Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications
Abstract
:1. Introduction
2. Experimentation
2.1. Reagents and Chemicals
2.2. Fabrication of BCPE
2.3. Fabrication of the ASP- and GLU-Modified Carbon Paste Electrodes
2.4. Electrochemical Setup
2.5. Computational Methods
3. Results and Discussion
3.1. CV Response of DA at GLU-MCPE
3.2. CV Response of DA at ASP-MCPE
3.3. Comparison of the DA Response at ASP-MCPE and GLU-MCPE
3.4. Global ET Properties of ASP and GLU
3.5. Local ET Properties (FMO and Analytical Fukui) of ASP and GLU
3.6. Effect of Concentration of DA at ASP-MCPE and GLU-MCPE
3.7. Determination of DA in Commercial Injection Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robinson, D.L.; Hermans, A.; Seipel, A.T.; Wightman, R.M. Monitoring Rapid Chemical Communication in the Brain. Chem. Rev. 2008, 108, 2554–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herlenius, E.; Lagercrantz, H. Development of neurotransmitter systems during critical periods. Exp. Neurol. 2004, 190, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, F.; Strafella, A.P. Behavioral disorders in Parkinson’s disease: The role of dopamine. Park. Relat. Disord. 2014, 20, S10–S12. [Google Scholar] [CrossRef] [PubMed]
- Ba, F.; Martin, W.W. Dopamine transporter imaging as a diagnostic tool for parkinsonism and related disorders in clinical practice. Park. Relat. Disord. 2015, 21, 87–94. [Google Scholar] [CrossRef]
- Kim, J.; Jeon, M.; Paeng, K.J.; Paeng, I.R. Competitive enzyme-linked immunosorbent assay for the determination of catecholamine, dopamine in serum. Anal. Chim. Acta 2008, 619, 87–93. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, C.; Wang, C.; Pu, F.; Ren, J.; Qu, X. Silver nanoprobe for sensitive and selective colorimetric detection of dopaminevia robust Ag–catechol interaction. Chem. Commun. 2011, 47, 1181–1183. [Google Scholar] [CrossRef]
- Qin, W.W.; Wang, S.P.; Li, J.; Peng, T.H.; Xu, Y.; Wang, K.; Shi, J.Y.; Fan, C.H.; Li, D. Visualizing dopamine released from living cells using a nanoplasmonic probe. Nanoscale 2015, 7, 15070–15074. [Google Scholar] [CrossRef]
- Olefirowicz, T.M.; Ewing, A.G. Dopamine concentration in the cytoplasmic compartment of single neurons determined by capillary electrophoresis. J. Neurosci. Methods 1990, 34, 11–15. [Google Scholar] [CrossRef]
- Adkins, E.M.; Samuvel, D.J.; Fog, J.U.; Eriksen, J.; Jayanthi, L.D.; Vaegter, C.B.; Ramamoorthy, S.; Gether, U. Membrane Mobility and Microdomain Association of the Dopamine Transporter Studied with Fluorescence Correlation Spectroscopy and Fluorescence Recovery after Photobleaching. Biochemistry 2007, 46, 10484–10497. [Google Scholar] [CrossRef]
- An, J.H.; Choi, D.K.; Lee, K.J.; Choi, J.W. Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons’s model. Biosens. Bioelectron. 2015, 67, 739–746. [Google Scholar] [CrossRef]
- Jauhar, S.; McCutcheon, R.; Borgan, F.; Veronese, M.; Nour, M.; Pepper, F.; Rogdaki, M.; Stone, J.; Egerton, A.; Turkheimer, F.; et al. The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: A cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry 2018, 5, 816–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettingill, T.; Strange, R.; Blackburn, N. Carbonmonoxy dopamine beta-hydroxylase. Structural characterization by Fourier transform infrared, fluorescence, and X-ray absorption spectroscopy. J. Biol. Chem. 1991, 266, 16996–17003. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, G.K.; Swamy, B.E.K.; Casillas, N.; Flores-Moreno, R. Analytical Fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of Triton X-100 by immobilization method. Electrochim. Acta 2017, 258, 1025–1034. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Swamy, B.E.K.; Chandrashekar, B.N.; Flores-Moreno, R. Theoretical and cyclic voltammetric studies on electrocatalysis of benzethonium chloride at carbon paste electrode for detection of dopamine in presence of ascorbic acid. J. Mol. Liq. 2017, 240, 395–401. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Kumara Swamy, B.; Rajendrachari, S.; Sharma, S.; Flores-Moreno, R. Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. J. Mol. Liq. 2021, 334, 116348. [Google Scholar] [CrossRef]
- Kudur Jayaprakash, G.; Kumara Swamy, B.E.; Nicole González Ramírez, H.; Tumbre Ekanthappa, M.; Flores-Moreno, R. Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine. New J. Chem. 2018, 42, 4501–4506. [Google Scholar] [CrossRef]
