Interventions to the Spontaneous Fabrication of Hierarchical ZSM-5 Zeolites by Fluorination-Alkaline Treatment
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Sample Preparation
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vermeiren, W.; Gilson, J.-P. Impact of Zeolites on the Petroleum and Petrochemical Industry. Top. Catal. 2009, 52, 1131–1161. [Google Scholar] [CrossRef]
- Primo, A.; Garcia, H. Zeolites as catalysts in oil refining. Chem. Soc. Rev. 2014, 43, 7548–7561. [Google Scholar] [CrossRef] [PubMed]
- Choudary, N.V.; Newalkar, B.L. Use of zeolites in petroleum refining and petrochemical processes: Recent advances. J. Porous Mater. 2011, 18, 685–692. [Google Scholar] [CrossRef]
- Dai, W.J.; Zhang, L.N.; Liu, R.Z.; Wu, G.J.; Guan, N.J.; Li, L.D. Plate-Like ZSM-5 Zeolites as Robust Catalysts for the Cracking of Hydrocarbons. ACS Appl. Mater. Interfaces 2022, 14, 11415–11424. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.A.; Dusselier, M.; Sels, B.F. Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries? Angew. Chem. Int. Ed. 2014, 53, 8621–8626. [Google Scholar] [CrossRef]
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef]
- Perego, C.; Millini, R. Porous materials in catalysis: Challenges for mesoporous materials. Chem. Soc. Rev. 2013, 42, 3956–3976. [Google Scholar] [CrossRef]
- Nuttens, N.; Verboekend, D.; Deneyer, A.; Van Aelst, J.; Sels, B.F. Potential of Sustainable Hierarchical Zeolites in the Valorization of α-Pinene. Chemsuschem 2015, 8, 1197–1205. [Google Scholar] [CrossRef]
- Dapsens, P.Y.; Mondelli, C.; Pérez-Ramírez, J. Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. ACS Catal. 2012, 2, 1487–1499. [Google Scholar] [CrossRef]
- Smith, K.; El-Hiti, G.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem. 2011, 13, 1579–1608. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, Q.; Li, J.; Wang, X.; Terasaki, O.; Xu, J.; Yu, J. Protozeolite-Seeded Synthesis of Single-Crystalline Hierarchical Zeolites with Facet-Shaped Mesopores and Their Catalytic Application in Methanol-to-Propylene Conversion. Angew. Chem. Int. Ed. 2022, 134, e202205716. [Google Scholar] [CrossRef]
- Mardiana, S.; Azhari, N.J.; Ilmi, T.; Kadja, G.T.M. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel 2022, 309, 122119. [Google Scholar] [CrossRef]
- Verboekend, D.; Pérez-Ramírez, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 2011, 1, 879–890. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Mitchell, S.; Verboekend, D.; Milina, M.; Michels, N.-L.; Krumeich, F.; Marti, N.; Erdmann, M. Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization. ChemCatChem 2011, 3, 1731–1734. [Google Scholar] [CrossRef]
- Kerstens, D.; Smeyers, B.; Waeyenberg, J.V.; Zhang, Q.; Yu, J.; Sels, B.F. State of the Art and Perspectives of Hierarchical Zeolites: Practical Overview of Synthesis Methods and Use in Catalysis. Adv. Mater. 2020, 32, 2004690. [Google Scholar] [CrossRef]
- Fernandez, S.; Ostraat, M.L.; Zhang, K. Toward rational design of hierarchical beta zeolites: An overview and beyond. AlChE J. 2020, 66, e16943. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Wang, J.; Yu, Z.; Xiang, Y.; Kong, L.; Liu, H.; Ma, A. Hierarchical zeolites obtained by alkaline treatment for enhanced n-pentane catalytic cracking. Fuel 2022, 313, 122669. [Google Scholar] [CrossRef]
- Abdulridha, S.; Zhang, R.; Xu, S.; Tedstone, A.; Ou, X.; Gong, J.; Mao, B.; Frogley, M.; Bawn, C.; Zhou, Z.; et al. An efficient microwave-assisted chelation (MWAC) post-synthetic modification method to produce hierarchical Y zeolites. Microporous Mesoporous Mater. 2021, 311, 110715. [Google Scholar] [CrossRef]
- Ogura, M.; Shinomiya, S.-Y.; Tateno, J.; Nara, Y.; Nomura, M.; Kikuchi, E.; Matsukata, M. Alkali-treatment technique—New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal. A Gen. 2001, 219, 33–43. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Moulijn, J.A.; Pérez-Ramírez, J. Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent. Chem. Eur. J. 2005, 11, 4983–4994. [Google Scholar] [CrossRef]
