Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review
Abstract
:1. Introduction
2. DBD Water Treatment Technology
3. DBD Coupled with Catalysis
3.1. DBD Coupled with Photocatalysis
3.2. DBD Coupled with Adsorption Catalysis
3.3. DBD Coupled with Fenton Oxidation Catalysis
3.4. DBD Coupled with Persulfate Oxidation Catalysis
3.5. DBD Coupled with Composite Catalysis
4. The Factors of DBD Coupled with Catalysis for Degradation of Wastewater
5. The Process of DBD Coupled with Catalysis to Degrade Organic Pollutants
6. Energy Efficiency of DBD Coupled with Catalysis to Degrade Organic Pollutants
7. Summary and Prospect
- (1)
- The mechanism of DBD plasma activating the catalyst is relatively complex. How to use advanced means to understand the catalytic mechanism and catalytic reaction process is the first problem to be clarified in the future.
- (2)
- The effect of catalyst addition on the degradation process of organic compounds was rarely reported in the past literature, which needs further exploration.
- (3)
- DBD plasma can affect the catalyst to a certain extent. Therefore, it is imperative to study how to reduce or avoid the damage caused by DBD plasma to the catalyst.
- (4)
- The separation and recovery of catalysts are generally difficult. It not only consumes a large amount of catalyst to increase the treatment cost, but also causes secondary pollution to the environment. The subsequent goal is to study how to recover and reuse the catalyst in DBD plasma.
- (5)
- At present, there are few toxicity analyses related to the degradation of organic pollutants by DBD plasma coupled with catalysts. It is uncertain whether more toxic substances were produced during the degradation process. Therefore, some methods should be used to characterize the toxicity changes in the process of pollutant degradation.
- (6)
- The research on the degradation of organic pollutants by DBD plasma coupled with catalysts are still in the laboratory stage. How to expand the reactor scale and realize the industrial application of DBD plasma synergetic catalysis are urgent problems to be solved.
Author Contributions
Funding
Conflicts of Interest
References
- El-Nahhal, I.; El-Nahhal, Y. Pesticide residues in drinking water, their potential risk to human health and removal options. J. Environ. Manag. 2021, 299, 113611. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, N.; Priyadarshini, A.; Sahoo, M.M.; Verma, A.K.; Daverey, A.; Sahoo, N.K. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environ. Technol. Innov. 2022, 27, 102423. [Google Scholar] [CrossRef]
- Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int. 2018, 110, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rania, A.T.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.X.; Fu, Y.Y.; Sun, J.Z. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar]
- Khan, M.A.; Wabaidur, S.M.; Siddiqui, M.R.; Alqadami, A.A.; Khan, A.H. Silico-manganese fumes waste encapsulated cryogenic alginate beads for aqueous environment de-colorization. J. Clean. Prod. 2020, 244, 118867. [Google Scholar] [CrossRef]
- Kumar, J.A.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Alexandre, G.; Moura, B.A. Membrane Separation Process in Wastewater and Water Purification. Membranes 2022, 12, 259. [Google Scholar]
- Wang, Y.; Jin, X.; Yang, S.; Wang, G.; Xu, L.; Jin, P.; Shi, X.; Shi, Y. Interactions between flocs and bubbles in the separation zone of dissolved air flotation system. Sci. Total Environ. 2022, 761, 143222. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Azam, M.; Wabaidur, S.M.; Khan, M.R.; Al-Resayes, S.I.; Islam, M.S. Heavy metal ions removal from aqueous solutions by treated ajwa date pits: Kinetic, isotherm, and thermodynamic approach. Polymers 2022, 14, 914. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef]
