One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction
Abstract
:1. Introduction
2. Experimental Section
Preparation of Nanoparticles
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbosa, E.C.; Parreira, L.S.; de Freitas, I.C.; Aveiro, L.R.; de Oliveira, D.C.; dos Santos, M.C.; Camargo, P.H. Pt-decorated TiO2 materials supported on carbon: Increasing activities and stabilities toward the ORR by tuning the Pt loading. ACS Appl. Energy Mater. 2019, 2, 5759–5768. [Google Scholar] [CrossRef]
- Lv, H.; Chen, X.; Xu, D.; Hu, Y.; Zheng, H.; Suib, S.L.; Liu, B. Ultrathin PdPt bimetallic nanowires with enhanced electrocatalytic performance for hydrogen evolution reaction. Appl. Catal. B Environ. 2018, 238, 525–532. [Google Scholar] [CrossRef]
- Hong, J.W.; Kang, S.W.; Choi, B.S.; Kim, D.; Lee, S.B.; Han, S.W. Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Mirshekari, G.; Rice, C. Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment. J. Power Sources 2018, 396, 606–614. [Google Scholar] [CrossRef]
- Huang, W.; Kang, X.; Xu, C.; Zhou, J.; Deng, J.; Li, Y.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962. [Google Scholar] [CrossRef]
- Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Li, Q. Tungsten-Doped L10-PtCo Ultrasmall Nanoparticles as a High-Performance Fuel Cell Cathode. Angew. Chem. Int. Ed. 2019, 58, 15471–15477. [Google Scholar] [CrossRef]
- Zhang, D.; Du, S.; Su, S.; Wang, Y.; Zhang, H. Rapid detection method and portable device based on the photothermal effect of gold nanoparticles. Biosens. Bioelectron. 2019, 123, 19–24. [Google Scholar] [CrossRef]
- Tamura, M.; Kon, K.; Satsuma, A.; Shimizu, K.I. Volcano-curves for dehydrogenation of 2-propanol and hydrogenation of nitrobenzene by SiO2-supported metal nanoparticles catalysts as described in terms of a d-band model. ACS Catal. 2012, 2, 1904–1909. [Google Scholar] [CrossRef]
- Howes, P.D.; Chandrawati, R.; Stevens, M.M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390. [Google Scholar] [CrossRef] [Green Version]
- Cotí, K.K.; Belowich, M.E.; Liong, M.; Ambrogio, M.W.; Lau, Y.A.; Khatib, H.A.; Stoddart, J.F. Mechanised nanoparticles for drug delivery. Nanoscale 2009, 1, 16–39. [Google Scholar] [CrossRef]
- Quang, N.D.; Majumder, S.; Kim, C.; Kim, D. Incorporation of an Au-rGO layer to enhance the photocatalytic application of optimized CdS thin film. J. Electrochem. Soc. 2019, 166, H3112. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Wang, W.; Fan, Y.; Liu, C.; Zhou, J.; Ruan, S. Au-Pd modified SnS2 nanosheets for conductometric detection of xylene gas. Sens. Actuators B. Chem. 2022, 351, 130907. [Google Scholar] [CrossRef]
- de Barros, M.R.; Winiarski, J.P.; Elias, W.C.; de Campos, C.E.M.; Jost, C.L. Au-on-Pd bimetallic nanoparticles applied to the voltammetric determination and monitoring of 4-nitroaniline in environmental samples. J. Environ. Chem. Eng. 2021, 9, 105821. [Google Scholar] [CrossRef]
- Huang, X.; Akdim, O.; Douthwaite, M.; Wang, K.; Zhao, L.; Lewis, R.J.; Hutchings, G.J. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; He, Z.L.; Chen, Y.; Xu, Q.; Zhu, M.; Zhai, C. Self-standing three-dimensional PdAu nanoflowers for plasma-enhanced photo-electrocatalytic methanol oxidation with a CO-free dominant mechanism. J. Colloid Interface Sci. 2022, 625, 850–858. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Luo, Z.; Liu, X.; Lai, Z.; Li, B.; Zhang, H. High-Yield Synthesis of Crystal-Phase-Heterostructured 4H/fcc Au@ Pd Core–Shell Nanorods for Electrocatalytic Ethanol Oxidation. Adv. Mater. 2017, 29, 1701331. [Google Scholar] [CrossRef]
