustain. Chem. Eng. 2021, 9, 3300–3315. [Google Scholar] [CrossRef]
- Kowalewski, E.; Krawczyk, M.; Słowik, G.; Kocik, J.; Pieta, I.S.; Chernyayeva, O.; Lisovytskiy, D.; Matus, K.; Śrębowata, A. Continuous-Flow Hydrogenation of Nitrocyclohexane toward Value-Added Products with CuZnAl Hydrotalcite Derived Materials. Appl. Catal. A Gen. 2021, 618, 118134. [Google Scholar] [CrossRef]
- Wang, X.; Perret, N.; Keane, M.A. Gas Phase Hydrogenation of Nitrocyclohexane over Supported Gold Catalysts. Appl. Catal. A Gen. 2013, 467, 575–584. [Google Scholar] [CrossRef]
- Kowalewski, E.; Zawadzki, B.; Matus, K.; Nikiforow, K.; Śrębowata, A. Continuous-Flow Hydrogenation over Resin Supported Palladium Catalyst for the Synthesis of Industrially Relevant Chemicals. React. Kinet. Mech. Catal. 2021, 132, 717–728. [Google Scholar] [CrossRef]
- Marcos, F.C.F.; Assaf, J.M.; Assaf, E.M. CuFe and CuCo Supported on Pillared Clay as Catalysts for CO2 Hydrogenation into Value-Added Products in One-Step. Mol. Catal. 2018, 458, 297–306. [Google Scholar] [CrossRef]
- Huang, Z.; Barnett, K.J.; Chada, J.P.; Brentzel, Z.J.; Xu, Z.; Dumesic, J.A.; Huber, G.W. Hydrogenation of γ-Butyrolactone to 1,4-Butanediol over CuCo/TiO2 Bimetallic Catalysts. ACS Catal. 2017, 7, 8429–8440. [Google Scholar] [CrossRef]
- Gou, X.; Okejiri, F.; Zhang, Z.; Liu, M.; Liu, J.; Chen, H.; Chen, K.; Lu, X.; Ouyang, P.; Fu, J. Tannin-Derived Bimetallic CuCo/C Catalysts for an Efficient In-Situ Hydrogenation of Lauric Acid in Methanol-Water Media. Fuel Process. Technol. 2020, 205, 106426. [Google Scholar] [CrossRef]
- Hao, P.; Zuo, J.; Tong, W.; Lin, J.; Wang, Q.; Liu, Z. Selective Hydrogenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst. Front. Chem. 2022, 10, 370. [Google Scholar] [CrossRef]
- Bailliard-Letournel, R.M.; Gomez Cobo, A.J.; Mirodatos, C.; Primet, M.; Dalmon, J.A. About the Nature of the Co-Cu Interaction in Co-Based Catalysts for Higher Alcohols Synthesis. Catal. Lett. 1989, 2, 149–156. [Google Scholar] [CrossRef]
- Mouaddib, N.; Perrichon, V.; Martin, G.A. Characterization of Copper-Cobalt Catalysts for Alcohol Synthesis from Syngas. Appl. Catal. A Gen. 1994, 118, 63–72. [Google Scholar] [CrossRef]
- Chaumette, P.; Courty, P.; Kiennemann, A.; Kieffer, R.; Boujana, S.; Martin, G.A.; Dalmon, J.A.; Meriaudeau, P.; Mirodatos, C.; Hölhein, B.; et al. Evolution of Alcohol Synthesis Catalysts under Syngas. Ind. Eng. Chem. Res. 1994, 33, 1460–1467. [Google Scholar] [CrossRef]
- Smith, M.L.; Campos, A.; Spivey, J.J. Reduction Processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 Catalysts. Catal. Today 2012, 182, 60–66. [Google Scholar] [CrossRef]
- Kim, J.Y.; Rodriguez, J.A.; Hanson, J.C.; Frenkel, A.I.; Lee, P.L. Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. J. Am. Chem. Soc. 2003, 125, 10684–10692. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Kim, J.Y.; Hanson, J.C.; Pérez, M.; Frenkel, A.I. Reduction of CuO in H2: In Situ Time-Resolved XRD Studies. Catal. Lett. 2003, 85, 247–254. [Google Scholar] [CrossRef]
- Wang, Z.; Ban, L.; Meng, P.; Li, H.; Zhao, Y. Ethynylation of Formaldehyde over CuO/SiO2 Catalysts Modified by Mg Species: Effects of the Existential States of Mg Species. Nanomaterials 2019, 9, 1137. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Ishibe, H. Suppression of CO By-Production in Steam Reforming of Methanol by Addition of Zinc Oxide to Silica-Supported Copper Catalyst. J. Catal. 2009, 268, 282–289. [Google Scholar] [CrossRef]