- Abujazar, M.S.S.; Karaağaç, S.U.; Abu Amr, S.S.; Alazaiza, M.Y.D.; Bashir, M.J.K. Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: A review. J. Clean. Prod. 2022, 345, 131133. [Google Scholar] [CrossRef]
- Mohammadi, S.A.; Najafi, H.; Zolgharnian, S.; Sharifian, S.; Asasian-Kolur, N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. Sci. Total Environ. 2022, 843, 157026. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Das, I.; Ghangrekar, M.M.; Blaney, L. Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies. J. Environ. Manag. 2022, 316, 115295. [Google Scholar] [CrossRef] [PubMed]
- Ziembowicz, S.; Kida, M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review. Chemosphere 2022, 296, 134041. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Shi, J.L.; Gunten, U.; McCurry, D.L. Ozonation of organic compounds in water and wastewater: A critical review. Water Res. 2022, 213, 118053. [Google Scholar]
- Saeed, M.; Muneer, M.; Haq, A.U.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef]
- Qiao, J.; Xiong, Y.Z. Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. J. Water Process Eng. 2021, 44, 102308. [Google Scholar] [CrossRef]
- Eren, Z. Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Environ. Manag. 2012, 104, 127–141. [Google Scholar] [CrossRef]
- Wang, B.W.; Wang, Y. A comprehensive review on persulfate activation treatment of wastewater. Sci. Total Environ. 2022, 831, 154906. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kim, K.; Chun, S.; Moon, S.Y.; Hong, Y. Plasma-assisted advanced oxidation process by a multi-hole dielectric barrier discharge in water and its application to wastewater treatment. Chemosphere 2020, 243, 125377. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, Y.; Liao, L.; Li, Z.; Pan, S.; Puyang, C.; Su, Y.; Zhang, Y.; Wang, T.; Ren, J.; et al. Review on remediation of organic-contaminated soil by discharge plasma: Plasma types, impact factors, plasma-assisted catalysis, and indexes for remediation. Chem. Eng. J. 2022, 436, 135239. [Google Scholar] [CrossRef]
- Yang, J.R.; Zeng, D.Q.; Muhammad, H.; Ma, Z.B.; Dong, L.Q.; Xie, Y.; He, Y.L. Efficient degradation of Bisphenol A by dielectric barrier discharge non-thermal plasma: Performance, degradation pathways and mechanistic consideration. Chemosphere 2022, 286, 131627. [Google Scholar] [CrossRef]
- Piskarev, I.M. Corona Electric Discharge as a Source of Chemically Active Species. Plasma Chem. Plasma Process. 2021, 41, 1415–1434. [Google Scholar] [CrossRef]
- Du, C.M.; Yan, J.H.; Cheron, B.G. Degradation of 4-chlorophenol using a gas-liquid gliding arc discharge plasma reactor. Plasma Chem. Plasma Process. 2007, 27, 635–646. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhou, M.H.; Jin, X.L. Application of glow discharge plasma for wastewater treatment. Electrochim. Acta 2012, 83, 501–512. [Google Scholar] [CrossRef]
- Bilea, F.; Bradu, C.; Mandache, N.B.; Magureanu, M. Characterization of the chemical activity of a pulsed corona discharge above water. Chemosphere 2019, 236, 124302. [Google Scholar] [CrossRef]
- Magureanu, M.; Bilea, F.; Bradu, C.; Hong, D. A review on non-thermal plasma treatment of water contaminated with antibiotics. J. Hazard. Mater. 2021, 417, 125481. [Google Scholar] [CrossRef]
- Massima, M.E.S.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Fatoba, O.O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; et al. A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. J. Environ. Chem. Eng. 2021, 9, 105758. [Google Scholar]
- Shang, K.F.; Li, J.; Morent, R. Hybrid electric discharge plasma technologies for water decontamination-a short review. Plasma Sci. Technol. 2019, 21, 5–13. [Google Scholar] [CrossRef]
