Selective Furfuryl Alcohol Production from Furfural via Bio-Electrocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Rh-Complex Fixed Electrode
2.2. Catalytic Regeneration of NADH by the Rh-Complex Fixed Electrode
2.3. Bio-Electrocatalysis Production of Furfural Alcohol from Furfural
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Rh-Complex Fixed Electrode
3.3. Electro-Chemical NADH Regeneration
3.4. Bio-Electrocatalytic Hydrogenation of Furfural
3.5. Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teng, X.N.; Si, Z.H.; Li, S.F.; Yang, Y.H.; Wang, Z.; Li, G.Z.; Zhao, J.; Cai, D.; Qin, P.Y. Tin-loaded sulfonated rape pollen for efficient catalytic production of furfural from corn stover. Ind. Crops Prod. 2020, 151, 112481. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, D.; Qin, Y.; Liu, D.; Zhao, X. High value-added monomer chemicals and functional bio-based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels Bioprod. Biorefining 2020, 14, 371–401. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhuang, Y.; Zhao, H.; Zhan, P.; Ren, C.; Su, C.; Ren, W.; Zhang, J.; Cai, D.; Qin, P. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions. Chin. J. Chem. Eng. 2022, in press.
- Millan, G.G.; Sixta, H. Towards the green synthesis of furfuryl alcohol in a one-pot system from xylose: A review. Catalysts 2020, 10, 1101. [Google Scholar] [CrossRef]
- Rodriguez, A.; Rache, L.Y.; Brijaldo, M.H.; Romanelli, G.P.; Luque, R.; Martinez, J.J. Biocatalytic transformation of furfural into furfuryl alcohol using resting cells of Bacillus cereus. Catal. Today 2021, 372, 220–225. [Google Scholar] [CrossRef]
- Cao, Y.; Noël, T. Efficient electrocatalytic reduction of furfural to furfuryl alcohol in a microchannel flow reactor. Org. Process. Res. Dev. 2019, 23, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.F.; Zhang, L.G.; Zhang, B.; Guo, X.C.; Mu, X.D. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Sci. Rep. 2016, 6, 28558. [Google Scholar] [CrossRef]
- Yu, H.B.; Zhao, J.H.; Wu, C.Z.; Yan, B.; Zhao, S.L.; Yin, H.F.; Zhou, S.H. Highly efficient ir-coox hybrid nanostructures for the selective hydrogenation of furfural to furfuryl alcohol. Langmuir 2021, 37, 1894–1901. [Google Scholar] [CrossRef]
- Audemar, M.; Ciotonea, C.; Vigier, K.D.; Royer, S.; Ungureanu, A.; Dragoi, B.; Dumitriu, E.; Jerome, F. Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst. ChemSusChem 2015, 8, 1885–1891. [Google Scholar] [CrossRef]
- Audemar, M.; Wang, Y.; Zhao, D.; Royer, S.; Jerome, F.; Len, C.; De Oliveira Vigier, K. Synthesis of furfuryl alcohol from furfural: A comparison between batch and continuous flow reactors. Energies 2020, 13, 1002. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhu, Q.; Zhuang, Y.; Zhan, P.; Qi, Y.; Ren, W.; Si, Z.; Cai, D.; Yu, S.; Qin, P. Hierarchical ZnIn2S4 microspheres as photocatalyst for boosting the selective biohydrogenation of furfural into furfuryl alcohol under visible light irradiation. Green Chem. Eng. 2022, 3, 385–394. [Google Scholar] [CrossRef]
- Gong, X.-M.; Qin, Z.; Li, F.-L.; Zeng, B.-B.; Zheng, G.-W.; Xu, J.-H. Development of an engineered Ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor. ACS Catal. 2019, 9, 147–153. [Google Scholar] [CrossRef]
- Dellomonaco, C.; Clomburg, J.M.; Miller, E.N.; Gonzalez, R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476, 355–359. [Google Scholar] [CrossRef]
- Kang, C.; Hayes, R.; Sanchez, E.J.; Webb, B.N.; Li, Q.; Hooper, T.; Nissen, M.S.; Xun, L. Furfural reduction mechanism of a zinc-dependent alcohol dehydrogenase from Cupriavidus necator JMP134. Mol. Microbiol. 2012, 83, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Muschiol, J.; Huang, Y.; Sigurdardóttir, S.B.; von Solms, N.; Daugaard, A.E.; Wei, J.; Luo, J.; Xu, B.-H.; Zhang, S.; et al. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chem. 2018, 20, 4339–4348. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.Z.; He, Y.C. Chemoenzymatic synthesis of furfuryl alcohol from biomass in tandem reaction system. Appl. Biochem. Biotechnol. 2020, 190, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar] [CrossRef]