- Van Steen, E.; Sewell, G.S.; Makhothe, R.A.; Micklethwaite, C.; Manstein, H.; De Lange, M.; O’Connor, C.T. TPR Study on the Preparation of Impregnated Co/SiO2 Catalysts. J. Catal. 1996, 162, 220–229. [Google Scholar] [CrossRef]
- Saib, A.M.; Borgna, A.; van de Loosdrecht, J.; van Berge, P.J.; Geus, J.W.; Niemantsverdriet, J.W. Preparation and Characterisation of Spherical Co/SiO2 Model Catalysts with Well-Defined Nano-Sized Cobalt Crystallites and a Comparison of Their Stability against Oxidation with Water. J. Catal. 2006, 239, 326–339. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Lynch, J.; Bazin, D.; Rebours, B.; Zanier, N.; Moisson, B.; Chaumette, P. Reducibility of Cobalt Species in Silica-Supported Fischer–Tropsch Catalysts. J. Catal. 1997, 168, 16–25. [Google Scholar] [CrossRef]
- Deng, S.; Chu, W.; Xu, H.; Shi, L.; Huang, L. Effects of Impregnation Sequence on the Microstructure and Performances of Cu-Co Based Catalysts for the Synthesis of Higher Alcohols. J. Nat. Gas Chem. 2008, 17, 369–373. [Google Scholar] [CrossRef]
- Cesar, D.V.; Peréz, C.A.; Salim, V.M.M.; Schmal, M. Stability and Selectivity of Bimetallic Cu–Co/SiO2 Catalysts for Cyclohexanol Dehydrogenation. Appl. Catal. A Gen. 1999, 176, 205–212. [Google Scholar] [CrossRef]
- Fierro, G.; Lo Jacono, M.; Inversi, M.; Dragone, R.; Porta, P. TPR and XPS Study of Cobalt–Copper Mixed Oxide Catalysts: Evidence of a Strong Co–Cu Interaction. Top. Catal. 2000, 10, 39–48. [Google Scholar] [CrossRef]
- Brands, D.S.; Poels, E.K.; Bliek, A. Ester Hydrogenolysis over Promoted Cu/SiO2 Catalysts. Appl. Catal. A Gen. 1999, 184, 279–289. [Google Scholar] [CrossRef]
- Zhou, H.; Song, J.; Fan, H.; Zhang, B.; Yang, Y.; Hu, J.; Zhu, Q.; Han, B. Cobalt Catalysts: Very Efficient for Hydrogenation of Biomass-Derived Ethyl Levulinate to Gamma-Valerolactone under Mild Conditions. Green Chem. 2014, 16, 3870–3875. [Google Scholar] [CrossRef]
Parameter\Material | SiO2 | Cu/SiO2 | CuCo(3:1)/SiO2 | CuCo(1:1)/SiO2 | CuCo(1:3)/SiO2 | Co/SiO2 |
---|---|---|---|---|---|---|
Surface area [m2/g] | 240 ± 5 | 230 ± 5 | 230 ± 5 | 230 ± 5 | 230 ± 5 | 230 ± 5 |
Pore volume [cm3/g] | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Average pore diameter [nm] | 17 | 17 | 17 | 17 | 17 | 17 |
Reactant | Nitrocyclohexane | Cyclohexanone Oxime | Nitrocyclohexane + Cyclohexanone Oxime |
---|---|---|---|
Catalyst | Products | ||
Cu/SiO2 | Cyclohexylamine Cyclohexanone | Cyclohexanone | Cyclohexylamine Cyclohexanone Dicyclohexylamine |
Co/SiO2 | Cyclohexylamine Cyclohexanol | Cyclohexylamine Cyclohexanone Dicyclohexylamine | Cyclohexylamine Cyclohexanone Dicyclohexylamine |
CuCo(1:1)/SiO2 | Cyclohexylamine Cyclohexanol | Cyclohexylamine Cyclohexanone Cyclohexanol Dicyclohexylamine | Cyclohexylamine Cyclohexanone Dicyclohexylamine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalewski, E.; Matus, K.; Gajek, A.; Śrębowata, A. Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors. Catalysts 2022, 12, 1062. https://doi.org/10.3390/catal12091062
Kowalewski E, Matus K, Gajek A, Śrębowata A. Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors. Catalysts. 2022; 12(9):1062. https://doi.org/10.3390/catal12091062
Chicago/Turabian StyleKowalewski, Emil, Krzysztof Matus, Arkadiusz Gajek, and Anna Śrębowata. 2022. "Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors" Catalysts 12, no. 9: 1062. https://doi.org/10.3390/catal12091062
APA StyleKowalewski, E., Matus, K., Gajek, A., & Śrębowata, A. (2022). Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors. Catalysts, 12(9), 1062. https://doi.org/10.3390/catal12091062