- de Jong, K.P.; Zecevic, J.; Friedrich, H.; de Jongh, P.E.; Bulut, M.; van Donk, S.; Kenmogne, R.; Finiels, A.; Hulea, V.; Fajula, F. Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts. Angew. Chem. Int. Ed. 2010, 49, 10074–10078. [Google Scholar] [CrossRef] [PubMed]
- van Laak, A.N.C.; Sagala, S.L.; Zecevic, J.; Friedrich, H.; de Jongh, P.E.; de Jong, K.P. Mesoporous mordenites obtained by sequential acid and alkaline treatments—Catalysts for cumene production with enhanced accessibility. J. Catal. 2010, 276, 170–180. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Yu, L.; Miao, S.; Liu, Z.; Zhang, S.; Xie, S.; Xu, L. Preparation of hierarchical mordenite zeolites by sequential steaming-acid leaching-alkaline treatment. Microporous Mesoporous Mater. 2014, 191, 18–26. [Google Scholar] [CrossRef]
- Sammoury, H.; Toufaily, J.; Cherry, K.; Hamieh, T.; Pouilloux, Y.; Pinard, L. Impact of desilication of * BEA zeolites on the catalytic performance in hydroisomerization of n-C10. Appl. Catal. A Gen. 2018, 551, 1–12. [Google Scholar] [CrossRef]
- van Laak, A.N.C.; Zhang, L.; Parvulescu, A.N.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; de Jong, K.P.; de Jongh, P.E. Alkaline treatment of template containing zeolites: Introducing mesoporosity while preserving acidity. Catal. Today 2011, 168, 48–56. [Google Scholar] [CrossRef]
- Zhang, D.; Jin, C.; Zou, M.; Huang, S. Mesopore Engineering for Well-Defined Mesoporosity in Al-Rich Aluminosilicate Zeolites. Chem. Eur. J. 2019, 25, 2675–2683. [Google Scholar] [CrossRef]
- Groen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Alkaline Posttreatment of MFI Zeolites. From Accelerated Screening to Scale-up. Ind. Eng. Chem. Res. 2007, 46, 4193–4201. [Google Scholar] [CrossRef]
- Yu, L.; Xie, S.; Huang, S.; Xu, L. A Facile Top-Down Protocol for Postsynthesis Modification of Hierarchical Aluminum-Rich MFI Zeolites. Chem. Eur. J. 2015, 21, 1048–1054. [Google Scholar] [CrossRef]
- Groen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination. Microporous Mesoporous Mater. 2005, 87, 153–161. [Google Scholar] [CrossRef]
- Silaghi, M.C.; Chizallet, C.; Raybaud, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous Mesoporous Mater. 2014, 191, 82–96. [Google Scholar] [CrossRef]
- Yang, S.; Yu, C.; Yu, L.; Miao, S.; Zou, M.; Jin, C.; Zhang, D.; Xu, L.; Huang, S. Bridging Dealumination and Desilication for the Synthesis of Hierarchical MFI Zeolites. Angew. Chem. Int. Ed. 2017, 56, 12553–12556. [Google Scholar] [CrossRef] [PubMed]
Sample | Yield [a] [%] | SBET [b] [m2g−1] | Smicro [c] [m2g−1] | Smeso [d] [m2g−1] | Vmicro [d] [cm3g−1] | Vmeso [e] [cm3g−1] | Vpore [f] [cm3g−1] |
---|---|---|---|---|---|---|---|
Z5 | - | 377 | 362 | 15 | 0.16 | 0.06 | 0.22 |
AT(65,30) | 65 | 439 | 358 | 81 | 0.16 | 0.18 | 0.34 |
AT(65,60)-aFZ5 | 72 | 452 | 277 | 175 | 0.12 | 0.29 | 0.41 |
AT(65,60)-bFZ5 | 84 | 440 | 332 | 108 | 0.15 | 0.25 | 0.40 |
AT(80,30) | 42 | 446 | 221 | 225 | 0.10 | 0.34 | 0.44 |
AT(80,30)-aFZ5 | 66 | 475 | 280 | 195 | 0.12 | 0.35 | 0.47 |
AT(80,30)-bFZ5 | 79 | 445 | 324 | 121 | 0.15 | 0.29 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Hong, M.; Yu, Y.; Liu, G.; Zang, J.; Zhang, D.; Gong, H.; Yang, K.; Huang, S. Interventions to the Spontaneous Fabrication of Hierarchical ZSM-5 Zeolites by Fluorination-Alkaline Treatment. Catalysts 2022, 12, 954. https://doi.org/10.3390/catal12090954
Guo Z, Hong M, Yu Y, Liu G, Zang J, Zhang D, Gong H, Yang K, Huang S. Interventions to the Spontaneous Fabrication of Hierarchical ZSM-5 Zeolites by Fluorination-Alkaline Treatment. Catalysts. 2022; 12(9):954. https://doi.org/10.3390/catal12090954
Chicago/Turabian StyleGuo, Zifeng, Meihua Hong, Yonghua Yu, Guanfeng Liu, Jiazong Zang, Dazhi Zhang, Huimin Gong, Keyu Yang, and Shengjun Huang. 2022. "Interventions to the Spontaneous Fabrication of Hierarchical ZSM-5 Zeolites by Fluorination-Alkaline Treatment" Catalysts 12, no. 9: 954. https://doi.org/10.3390/catal12090954
APA StyleGuo, Z., Hong, M., Yu, Y., Liu, G., Zang, J., Zhang, D., Gong, H., Yang, K., & Huang, S. (2022). Interventions to the Spontaneous Fabrication of Hierarchical ZSM-5 Zeolites by Fluorination-Alkaline Treatment. Catalysts, 12(9), 954. https://doi.org/10.3390/catal12090954