- Pietricola, G.; Chamorro, L.; Castellino, M.; Maureira, D.; Tommasi, T.; Hernández, S.; Wilson, L.; Fino, D.; Ottone, C. Covalent immobilization of dehydrogenases on carbon felt for reusable anodes with effective electrochemical cofactor regeneration. ChemistryOpen 2022, 11, e202200102. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Bai, D.; Zhang, X.; Yang, H.; Wang, J.; Liu, G.; Yue, J.; Ling, Y.; Zhou, D.; et al. Whole-cell biotransformation systems for reduction of prochiral carbonyl compounds to chiral alcohol in Escherichia coli. Sci. Rep. 2014, 4, 6750. [Google Scholar] [CrossRef] [Green Version]
- Salic, A.; Zelic, B. ADH-catalysed hexanol oxidation with fully integrated NADH regeneration performed in microreactors connected in series. RSC Adv. 2014, 4, 41714–41721. [Google Scholar] [CrossRef]
- Saba, T.; Burnett, J.W.H.; Li, J.; Kechagiopoulos, P.N.; Wang, X. A facile analytical method for reliable selectivity examination in cofactor NADH regeneration. Chem. Commun. 2020, 56, 1231–1234. [Google Scholar] [CrossRef]
- Wu, H.; Tian, C.; Song, X.; Liu, C.; Yang, D.; Jiang, Z. Methods for the regeneration of nicotinamide coenzymes. Green Chem. 2013, 15, 1773–1789. [Google Scholar] [CrossRef]
- Wang, X.D.; Saba, T.; Yiu, H.H.P.; Howe, R.F.; Anderson, J.A.; Shi, J.F. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2017, 2, 621–654. [Google Scholar] [CrossRef] [Green Version]
- Cahn, J.K.B.; Werlang, C.A.; Baumschlager, A.; Brinkmann-Chen, S.; Mayo, S.L.; Arnold, F.H. A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases. ACS Synth. Biol. 2017, 6, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, I.; Khan, T.; Omanovic, S. Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: The influence of electrode potential and electrode material. J. Mol. Catal. A Chem. 2014, 387, 86–91. [Google Scholar] [CrossRef]
- Kochius, S.; Park, J.B.; Ley, C.; Koenst, P.; Hollmann, F.; Schrader, J.; Holtmann, D. Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J. Mol. Catal. B Enzym. 2014, 103, 94–99. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Vasiliu, T.; Li, F.F.; Laaksonen, A.; Zhang, X.P.; Mocci, F.; Ji, X.Y. Novel artificial ionic cofactors for efficient electro-enzymatic conversion of CO2 to formic acid. J. CO2 Util. 2022, 60, 101978. [Google Scholar] [CrossRef]
- Song, H.-K.; Lee, S.H.; Won, K.; Park, J.H.; Kim, J.K.; Lee, H.; Moon, S.-J.; Kim, D.K.; Park, C.B. Electrochemical regeneration of NADH enhanced by platinum nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 1749–1752. [Google Scholar] [CrossRef]
- Hollmann, F.; Witholt, B.; Schmid, A. Cp*Rh(bpy)(H2O) (2+): A versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes. J. Mol. Catal. B-Enzym. 2002, 19, 167–176. [Google Scholar] [CrossRef]
- Vuorilehto, K.; Lutz, S.; Wandrey, C. Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry 2004, 65, 1–7. [Google Scholar] [CrossRef]
- Lee, L.G.; Whitesides, G.M. Enzyme-catalyzed organic synthesis: A comparison of strategies for in situ regeneration of NAD from NADH. J. Am. Chem. Soc. 1985, 107, 6999–7008. [Google Scholar] [CrossRef]
- Yu, S.S.; Zhang, S.D.; Li, K.N.; Yang, Q.; Wang, M.; Cai, D.; Tan, T.W.; Chen, B.Q. Furfuryl alcohol production with high selectivity by a novel visible-light driven biocatalysis process. ACS Sustain. Chem. Eng. 2020, 8, 15980–15988. [Google Scholar] [CrossRef]