- Liang, J.P.; Zhou, X.F.; Zhao, Z.L.; Yang, D.Z.; Wang, W.C.; Addou, A. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma. J. Environ. Manag. 2021, 278, 111539. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.C.; Jia, H.Z.; Guo, X.T.; Xia, T.J.; Qu, G.Z.; Sun, Q.H.; Yin, X.Q. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem. Eng. J. 2018, 346, 65–76. [Google Scholar] [CrossRef]
- Ren, J.Y.; Jiang, N.; Shang, K.F.; Lu, N.; Li, J.; Wu, Y. Synergistic degradation of trans-ferulic acid by water falling film DBD plasma coupled with cobalt oxyhydroxide: Performance and mechanisms. Chem. Eng. J. 2019, 372, 321–331. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.H.; Shao, C.S.; Liu, C.; Wu, Y.H.; Huang, Q. Study of detoxification of methyl parathion by dielectric barrier discharge (DBD) non-thermal plasma at gas-liquid interface: Mechanism and bio-toxicity evaluation. Chemosphere 2022, 307, 135620. [Google Scholar] [CrossRef]
- Ren, J.Y.; Song, H.Z.; Guo, H.; Yao, Z.Z.; Wei, Q.; Jiao, K.Q.; Li, Z.Y.; Zhong, C.C.; Wang, J.; Zhen, Y.Z. Removal of chloramphenicol in water by an improved water falling film dielectric barrier discharge reactor: Performance, mechanism, degradation pathway and toxicity evaluation. J. Clean. Prod. 2021, 325, 129332. [Google Scholar] [CrossRef]
- Hu, X.Y.; Wang, B.W. Removal of pefloxacin from wastewater by dielectric barrier discharge plasma: Mechanism and degradation pathways. J. Environ. Chem. Eng. 2021, 9, 105720. [Google Scholar] [CrossRef]
- Kim, K.S.; Kam, S.K.; Mok, Y.S. Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system. Chem. Eng. J. 2015, 271, 31–42. [Google Scholar] [CrossRef]
- Sahu, D. Degradation of Industrial Phenolic Wastewater Using Dielectric Barrier Discharge Plasma Technique. Russ. J. Appl. Chem. 2022, 93, 905–915. [Google Scholar] [CrossRef]
- Fan, J.W.; Wu, H.X.; Liu, R.Y.; Meng, L.Y.; Sun, Y.J. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. Environ. Sci. Pollut. Res. 2021, 28, 2522–2548. [Google Scholar] [CrossRef]
- Hafeez, A.; Shezad, N.; Javed, F.; Fazal, T.; Rehman, M.S.; Rehman, F. Synergetic effect of packed-bed corona-DBD plasma micro-reactor and photocatalysis for organic pollutant degradation. Sep. Purif. Technol. 2021, 269, 118728. [Google Scholar] [CrossRef]
- Qi, K.Z.; Cheng, B.; Yu, J.G.; Ho, W.K. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38, 1936–1955. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.J.; Cheng, Y.L.; Zhou, N.; Chen, P.; Wang, Y.P.; Li, K.; Huo, S.H.; Cheng, P.F.; Peng, P.; Zhang, R.C.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Mena, E.; Rey, A.; Beltrán, F.J. TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chem. Eng. J. 2018, 339, 369–380. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.B.; Jiang, H.; Feng, J.W. Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite. J. Saud. Chem. Soc. 2016, 21, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Hu, X.J.; Peng, Q.Q.; Zhou, L.; Tan, X.F.; Jiang, L.H.; Tang, C.F.; Wang, H.; Liu, S.H.; Wang, Y.Q.; et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chem. Eng. J. 2020, 380, 122366. [Google Scholar] [CrossRef]
- Tijani, J.O.; Mouele, M.E.S.; Tottito, T.C.; Fatoba, O.O.; Petrik, L.F. Degradation of 2-nitrophenol by dielectric barrier discharge system: The influence of carbon doped TiO2 photocatalyst supported on stainless steel mesh. Plasma Chem. Plasma Process. 2017, 37, 1343–1373. [Google Scholar] [CrossRef]
- Li, S.P.; Ma, X.L.; Liu, L.J.; Cao, X.H. Degradation of 2,4-dichlorophenol in wastewater by low temperature plasma coupled with TiO2 photocatalysis. RSC Adv. 2015, 5, 1902–1909. [Google Scholar] [CrossRef]
- Li, S.P.; Chen, H.; Wang, X.P.; Dong, X.C.; Huang, Y.X.; Guo, D. Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system. Environ. Sci. Pollut. Res. 2020, 27, 29599–29611. [Google Scholar] [CrossRef]