- Liang, W.; Wang, Y.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Jiang, L. 3D Anisotropic Au@ Pt–Pd Hemispherical Nanostructures as Efficient Electrocatalysts for Methanol, Ethanol, and Formic Acid Oxidation Reaction. Adv. Mater. 2021, 33, 2100713. [Google Scholar] [CrossRef]
- Yu, J.; Jin, H.; Wang, Q.; Wei, X.; Chen, H.; Wang, Y. Coalescence of Au–Pd Nanoropes and their Application as Enhanced Electrocatalysts for the Oxygen Reduction Reaction. Small 2022, 18, 2203458. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; da Silva, A.G.; Camargo, P.H. Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A 2019, 7, 5857–5874. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.; Zhang, L.; Xu, G. Seed-mediated growth of noble metal nanocrystals: Crystal growth and shape control. Nanoscale 2013, 5, 3172–3181. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Huo, F. A family of metal organic frameworks exhibiting size-selective catalysis with encapsulated noble metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Y.; Choi, Y.C.; Kagan, C.R. Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials. Adv. Mater. 2022, 2108104. [Google Scholar] [CrossRef] [PubMed]
- Takami, A.; Kurita, H.; Koda, S. Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 1999, 103, 1226–1232. [Google Scholar] [CrossRef]
- Chumillas, S.; Busó-Rogero, C.; Solla-Gullón, J.; Vidal-Iglesias, F.J.; Herrero, E.; Feliu, J.M. Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles. Electrochem. Commun. 2011, 13, 1194–1197. [Google Scholar] [CrossRef]
- Xue, J.; Han, G.; Ye, W.; Sang, Y.; Li, H.; Guo, P.; Zhao, X.S. Structural regulation of PdCu2 nanoparticles and their electrocatalytic performance for ethanol oxidation. ACS Appl. Mater. Interfaces 2016, 8, 34497–34505. [Google Scholar] [CrossRef]
- Sun, L.; Lv, H.; Feng, J.; Guselnikova, O.; Wang, Y.; Yamauchi, Y.; Liu, B. Noble Metal Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Application. Adv. Mater. 2022, 34, 2201954. [Google Scholar] [CrossRef]
- Lao, X.; Yang, M.; Chen, J.; Zhang, L.Y.; Guo, P. The ethanol oxidation reaction on bimetallic PdxAg1-x nanosheets in alkaline media and their mechanism study. Electrochim. Acta 2021, 374, 137912. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.D.; Zhao, L.; Lin, M.; Sun, H.Z.; Sun, H.C.; Yang, B. Polypyrrole-coated flower-like Pd nanoparticles (Pd NPs@ PPy) with enhanced stability and heat conversion efficiency for cancer photothermal therapy. RSC Adv. 2016, 6, 15854–15860. [Google Scholar] [CrossRef]
- Moreno, M.; Kissell, L.N.; Jasinski, J.B.; Zamborini, F.P. Selectivity and reactivity of alkylamine-and alkanethiolate-stabilized Pd and PdAg nanoparticles for hydrogenation and isomerization of allyl alcohol. ACS Catal. 2012, 2, 2602–2613. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Zhuo, H.; Wei, Z.; Zhuang, G.; Zhong, X.; Wang, J. Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 2264–2272. [Google Scholar] [CrossRef]
- Zhu, S.; Qin, X.; Wang, Q.; Li, T.; Tao, R.; Gu, M.; Shao, M. Composition-dependent CO2 electrochemical reduction activity and selectivity on Au–Pd core–shell nanoparticles. J. Mater. Chem. A 2018, 7, 16954–16961. [Google Scholar] [CrossRef]
- Kim, K.; Byun, J.; Kim, H.; Lee, K.S.; Lee, H.S.; Kim, J.; Han, J.W. Systematic Approach to Designing a Highly Efficient Core–Shell Electrocatalyst for N2O Reduction. ACS Catal. 2021, 11, 15089–15097. [Google Scholar] [CrossRef]
- Silva, L.S.; Almeida, C.V.; Meneses, C.T.; Batista, E.A.; Santos, S.F.; Eguiluz, K.I.; Salazar-Banda, G.R. AuPd/C core–shell and alloy nanoparticles with enhanced catalytic activity toward the electro-oxidation of ethanol in alkaline media. Appl. Catal. B. 2019, 251, 313–325. [Google Scholar] [CrossRef]
- Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@ Pd@ Pt core–shell nanoparticles consisting of a Au@ Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 2010, 132, 13636–13638. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.; Zang, F.; Zhang, G.; Fan, X. Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities. J. Mater. Chem. 2011, 21, 17658–17661. [Google Scholar] [CrossRef]
- Tsuji, M.; Ikedo, K.; Matsunaga, M.; Uto, K. Epitaxial growth of Au@ Pd core–shell nanocrystals prepared using a PVP-assisted polyol reduction method. CrystEngComm 2012, 14, 3411–3423. [Google Scholar] [CrossRef]
- Lee, Y.W.; Im, M.; Hong, J.W.; Han, S.W. Dendritic ternary alloy nanocrystals for enhanced electrocatalytic oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 44018–44026. [Google Scholar]
- Lee, S.; Cho, H.; Kim, H.J.; Hong, J.W.; Lee, Y.W. Shape-and Size-Controlled Palladium Nanocrystals and Their Electrocatalytic Properties in the Oxidation of Ethanol. Materials 2021, 14, 2970. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, M.; Kim, Y.; Kang, S.W.; Lee, J.H.; Han, S.W. Synthesis and electrocatalytic activity of Au–Pd alloy nanodendrites for ethanol oxidation. J. Phys. Chem. C. 2010, 114, 7689–7693. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, M.; Kang, S.W.; Han, S.W. Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au–Pd rhombic dodecahedra. Angew. Chem. Int. Ed. 2011, 50, 3466–3470. [Google Scholar] [CrossRef]
- Metin, Ö.; Sun, X.; Sun, S. Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale 2013, 5, 910–912. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Kim, M.; Kim, Z.H.; Han, S.W. One-step synthesis of Au@ Pd core–shell nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036–17037. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Yang, M.Y.; Lin, F.C.; Huang, J.S.; Huang, M.H. Facile synthesis of Au–Pd core–shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination. Nanoscale 2014, 6, 7656–7665. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, D.; Torres-Castro, A.; Gao, X.; Sepulveda-Guzman, S.; Ortiz-Mendez, U.; Jose-Yacaman, M. Three-layer core/shell structure in Au–Pd bimetallic nanoparticles. Nano Lett. 2007, 7, 1701–1705. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Liu, C.J.; Zeng, Z.; Zhang, H.; Zhou, C.; Yang, Y. Formation of monometallic Au and Pd and bimetallic Au–Pd nanoparticles confined in mesopores via Ar glow-discharge plasma reduction and their catalytic applications in aerobic oxidation of benzyl alcohol. J. Catal. 2012, 289, 105–117. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Jeon, S. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation. J. Power Sources 2015, 282, 479–488. [Google Scholar] [CrossRef]
- Huang, W.; Ma, X.Y.; Wang, H.; Feng, R.; Zhou, J.; Duchesne, P.N.; Li, Y. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Y.; Ge, Y.; Zhu, S.; Cui, Y.; Chen, B.; Zhang, H. Preparation of Au@ Pd Core–Shell Nanorods with fcc-2H-fcc Heterophase for Highly Efficient Electrocatalytic Alcohol Oxidation. J. Am. Chem. Soc. 2021, 144, 547–555. [Google Scholar] [CrossRef]
- Wu, C.; Li, H.; He, H.; Song, Y.; Bi, C.; Du, W.; Xia, H. Compressive strain in core–shell Au–Pd nanoparticles introduced by lateral confinement of deformation twinnings to enhance the oxidation reduction reaction performance. ACS Appl. Mater. Interfaces 2019, 11, 46902–46911. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Chen, D.; Liu, H.; Cui, P.; Yang, J. Ionic liquid-derived core–shell gold@ palladium nanoparticles with tiny sizes for highly efficient electrooxidation of ethanol. Green Energy Environ. 2021, 6, 229–235. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Dong, S. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Tran, D.T.; McClure, J.P.; Chu, D. A class of (Pd–Ni–P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal. 2014, 4, 2577–2586. [Google Scholar] [CrossRef]