- Kudur Jayaprakash, G.; Kumara Swamy, B.E.; Sharma, S.; Santoyo-Flores, J.J. Analyzing electron transfer properties of ferrocene in gasoline by cyclic voltammetry and theoretical methods. Microchem. J. 2020, 158, 105116. [Google Scholar] [CrossRef]
- Kalcher, K. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 1990, 2, 419–433. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Wang, J.; Naser, N.; Angnes, L.; Wu, H.; Chen, L. Metal-dispersed carbon paste electrodes. Anal. Chem. 1992, 64, 1285–1288. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Barek, J.; Zima, J. Carbon Paste Electrodes in Modern Electroanalysis. Crit. Rev. Anal. Chem. 2001, 31, 311–345. [Google Scholar] [CrossRef]
- Winiarski, J.P.; Tavares, B.F.; de Fátima Ulbrich, K.; de Campos, C.E.M.; Souza, A.A.; Souza, S.M.G.U.; Jost, C.L. Development of a multianalyte electrochemical sensor for depression biomarkers based on a waste of the steel industry for a sustainable and one-step electrode modification. Microchem. J. 2022, 175, 107141. [Google Scholar] [CrossRef]
- Decarli, N.O.; Zapp, E.; de Souza, B.S.; Santana, E.R.; Winiarski, J.P.; Vieira, I.C. Biosensor based on laccase-halloysite nanotube and imidazolium zwitterionic surfactant for dopamine determination. Biochem. Eng. J. 2022, 186, 108565. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Flores-Moreno, R.; Swamy, B.E.K.; Mohanty, K.; Dhiman, P. Pre/post electron transfer regioselectivity at glycine modified graphene electrode interface for voltammetric sensing applications. J. Electrochem. Sci. Eng. 2022, 12, 1001–1008. [Google Scholar] [CrossRef]
- Kumar, R.S.; Jayaprakash, G.K.; Manjappa, S.; Kumar, M.; Kumar, A.P. Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples. J. Electrochem. Sci. Eng. 2022, 12, 1243–1250. [Google Scholar] [CrossRef]
- de Fatima Ulbrich, K.; Winiarski, J.P.; Jost, C.L.; Maduro de Campos, C.E. Mechanochemical synthesis of a Ni3-xTe2 nanocrystalline composite and its application for simultaneous electrochemical detection of dopamine and adrenaline. Compos. Part B Eng. 2020, 183, 107649. [Google Scholar] [CrossRef]
- Zamarchi, F.; Silva, T.R.; Winiarski, J.P.; Santana, E.R.; Vieira, I.C. Polyethylenimine-Based Electrochemical Sensor for the Determination of Caffeic Acid in Aromatic Herbs. Chemosensors 2022, 10, 357. [Google Scholar] [CrossRef]
- Flores-Álvarez, J.; Cortés-Arriagada, D.; Reyes-Gómez, J.; Gómez-Sandoval, Z.; Rojas-Montes, J.; Pineda-Urbina, K. 2-Mercaptobenzothiazole modified carbon paste electrode as a novel copper sensor: An electrochemical and computational study. J. Electroanal. Chem. 2021, 888, 115208. [Google Scholar] [CrossRef]
- Estrada-Aldrete, J.; Hernández-López, J.; García-León, A.; Peralta-Hernández, J.; Cerino-Córdova, F. Electroanalytical determination of heavy metals in aqueous solutions by using a carbon paste electrode modified with spent coffee grounds. J. Electroanal. Chem. 2020, 857, 113663. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.B. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim. Acta 2007, 52, 7210–7216. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Safaei, M.; Zhang, K.; Van Le, Q.; Varma, R.S.; Jang, H.W.; Shokouhimehr, M. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Adv. 2020, 10, 21561–21581. [Google Scholar] [CrossRef] [PubMed]
- Vajdle, O.; Šekuljica, S.; Guzsvány, V.; Nagy, L.; Kónya, Z.; Avramov Ivić, M.; Mijin, D.; Petrović, S.; Anojčić, J. Use of carbon paste electrode and modified by gold nanoparticles for selected macrolide antibiotics determination as standard and in pharmaceutical preparations. J. Electroanal. Chem. 2020, 873, 114324. [Google Scholar] [CrossRef]
- Kummari, S.; Sunil Kumar, V.; Yugender Goud, K.; Vengatajalabathy Gobi, K. Nano-Au particle decorated poly-(3-amino-5-hydroxypyrazole) coated carbon paste electrode for in-vitro detection of valacyclovir. J. Electroanal. Chem. 2022, 904, 115859. [Google Scholar] [CrossRef]
- Martínez, J. Local reactivity descriptors from degenerate frontier molecular orbitals. Chem. Phys. Lett. 2009, 478, 310–322. [Google Scholar] [CrossRef]
- Morell, C.; Grand, A.; Toro-Labbéá, A. Theoretical support for using the △f(r) descriptor. Chem. Phys. Lett. 2006, 425, 342–346. [Google Scholar] [CrossRef]