- Zhang, L.; Etienne, M.; Vilà, N.; Le, T.X.H.; Kohring, G.-W.; Walcarius, A. Electrocatalytic biosynthesis using a Bucky paper functionalized by [Cp*Rh(bpy)Cl]+ and a renewable enzymatic layer. ChemCatChem 2018, 10, 4067–4073. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Pi, J.; Zhang, L.; Kuhn, A. Bulk electrocatalytic NADH cofactor regeneration with bipolar electrochemistry. Angew. Chem. Int. Ed. 2022, 61, e202111804. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, C.; Zheng, Z.; Zhang, X.; Zhang, L.; Kuhn, A. Fine-tuning the electrocatalytic regeneration of NADH cofactor using [Rh(Cp*)(bpy)Cl]+-functionalized metal–organic framework films. ACS Appl. Mater. Interfaces 2022, 14, 46673–46681. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, Y.Y.; Hua, Y.T.; Zhang, C.H.; Jia, C.C.; Ju, D.X.; Yu, C.M.; Li, P.; Liu, J. Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction. Angew. Chem. Int. Ed. 2022, 61, e202206283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, J.; Ji, M.; Liu, Y.; Wang, N.; Zhang, X.; Zhang, S.; Ji, X. Encapsulation of multiple enzymes in a metal–organic framework with enhanced electro-enzymatic reduction of CO2 to methanol. Green Chem. 2021, 23, 2362–2371. [Google Scholar] [CrossRef]
- Zhang, L.; Vilà, N.; Kohring, G.-W.; Walcarius, A.; Etienne, M. Covalent immobilization of (2,2′-bipyridyl) (pentamethylcyclopentadienyl)-Rhodium complex on a porous carbon electrode for efficient electrocatalytic NADH regeneration. ACS Catal. 2017, 7, 4386–4394. [Google Scholar] [CrossRef]
- Kim, S.-H.; Chung, G.-Y.; Kim, S.-H.; Vinothkumar, G.; Yoon, S.-H.; Jung, K.-D. Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition. Electrochim. Acta 2016, 210, 837–845. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Noh, H.; Kung, C.-W.; Buru, C.T.; Wang, X.; Zhang, X.; Farha, O.K. Stabilization of formate dehydrogenase in a metal–organic framework for bioelectrocatalytic reduction of CO2. Angew. Chem. Int. Ed. 2019, 58, 7682–7686. [Google Scholar] [CrossRef]
- Zhan, P.; Yang, S.; Chu, M.G.; Zhu, Q.; Zhuang, Y.; Ren, C.; Chen, Z.Y.; Lu, L.; Qin, P.Y. Amorphous copper-modified gold interface promotes selective CO2 electroreduction to CO. ChemCatChem 2022, 14, e202200109. [Google Scholar] [CrossRef]
- Chambers, M.B.; Wang, X.; Elgrishi, N.; Hendon, C.H.; Walsh, A.; Bonnefoy, J.; Canivet, J.; Quadrelli, E.A.; Farrusseng, D.; Mellot-Draznieks, C.; et al. Photocatalytic carbon dioxide reduction with Rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. ChemSusChem 2015, 8, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Meyer, A.S.; Mateiu, R.V.; Kalyani, D.; Pinelo, M. Functionalization of a membrane sublayer using reverse filtration of enzymes and dopamine coating. ACS Appl. Mater. Interfaces 2014, 6, 22894–22904. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, P.; Liu, X.; Zhu, Q.; Zhao, H.; Zhang, S.; Zhang, C.; Ren, C.; Zhang, J.; Zhang, C.; Cai, D. Selective Furfuryl Alcohol Production from Furfural via Bio-Electrocatalysis. Catalysts 2023, 13, 101. https://doi.org/10.3390/catal13010101
Zhan P, Liu X, Zhu Q, Zhao H, Zhang S, Zhang C, Ren C, Zhang J, Zhang C, Cai D. Selective Furfuryl Alcohol Production from Furfural via Bio-Electrocatalysis. Catalysts. 2023; 13(1):101. https://doi.org/10.3390/catal13010101
Chicago/Turabian StyleZhan, Peng, Xiangshi Liu, Qian Zhu, Hongqing Zhao, Shiding Zhang, Chenxi Zhang, Cong Ren, Jiawen Zhang, Changwei Zhang, and Di Cai. 2023. "Selective Furfuryl Alcohol Production from Furfural via Bio-Electrocatalysis" Catalysts 13, no. 1: 101. https://doi.org/10.3390/catal13010101
APA StyleZhan, P., Liu, X., Zhu, Q., Zhao, H., Zhang, S., Zhang, C., Ren, C., Zhang, J., Zhang, C., & Cai, D. (2023). Selective Furfuryl Alcohol Production from Furfural via Bio-Electrocatalysis. Catalysts, 13(1), 101. https://doi.org/10.3390/catal13010101