- Qiu, X.; Dai, Y.; Tang, Y.; Lu, T.; Wei, S.; Chen, Y. One-pot synthesis of gold–palladium@ palladium core–shell nanoflowers as efficient electrocatalyst for ethanol electrooxidation. J. Power Sources 2015, 278, 430–435. [Google Scholar] [CrossRef]
- Zhang, L.F.; Zhong, S.L.; Xu, A.W. Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement. Angew. Chem. In. Ed. 2013, 52, 645–649. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Zhang, S.; Li, M.; Zhang, Y.; Li, Z.; Tang, Z. In situ assembly of ultrafine AuPd nanowires as efficient electrocatalysts for ethanol electroxidation. Int. J. Hydrogen Energy 2021, 46, 8549–8556. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, L.; Liu, B.; Kerns, P.; He, J. Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochim. Acta 2018, 269, 441–451. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Z.; Xiao, Z.; Huang, J.; Li, Q.; Wang, Y.; Sun, D. Ni2P-graphite nanoplatelets supported Au–Pd core–shell nanoparticles with superior electrochemical properties. J. Phys. Chem. C 2015, 119, 10469–10477. [Google Scholar] [CrossRef]
- Cai, K.; Liao, Y.; Zhang, H.; Liu, J.; Lu, Z.; Huang, Z.; Han, H. Controlled synthesis of Au-island-covered Pd nanotubes with abundant heterojunction interfaces for enhanced electrooxidation of alcohol. ACS Appl. Mater. Interfaces 2016, 8, 12792–12797. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, J.; Yang, S.; Ding, B.; Song, X. Au@ Pd core–shell nanobricks with concave structures and their catalysis of ethanol oxidation. ChemSusChem 2013, 6, 1945–1951. [Google Scholar] [CrossRef]
- Caglar, A.; Kivrak, H. Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment. Int. J. Hydrogen Energy 2019, 44, 11734–11743. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Xu, L.; Xue, J.; Yuan, W.; Yao, C.; Hou, S. Palladium nanoparticles supported on flower-like boron, nitrogen doped carbon for electrochemical oxidation ethanol reaction. J. Alloys Compd. 2022, 901, 163333. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Zhao, G.; Qin, G.; Li, Y.; Liu, Y. Self-driven microstructural evolution of Au@ Pd core–shell nanoparticles for greatly enhanced catalytic performance during methanol electrooxidation. Nanoscale 2021, 13, 3528–3542. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.R.; Estrada, E.A.; Ezeta, A.; Manríquez, M.E. Formic acid oxidation on AuPd core-shell electrocatalysts: Effect of surface electronic structure. Electrochim. Acta 2019, 327, 134977. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.S.; Ji, M.-J.; Kim, Y.J.; Kim, H.J.; Hong, J.W.; Lee, Y.W. One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction. Catalysts 2023, 13, 11. https://doi.org/10.3390/catal13010011
Choi YS, Ji M-J, Kim YJ, Kim HJ, Hong JW, Lee YW. One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction. Catalysts. 2023; 13(1):11. https://doi.org/10.3390/catal13010011
Chicago/Turabian StyleChoi, Young Su, Mi-Jung Ji, Yu Jin Kim, Hyeon Jeong Kim, Jong Wook Hong, and Young Wook Lee. 2023. "One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction" Catalysts 13, no. 1: 11. https://doi.org/10.3390/catal13010011
APA StyleChoi, Y. S., Ji, M. -J., Kim, Y. J., Kim, H. J., Hong, J. W., & Lee, Y. W. (2023). One-Pot Au@Pd Dendritic Nanoparticles as Electrocatalysts with Ethanol Oxidation Reaction. Catalysts, 13(1), 11. https://doi.org/10.3390/catal13010011