- Tao, X.M.; Yang, C.; Huang, L.; Shang, S.Y. Novel plasma assisted preparation of ZnCuFeCr layered double hydroxides with improved photocatalytic performance of methyl orange degradation. Appl. Surf. Sci. 2020, 507, 145053. [Google Scholar] [CrossRef]
- Wang, H.J.; Shen, Z.; Yan, X.; Guo, H.; Mao, D.N.; Yi, C.W. Dielectric barrier discharge plasma coupled with WO3 for bisphenol A degradation. Chemosphere 2021, 274, 129722. [Google Scholar] [CrossRef]
- Tao, X.M.; Han, Y.Y.; Sun, C.; Huang, L.; Xu, D.Y. Plasma modification of NiAlCe–LDH as improved photocatalyst for organic dye wastewater degradation. Appl. Clay Sci. 2019, 172, 75–79. [Google Scholar] [CrossRef]
- Liu, X.W.; Li, W.Q.; Hu, R.; Wei, Y.; Yun, W.Y.; Nian, P.; Feng, J.W.; Zhang, A.Y. Synergistic degradation of acid orange 7 dye by using non-thermal plasma and g-C3N4/TiO2: Performance, degradation pathways and catalytic mechanism. Chemosphere 2020, 249, 126093. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef]
- Islam, M.; Hossain, M.; Mahbub, S.; Hoque, M.A.; Kumar, D.; Wabaidur, S.M.; Habila, M.A.; AL-Anazy, M.M.; Kabir, M. Influences of alcohol and diol on the aggregation behaviour, modes of interaction and the thermodynamic properties of the mixture of bromocresol green dye and sodium dodecyl sulphate at numerous temperatures. Mol. Phys. 2021, 119, e1925364. [Google Scholar] [CrossRef]
- Liu, Z.; Mohseni, M.; Sauvé, S.; Barbeau, B. Segmented regeneration of ion exchange resins used for natural organic matter removal. Sep. Purif. Technol. 2022, 303, 122271. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Seo, P.W.; Jhung, S.H. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J. 2016, 301, 27–34. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, B.; Majumder, A.; Gupta, A.K.; Nimbhorkar, S.K. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants. J. Environ. Chem. Eng. 2021, 9, 106177. [Google Scholar] [CrossRef]
- Latip, N.M.B.; Gopal, K.; Suwaibatu, M.; Hashim, N.M.; Rahim, N.Y.; Raoov, M.; Yahaya, N.; Zain, N.N.M. Removal of 2,4-dichlorophenol from wastewater by an efficient adsorbent of magnetic activated carbon. Sep. Sci. Technol. 2021, 56, 252–265. [Google Scholar] [CrossRef]
- Tang, S.F.; Li, N.; Qi, J.B.; Yuan, D.L.; Li, J. Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration. Plasma Sci. Technol. 2018, 20, 054013. [Google Scholar] [CrossRef] [Green Version]
- Gushchin, A.A.; Gusev, G.I.; Grinevich, V.I.; Izvekova, T.V.; Kvitkova, E.Y.; Rybkin, V.V. Destruction of 2,4-Dichlorophenol in water solution using a combined process of sorption and plasma exposure to DBD. Plasma Chem. Plasma Process. 2021, 41, 421–431. [Google Scholar] [CrossRef]
- Sang, W.J.; Mei, L.J.; Zhan, C.; Zhang, Q.; Jin, X.; Zhang, S.H.; Zhang, S.Y.; Li, C.H.; Li, M. Removal of N, N-dimethylformamide by dielectric barrier discharge plasma combine with manganese activated carbon. Environ. Sci. Pollut. Res. Int. 2021, 28, 41698–41711. [Google Scholar] [CrossRef]
- Gong, S.; Sun, Y.B.; Zheng, K.; Jiang, G.L.; Li, L.; Feng, J.W. Degradation of levofloxacin in aqueous solution by non-thermal plasma combined with Ag3PO4/activated carbon fibers: Mechanism and degradation pathways. Sep. Purif. Technol. 2020, 250, 117264. [Google Scholar] [CrossRef]
- Lu, N.; Li, J.; Wang, X.X.; Wang, T.C.; Wu, Y. Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration. Plasma Chem. Plasma Process. 2012, 32, 109–121. [Google Scholar] [CrossRef]
- Qu, G.Z.; Lu, N.; Li, J.; Wu, Y.; Li, G.F.; Li, D. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma. J. Hazard. Mater. 2009, 172, 472–478. [Google Scholar] [CrossRef]
- Tang, S.F.; Lu, N.; Li, J.; Wu, Y. Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenol-saturated granular activated carbon. Sep. Purif. Technol. 2012, 95, 73–79. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton catalysts: A review of recent advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef]