- Martínez-Araya, J.I. Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J. Math. Chem. 2015, 53, 451–465. [Google Scholar] [CrossRef]
- Jayaprakash, G.K. Pre-post redox electron transfer regioselectivity at the alanine modified nano graphene electrode interface. Chem. Phys. Lett. 2022, 789, 139295. [Google Scholar] [CrossRef]
- Barrera, Y.; Anderson, J.S. Predicting the reactivity of unsaturated molecules to methyl radical addition using a radical two-parameter general-purpose reactivity indicator. Chem. Phys. Lett. 2022, 791, 139333. [Google Scholar] [CrossRef]
- Jayaprakash, G.K.; Flores-Moreno, R. Regioselectivity in hexagonal boron nitride co-doped graphene. New J. Chem. 2018, 42, 18913–18918. [Google Scholar] [CrossRef]
- Zhu, M.; Li, R.; Lai, M.; Ye, H.; Long, N.; Ye, J.; Wang, J. Copper nanoparticles incorporating a cationic surfactant-graphene modified carbon paste electrode for the simultaneous determination of gatifloxacin and pefloxacin. J. Electroanal. Chem. 2020, 857, 113730. [Google Scholar] [CrossRef]
- Flores-Moreno, R.; Pineda-Urbina, K.; Gómez-Sandoval, Z. Sinapsis, Version XII-V; Sinapsis Developers: Buenos Aires, Argentina, 2012. [Google Scholar]
- Geudtner, G.; Calaminici, P.; Carmona-Espíndola, J.; del Campo, J.M.; Domínguez-Soria, V.D.; Moreno, R.F.; Gamboa, G.U.; Goursot, A.; Köster, A.M.; Reveles, J.U.; et al. deMon2k. WIREs Comput. Mol. Sci. 2012, 2, 548–555. [Google Scholar] [CrossRef]
- Flores-Moreno, R.; Köster, A.M. Auxiliary density perturbation theory. Chem. Phys. 2008, 128, 134105. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Godbout, N.; Salahub, D.R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation. Can. J. Chem. 1992, 70, 560–571. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, D.A.; Case, D.A.; Caldwell, J.W.; Ross, W.S.; Cheatham, T.E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995, 91, 1–41. [Google Scholar] [CrossRef]
- Allouche, A.R. Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Rodríguez, A.; Rodríguez-Fernández, R.; A. Vázquez, S.; L. Barnes, G.; Stewart, J.J.P.; Martínez-Núñez, E. tsscds2018: A code for automated discovery of chemical reaction mechanisms and solving the kinetics. J. Comput. Chem. 2018, 39, 1922–1930. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
El. No. | i/A |
---|---|
BCPE | 76.129 |
0.02 g GLU-MCPE | 109.084 |
0.04 g GLU-MCPE | 169.567 |
0.06 g GLU-MCPE | 83.766 |
0.08 g GLU-MCPE | 94.124 |
0.10 g GLU-MCPE | 86.981 |
El. No. | i/A |
---|---|
BCPE | 76.129 |
0.02 g ASP-MCPE | 133.387 |
0.04 g ASP-MCPE | 150.057 |
0.06 g ASP-MCPE | 267.924 |
0.08 g ASP-MCPE | 200.080 |
0.10 g ASP-MCPE | 155.013 |
SI/No. | Model | IP | EA | S | |||
---|---|---|---|---|---|---|---|
eV | eV | eV | eV | eV | eV | ||
1 | ASP | 8.076 | 0.403 | 3.836 | 0.130 | 4.941 | 0.702 |
2 | GLU | 8.008 | 0.748 | 3.630 | 0.137 | 4.664 | 0.286 |
SI/No. | Model | B.E. | E | E | |
---|---|---|---|---|---|
eV | V | V | V | ||
1 | ASP | −0.163 | 0.128 | 0.192 | 0.064 |
2 | GLU | −0.0928 | 0.162 | 0.216 | 0.054 |
SI/No. | DA Spiked | DA Sensed | Deviation | Recovery |
---|---|---|---|---|
(L) | (L) | (L) | (%) | |
1 | 15 | 14.85 | −0.15 | 99.0 |
2 | 20 | 19.90 | −0.10 | 99.5 |
SI/No. | DA Spiked | DA Sensed | Deviation | Recovery |
---|---|---|---|---|
(L) | (L) | (L) | (%) | |
1 | 20 | 19.80 | −0.20 | 99.0 |
2 | 25 | 24.90 | −0.10 | 99.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudur Jayaprakash, G.; Swamy, B.E.K.; Flores-Moreno, R.; Pineda-Urbina, K. Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications. Catalysts 2023, 13, 100. https://doi.org/10.3390/catal13010100
Kudur Jayaprakash G, Swamy BEK, Flores-Moreno R, Pineda-Urbina K. Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications. Catalysts. 2023; 13(1):100. https://doi.org/10.3390/catal13010100
Chicago/Turabian StyleKudur Jayaprakash, Gururaj, B. E. Kumara Swamy, Roberto Flores-Moreno, and Kayim Pineda-Urbina. 2023. "Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications" Catalysts 13, no. 1: 100. https://doi.org/10.3390/catal13010100
APA StyleKudur Jayaprakash, G., Swamy, B. E. K., Flores-Moreno, R., & Pineda-Urbina, K. (2023). Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications. Catalysts, 13(1), 100. https://doi.org/10.3390/catal13010100