Usefulness of the Global E Factor as a Tool to Compare Different Catalytic Strategies: Four Case Studies
Abstract
:1. Introduction
2. Discussion
2.1. Case Study 1: Diastereo- and Enantioselective Diels-Alder Reaction
2.2. Case Study 2: Regioselective Hydration of Internal Arylalkynes
2.3. Case Study 3: Enantioselective Mannich Reaction
2.4. Case Study 4: Convergent Enantioselective Hydrogenation of Enamides
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- List, B.; Maruoka, K. Asymmetric Organocatalysis; Thieme Chemistry: Stuttgart, Germany, 2012. [Google Scholar]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Antenucci, A.; Dughera, S.; Renzi, P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. ChemSusChem 2021, 14, 2785–2853. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Pessel, F.; Augé, J.; Billault, I.; Scherrmann, M.-C. The weight of flash chromatography: A tool to predict its mass intensity from thin-layer chromatography. Beilstein J. Org. Chem. 2016, 12, 2351–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diels, O.; Alder, K. Über die Ursachen der “Azoesterreaktion”. Liebigs Ann. Chem. 1926, 450, 237–254. [Google Scholar] [CrossRef]
- Diels, O.; Alder, K. Synthesen in der hydroaromatischen Reihe. Liebigs Ann. Chem. 1928, 460, 98–122. [Google Scholar] [CrossRef]
- Gatzenmeier, T.; Turberg, M.; Yepes, D.; Xie, Y.; Neese, F.; Bistoni, G.; List, B. Scalable and Highly Diastereo- and Enantioselective Catalytic Diels–Alder Reaction of α,β-Unsaturated Methyl Esters. J. Am. Chem. Soc. 2018, 140, 12671. [Google Scholar] [CrossRef]
- Boersma, A.J.; Feringa, B.L.; Roelfes, G. α,β-Unsaturated 2-Acyl Imidazoles as a Practical Class of Dienophiles for the DNA-Based Catalytic Asymmetric Diels−Alder Reaction in Water. Org. Lett. 2007, 9, 3647–3650. [Google Scholar] [CrossRef]
- Roelfes, G.; Boersma, A.J.; Feringa, B.L. Highly enantioselective DNA-based catalysis. Chem. Commun. 2006, 635–637. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, W.; Guo, L.; Li, Y.; Xu, X. Preparation Method of 4,4′-dimethyl-2,2′-dipyridyl. CN104892494 B, 2017. [Google Scholar]
- Limnios, D.; Kokotos, C.G. 2,2,2-Trifluoroacetophenone as an Organocatalyst for the Oxidation of Tertiary Amines and Azines to N-Oxides. Chem. Eur. J. 2014, 20, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Allgäuer, D.S.; Jangra, H.; Asahara, H.; Li, Z.; Chen, Q.; Zipse, H.; Ofial, A.R.; Mayr, H. Quantification and Theoretical Analysis of the Electrophilicities of Michael Acceptors. J. Am. Chem. Soc. 2017, 139, 13318–13329. [Google Scholar] [CrossRef]
- Hintermann, L.; Labonde, A. Catalytic Hydration of Alkynes and Its Application in Synthesis. Synthesis 2007, 8, 1121–1150. [Google Scholar] [CrossRef] [Green Version]
- Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chem. Rev. 2004, 104, 3079–3160. [Google Scholar] [CrossRef] [PubMed]
- Zuccaccia, D.; Del Zotto, A.; Baratta, W. The pivotal role of the counterion in gold catalyzed hydration and alkoxylation of alkynes. Coord. Chem. Rev. 2019, 396, 103–116. [Google Scholar] [CrossRef]
- Salvio, R.; Bassetti, M. Sustainable hydration of alkynes promoted by first row transition metal complexes. Background, highlights and perspectives. Inorg. Chim. Acta 2021, 522, 120288. [Google Scholar] [CrossRef]
- Antenucci, A.; Flamini, P.; Fornaiolo, M.V.; Di Silvio, S.; Mazzetti, S.; Mencarelli, P.; Salvio, R.; Bassetti, M. Iron(III)-Catalyzed Hydration of Unactivated Internal Alkynes in Weak Acidic Medium, under Lewis Acid-Assisted Brønsted Acid Catalysis. Adv. Synth. Catal. 2019, 361, 4517–4526. [Google Scholar] [CrossRef]
- Zhu, F.-X.; Wang, W.; Li, H.-X. Water-Medium and Solvent-Free Organic Reactions over a Bifunctional Catalyst with Au Nanoparticles Covalently Bonded to HS/SO3H Functionalized Periodic Mesoporous Organosilica. J. Am. Chem. Soc. 2011, 133, 11632–11640. [Google Scholar] [CrossRef]
- Cόrdova, A. The Direct Catalytic Asymmetric Mannich Reaction. Acc. Chem. Res. 2004, 37, 102–112. [Google Scholar] [CrossRef]
- Saranya, S.; Harry, N.A.; Krishnan, K.K.; Anilkumar, G. Recent Developments and Perspectives in the Asymmetric Mannich Reaction. Asian J. Org. Chem. 2018, 7, 613–633. [Google Scholar] [CrossRef]
- Verkade, J.M.M.; van Hemert, L.J.C.; Quaedfliegb, P.J.L.M.; Rutjes, F.P.J.T. Organocatalysed asymmetric Mannich reactions. Chem. Soc. Rev. 2008, 37, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. Angew. Chem. Int. Ed. 2004, 43, 1566–1568. [Google Scholar] [CrossRef]
- Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid. Angew. Chem. 2004, 116, 1592–1594. [Google Scholar] [CrossRef]
- Uraguchi, D.; Terada, M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356–5357. [Google Scholar] [CrossRef]
- Arai, T.; Moribatake, T.; Masu, H. Chiral Bis(imidazolidine)-Derived NCN Pincer Rh Complex for Catalytic Asymmetric Mannich Reaction of Malononitrile with N-Boc Imines. Chem. Eur. J. 2015, 21, 10671–10675. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, S.; Suzuki, T.; Hosaka, Y.; Arai, T. A chiral organic base catalyst with halogen-bonding-donor functionality: Asymmetric Mannich reactions of malononitrile with N-Boc aldimines and ketimines. Chem. Commun. 2018, 54, 3847–3850. [Google Scholar] [CrossRef]
- Burk, M.J.; Feaster, J.E.; Nugent, W.A.; Harlow, R.L. Preparation and use of C2-symmetric bis(phospholanes): Production of α-amino acid derivatives via highly enantioselective hydrogenation reactions. J. Am. Chem. Soc. 1993, 112, 10125–10138. [Google Scholar] [CrossRef]
- Koenig, K.E.; Knowles, W.S. Use of deuterium to investigate E-Z isomerizations during rhodium-catalyzed reduction. Asymmetric induction and mechanistic implications. J. Am. Chem. Soc. 1978, 100, 7561–7564. [Google Scholar] [CrossRef]
- Long, J.; Gao, W.; Guan, Y.; Lv, H.; Zhang, X. Nickel catalyzed highly enantioselective hydrogenation of β-acetylamino vinylsulfones: Access to chiral β-amido sulfones. Org. Lett. 2018, 20, 5914–5917. [Google Scholar] [CrossRef]
- Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. Highly effective chiral ortho-substituted BINAPO ligands (o-BINAPO): Applications in Ru-catalyzed asymmetric hydrogenations of β-aryl-substituted β-(acylamino) acrylates and β-keto esters. J. Am. Chem. Soc. 2002, 124, 4952–4953. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, Z.; Zhang, X. Synthesis of a Novel Chiral Binaphthyl Phospholane and Its Application in the Highly Enantioselective Hydrogenation of Enamides. Org. Lett. 1999, 1, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Massaro, L.; Krajangsri, S.; Singh, T.; Su, H.; Silvi, E.; Ponra, S.; Eriksson, L.; Ahlquist, M.S.G.; Andersson, P.G. Combined Theoretical and Experimental Studies Unravel Multiple Pathways to Convergent Asymmetric Hydrogenation of Enamides. J. Am. Chem. Soc. 2021, 143, 21594–21603. [Google Scholar] [CrossRef]
- Li, J.Q.; Paptchikhine, A.; Govender, T.; Andersson, P.G. Bicyclic phosphine-thiazole ligands for the asymmetric hydrogenation of olefins. Tetrahedron Asymm. 2010, 21, 1328–1333. [Google Scholar] [CrossRef]
- Carlone, A.; Bernardi, L. Enantioselective organocatalytic approaches to active pharmaceutical ingredients—Selected industrial examples. Phys. Sci. Rev. 2019, 4, 20180097. [Google Scholar] [CrossRef]
- Aukland, M.H.; List, B. Organocatalysis emerging as a technology. Pure Appl. Chem. 2021, 93, 1371–1381. [Google Scholar] [CrossRef]
- Antenucci, A.; Messina, M.; Bertolone, M.; Bella, M.; Carlone, A.; Salvio, R.; Dughera, S. Turning Renewable Feedstocks into a Valuable and Efficient Chiral Phosphate Salt Catalyst. Asian J. Org. Chem. 2021, 10, 3279–3284. [Google Scholar] [CrossRef]
- Volpe, C.; Meninno, S.; Crescenzi, C.; Mancinelli, M.; Mazzanti, A.; Lattanzi, A. Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal α-Halo Acyl Halide Synthon in One Pot. Angew. Chem. Int. Ed. 2021, 60, 23819–23826. [Google Scholar] [CrossRef]
- Becker, J.; Manske, C.; Randl, S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. 2021, 33, 100562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antenucci, A.; Dughera, S. Usefulness of the Global E Factor as a Tool to Compare Different Catalytic Strategies: Four Case Studies. Catalysts 2023, 13, 102. https://doi.org/10.3390/catal13010102
Antenucci A, Dughera S. Usefulness of the Global E Factor as a Tool to Compare Different Catalytic Strategies: Four Case Studies. Catalysts. 2023; 13(1):102. https://doi.org/10.3390/catal13010102
Chicago/Turabian StyleAntenucci, Achille, and Stefano Dughera. 2023. "Usefulness of the Global E Factor as a Tool to Compare Different Catalytic Strategies: Four Case Studies" Catalysts 13, no. 1: 102. https://doi.org/10.3390/catal13010102
APA StyleAntenucci, A., & Dughera, S. (2023). Usefulness of the Global E Factor as a Tool to Compare Different Catalytic Strategies: Four Case Studies. Catalysts, 13(1), 102. https://doi.org/10.3390/catal13010102