- Furia, F.; Minella, M.; Gosetti, F.; Turci, F.; Sabatino, R.; Cesare, A.D.; Corno, G.; Vione, D. Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron. Chemosphere 2021, 283, 131170. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Nunes, M.I. Recent trends and developments in Fenton processes for industrial wastewater treatment—A critical review. Environ. Res. 2021, 197, 110957. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Zhou, Y.Y.; Zhang, J.C.; Luo, L.; Yang, Y.; Huang, H.L.; Peng, H.; Tang, L.; Mu, Y. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chem. Eng. J. 2018, 347, 379–397. [Google Scholar] [CrossRef]
- Moratalla, Á.; Araújo, D.M.; Moura, G.O.M.A.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Pressurized electro-Fenton for the reduction of the environmental impact of antibiotics. Sep. Purif. Technol. 2021, 276, 119398. [Google Scholar] [CrossRef]
- Kodavatiganti, S.; Bhat, A.P.; Gogate, P.R. Intensified degradation of Acid Violet 7 dye using ultrasound combined with hydrogen peroxide, Fenton, and persulfate. Sep. Purif. Technol. 2021, 279, 119673. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Li, H.; Zhang, Y.H.; Zhang, L.S.; Zhong, S.; Shu, X.H. Multi-catalysis of glow discharge plasma coupled with FeS2 for synergistic removal of antibiotic. Chemosphere 2023, 312, 137204. [Google Scholar] [CrossRef]
- Ramos, M.D.N.; Santana, C.S.; Velloso, C.C.V.; Silva, A.H.M.; Magalhães, F.; Aguiar, A. A review on the treatment of textile industry effluents through Fenton processes. Process Saf. Environ. Prot. 2021, 155, 366–386. [Google Scholar] [CrossRef]
- Tao, X.M.; Sun, C.; Huang, L.; Han, Y.Y.; Xu, D.Y. Fe-MOFs prepared with the DBD plasma method for efficient Fenton catalysis. RSC Adv. 2019, 9, 6379–6386. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.M.K.; Raju, B.R.; Karuppiah, J.; Reddy, E.L.; Subrahmanyam, C. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chem. Eng. J. 2013, 217, 41–47. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Miessner, H.; Mueller, S.; Mahyar, A.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018, 343, 107–115. [Google Scholar] [CrossRef]
- Feng, J.W.; Zheng, Z.; Sun, Y.B.; Luan, J.F.; Wang, Z.; Wang, L.H.; Feng, J.F. Degradation of diuron in aqueous solution by dielectric barrier discharge. J. Hazard. Mater. 2008, 154, 1081–1089. [Google Scholar] [CrossRef]
- Tao, X.M.; Yang, C.; Wei, Z.H.; Huang, L.; Chen, J.X.; Cong, W.W.; Xie, R.Y.; Xu, D.Y. Synergy between Fenton process and DBD for methyl orange degradation. Mater. Res. Bull. 2019, 120, 110581. [Google Scholar] [CrossRef]
- Lu, W.; Sang, W.J.; Jia, D.N.; Zhang, Q.; Li, C.H.; Zhang, S.Y.; Zhan, C.; Mei, L.J.; Li, M. Improvement of degradation of Orange G in aqueous solution by Fe2+ added in dielectric barrier discharge plasma system. J. Water Process Eng. 2022, 47, 102707. [Google Scholar] [CrossRef]
- Xu, Z.M.; Xue, X.J.; Hu, S.H.; Li, Y.X.; Shen, J.; Lan, Y.; Zhou, R.X.; Yang, F.; Cheng, C. Degradation effect and mechanism of gas-liquid phase dielectric barrier discharge on norfloxacin combined with H2O2 or Fe2+. Sep. Purif. Technol. 2020, 230, 115862. [Google Scholar] [CrossRef]
- Tao, X.M.; Yuan, X.J.; Huang, L. Effects of Fe (II)/Fe (III) of Fe-MOFs on catalytic performance in plasma/Fenton-like system. Colloids Surf. A 2021, 610, 125745. [Google Scholar] [CrossRef]
- Lee, J.; Gunten, U.; Kim, J.H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.T.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Ye, J.S.; Zhou, P.L.; Chen, Y.; Ou, H.; Liu, J.; Li, C.S.; Li, Q.S. Degradation of 1H-benzotriazole using ultraviolet activating persulfate: Mechanisms, products and toxicological analysis. Chem. Eng. J. 2018, 334, 1493–1501. [Google Scholar] [CrossRef]
- Matzek, L.W.; Tipton, M.J.; Farmer, A.T.; Steen, A.D.; Carter, K.E. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement. Environ. Sci. Technol. 2018, 52, 5875–5883. [Google Scholar] [CrossRef]
- Manz, K.E.; Carter, K.E. Investigating the effects of heat activated persulfate on the degradation of furfural, a component of hydraulic fracturing fluid chemical additives. Chem. Eng. J. 2017, 327, 1021–1032. [Google Scholar] [CrossRef]
- Qiu, Q.L.L.; Li, G.X.; Dai, Y.; Xu, Y.Y.; Bao, P. Removal of antibiotic resistant microbes by Fe (II)-activated persulfate oxidation. J. Hazard. Mater. 2020, 396, 122733. [Google Scholar] [CrossRef]
- Zou, L.X.; Wang, Y.; Huang, C.; Li, B.B.; Lyu, J.; Wang, S.; Lu, H.; Li, J. Meta-cresol degradation by persulfate through UV/O3 synergistic activation: Contribution of free radicals and degradation pathway. Sci. Total Environ. 2021, 754, 142219. [Google Scholar] [CrossRef] [PubMed]
- Song, S.L.; Zhang, H.H.; Han, S.; Xiao, S.S.; Du, Y.S.; Hu, K.; Wang, H.J.; Wu, C.D. Activation of persulfate by a water falling film DBD process for the enhancement of enrofloxacin degradation. Chemosphere 2022, 301, 134667. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, H.Y.; Chi, L.P.; Chen, H.K.; Chen, C.Z. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 2017, 189, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Li, W.T.; Lv, J.R.; Qiang, Z.M.; Li, M.K. Methylene blue degradation by the VUV/UV/persulfate process: Effect of pH on the roles of photolysis and oxidation. J. Hazard. Mater. 2020, 391, 121855. [Google Scholar] [CrossRef]
- Shang, K.F.; Wang, X.J.; Li, J.; Wang, H.; Lu, N.; Jiang, N.; Wu, Y. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chem. Eng. J. 2017, 311, 378–384. [Google Scholar] [CrossRef]
- Chen, W.G.; Wu, H.X.; Fan, J.W.; Fang, Z.; Lin, S.H. Activated persulfate by DBD plasma and activated carbon for the degradation of acid orange II. Plasma Sci. Technol. 2020, 22, 61–67. [Google Scholar] [CrossRef]
- Wu, H.X.; Fan, J.W.; Liu, F.; Shu, L.S.; Yin, B.J. Degradation of tetracycline in aqueous solution by persulphate assisted gas-liquid dielectric barrier discharge. Water Environ. J. 2021, 35, 12678. [Google Scholar] [CrossRef]
- Wang, Y.W.; Huang, J.W.; Guo, H.; Puyang, C.D.; Han, J.G.; Li, Y.; Ruan, Y.X. Mechanism and process of sulfamethoxazole decomposition with persulfate activated by pulse dielectric barrier discharge plasma. Sep. Purif. Technol. 2022, 287, 120540. [Google Scholar] [CrossRef]
- Wu, J.L.; Xiong, Q.; Liang, J.L.; He, Q.; Yang, D.X.; Deng, R.Y.; Chen, Y. Degradation of benzotriazole by DBD plasma and peroxymonosulfate: Mechanism, degradation pathway and potential toxicity. Chem. Eng. J. 2022, 384, 123300. [Google Scholar] [CrossRef]
- Tang, S.F.; Yuan, D.L.; Rao, Y.D.; Li, N.; Qi, J.B.; Cheng, T.Z.; Sun, Z.T.; Gu, J.M.; Huang, H.M. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water. Chem. Eng. J. 2018, 337, 446–454. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, G.Z.; Sun, Q.H.; Jia, H.Z.; Wang, T.C.; Zhu, L.Y. Endogenously activated persulfate by non-thermal plasma for Cu (II)-EDTA decomplexation: Synergistic effect and mechanisms. Chem. Eng. J. 2021, 406, 126774. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, P.; Liu, X.M.; Hu, L.M.; Wang, Q.; Xu, P.; Zhang, G.S. Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate. Chem. Eng. J. 2020, 389, 124381. [Google Scholar] [CrossRef]
- Wang, B.W.; Wang, C.; Yao, S.M.; Peng, Y.P.; Xu, Y. Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor. Plasma Sci. Technol. 2019, 21, 136–143. [Google Scholar] [CrossRef]
- Ma, H.; Yuan, C.C.; Wang, X.M.; Wang, H.J.; Long, Y.P.; Chen, Y.Q.; Wang, Q.; Cong, Y.Q.; Zhang, Y. Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system. Sep. Purif. Technol. 2021, 276, 119252. [Google Scholar] [CrossRef]
- Tang, S.F.; Lu, N.; Li, J.; Shang, K.F.; Wu, Y. Improved phenol decomposition and simultaneous regeneration of granular activated carbon by the addition of a titanium dioxide catalyst under a dielectric barrier discharge plasma. Carbon 2012, 53, 380–390. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.B.; Feng, J.W.; Xin, L.; Ma, J.Z. Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2 /activated carbon fibers: Effect of operating parameters and byproducts identification. Chem. Eng. J. 2016, 300, 36–46. [Google Scholar] [CrossRef]
- Wang, B.W.; Yao, S.M.; Peng, Y.P.; Xu, Y. Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge. J. Environ. Chem. Eng. 2018, 6, 3819–3826. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.B.; Peng, Z.B.; Chen, Y.; Xiang, G.L.; Liu, Q.; Liu, Y.X.; Chen, D.M. Catalytic Properties of TiO2/Fe3O4 Nanoparticles in Plasma Chemical Treatment. Russ. J. Phys. Chem. 2016, 90, 777–782. [Google Scholar] [CrossRef]
- Shang, K.F.; Li, W.F.; Wang, X.J.; Lu, N.; Jiang, N.; Li, J.; Wu, Y. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep. Purif. Technol. 2019, 218, 106–112. [Google Scholar] [CrossRef]
- Deng, R.Y.; He, Q.; Yang, D.X.; Dong, Q.; Wu, J.L.; Yang, X.Y.; Chen, Y. Enhanced synergistic performance of nano-Fe0-CeO2 composites for the degradation of diclofenac in DBD plasma. Chem. Eng. J. 2021, 406, 126884. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, H.; Fujii, A.; Hosomi, M.; Li, F.S. Degradation of 1,4-dioxane in water with heat- and Fe (2+)-activated persulfate oxidation. Environ. Sci. Pollut. Res. Int. 2014, 21, 7457–7465. [Google Scholar] [CrossRef] [PubMed]
Researchers | Target Pollutant | Photocatalyst | Experimental Conditions | Degradation Rate | Ref. |
---|---|---|---|---|---|
Tijani et al. | 2-NP | load type of TiO2 | Discharge voltage: 8.0 kV; Air flow rate: 3.0 L/min; 2-NP concentration: 10.0 PPM; Time: 60.0 min | 77.5% | [48] |
Li et al. | 2,4-dichlorophenol | TiO2 | Discharge voltage: 75.0 V; 2,4-dichlorophenol concentration: 50.0 mg/L; pH: 5.3; TiO2 supplemental amount: 10%; Time: 120.0 min | 89.6% | [49] |
Li et al. | Clothianidin | rGO/TiO2 | Applied power: 200 W; Clothianidin concentration: 0.1 g/L; pH: 3.5; Electrical conductivity: 150.0 S/cm; Time: 120.0 min | 98.9% | [50] |
Tao et al. | Methyl orange (MO) | ZnCuFeCr | Input voltage: 30.9 kV; MO concentration: 20.0 mg/L; ZnCuFeCr dosage: 1.0 g/L; Time: 42.0 min | 96.8% | [51] |
Zheng et al. | MO | Ce/Mo | Input voltage: 3.6 kV; MO concentration: 50.0 mg/L; Time: 18.0 min | 80.0% | [52] |
Tao et al. | MO | Modified NiAlCe-LDH | Input voltage: 70.0 V; MO concentration: 80.0 mg/L; Modified NiAlCe-LDH dosage: 1.0 g/L; Time: 36.0 min | 100.0% | [53] |
Liu et al. | Acid orange 7(AO7) | g-C3N4/TiO2 | Input power: 20.0 W; AO7 concentration: 5.0 mg/L; Air flow rate: 52.0 L/h; pH: 10.0; Catalyst dosage: 0.5 g/L; Time: 10.0 min | 100.0% | [54] |
Researchers | Target Pollutant | Adsorbent | Experimental Conditions | Degradation Rate | Ref. |
---|---|---|---|---|---|
Gushchin et al. | 2,4-dichlorophenol (2,4-DCP) | diatomite | Discharge power: 1.8 W; Time: 2.5 s | ~92.0% | [63] |
Sang et al. | N, N-dimethylformamide (DMF) | Mn-AC | Discharge power: 16.2 W; DMF concentration: 100.0 mg/L; pH: 11.4; Mn-AC dosage: 1.0 g/L; Time: 40.0 min | 82.2% | [64] |
Gong et al. | Levofloxacin (LFX) | Ag3PO4/ACFs | Discharge voltage: 10.0 kV; LFX concentration: 20.0 mg/L; Time: 18.0 min | 93.0% | [65] |
Lu et al. | Pentachlorophenol (PCP) | GAC | Discharge voltage: 23.0 kV; Concentration of PCP: 2000.0 mg/L; Air flow: 2.0 L/min; Time: 2.0 h | 65.0% | [66] |
Qu et al. | PCP | GAC | Discharge voltage: 20.4 kV; Frequency: 200.0 Hz; PCP concentration: 2000.0 mg/L; Oxygen flow: 2.0 L/min; Time: 60.0 min | 67.0% | [67] |
Tang et al. | Phenol | GAC | Discharge voltage: 21.0 kV; Air flow: 0.45 m3/h; Time: 60.0 min | 58.0% | [68] |
Researchers | Target Pollutant | Experimental Conditions | Fe2 + Add Quantity | Degradation Rate | Main Active Substance | Ref. |
---|---|---|---|---|---|---|
Tao et al. | MO | External applied voltage: 18.0 kV; MO concentration: 50.0 mg/L; pH: 3.0; Time: 40.0 min | 120 mg/L | 85.0% | ·OH; H2O2 | [77] |
Reddy et al. | Methylene blue (MB) | Discharge voltage: 16.0 kV; MB concentration: 100.0 mg/L; Time: 25.0 min | 60 mg/L | 98.0% | ·OH; HO2· | [78] |
Aziz et al. | 2,4-D; 2,4-DCP | Input power: 150.0 W; 2,4-D and 2,4-DCP concentration: 100.0 mg/L; Time: 10.0 min | 10 mg/L | 2,4-D: 99.0%; 2,4-DCP: 95.0% | ·OH | [79] |
Feng et al. | Dailon | Input power: 120.0 W; Dailon concentration: 23.0 mg/L; PH: 6.2; Time: 60.0 s | 30 mg/L | 98.0% | ·OH | [80] |
Tao et al. | MO | Discharge voltage: 7.5 kV; Discharge power: 117.5 W; MO concentration: 100.0 mg/L; H2O2:0.6ml; Time: 13.5 min | 1.0 mg/L | 99.9% | ·OH; h+; ·O2− | [81] |
Lu et al. | Orange G (OG) | Input voltage: 70.0 V; OG concentration: 100.0 mg/L; The optimum pH: 2.98; Time: 10.0 min | 0.1 mmol/L | 93.6% | ·OH | [82] |
Xu et al. | Norfloxacin (NOR) | Discharge power: 60.0 W; NOR concentration: 10.0 mg/L; Time: 15.0 min | 10 mg/L | 98.0% | ·OH | [83] |
Tao et al. | MO | MO concentration: 200.0 mg/L; Time: 6.0 min | - | 99.2% | ·OH; h+; ·O2− | [84] |
Researchers | Target Pollutant | Persulfate Type | Experimental Conditions | Optimal pH | Degradation Rate | Main Active Substance | Ref. |
---|---|---|---|---|---|---|---|
Shang et al. | AO7 | Potassium persulfate | Discharge voltage: 17.0 kV; Discharge power: 3.6 W; AO7 concentration: 5.0 mg/L; PS and AO7 add mole ratio: 100/1; Time: 50.0 min | pH = 2.6 | 95.0% | H2O2; HO2·;·OH | [97] |
Chen et al. | Acid Orange II (AO II) | Sodium persulfate | Discharge voltage: 16.0 kV; AO II concentration: 20.0 mg/L; Discharge time: 28.0 min; PS and AO II add mole ratio: 200/1 | pH = 5.4 | 87.2% | SO4−·;·OH | [98] |
Wu et al. | TC | Potassium peroxodisulphate | Discharge voltage: 18.0 kV; TC concentration: 80.0 mg/L; PDS dosage: 120.0 mg | pH = 8.3 | 96.8% | SO4−·;·OH | [99] |
Wang et al. | Sulfamethoxazole (SMZ) | Sodium persulfate | Discharge voltage: 180.0 V; SMX concentration: 50.0 mg/L; PS and SMX mass ratio: 40/1; Time: 30.0 min | pH = 10.3 | 93.4% | ·O2−; SO4−·;·OH | [100] |
Wu et al. | Benzotriazole (BTA) | Sodium persulfate | Discharge voltage: 15.0 kV; BTA concentration: 10.0 mg/L; Mass ratio of PMS and BTA: 30/1; Time: 20.0 min | pH = 3.2 | 97.0% | O3;·OH | [101] |
Tang et al. | TC | Potassium persulfate | Discharge voltage: 7.0 kV; TC concentration: 40.0 mg/L; PS and TC mole ratio: 20/1; Time: 15.0 min | pH = 10.0 | 88.2% | SO4−·;·OH | [102] |
Liu et al. | Cu-EDTA | Sodium persulfate | Discharge voltage: 7.0 kV; Cu-EDTA concentration: 0.5 mmol/L; PS concentration: 2.0 mmol/L; Time: 20.0 min | pH = 5.0 | 100.0% | SO4−·;·OH | [103] |
Wang et al. | Perfluorooctane acid (PFOA) | Potassium persulfate | Discharge voltage: 18.0 kV; PFOA concentration: 5.0 mg/L; PMS concentration: 445.0 mg/L; Time: 120.0 min | - | 81.0% | SO4−·;·OH | [104] |
Researchers | Target Pollutant | Compound Catalyst | Experimental Conditions | Degradation Rate of Composite Catalyst | Degradation Rate of Single DBD | Ref. |
---|---|---|---|---|---|---|
Wang et al. | TC | Mn/γ-Al2O3 | Discharge power: 1.3 W; Time: 5.0 min | 99.3% | 69.7% | [105] |
Ma et al. | Phenol | TiO2/CeO2 | Discharge voltage: 45.0 V; Discharge power: 21.9W; Phenol concentration: 10.0 mg/L; Time: 10.0 min | 97.1% | 43.1% | [106] |
Tang et al. | Phenol | TiO2/GAC | Discharge voltage: 30.0 kV; Phenol concentration: 500.0 mg/L; Oxygen flow rate: 1.0 L/min; Time: 180.0 min | 88.0% | - | [107] |
Wang et al. | Triclocarban (TCC) | TiO2/ACFs | Discharge power: 38.0 W; TCC concentration:10.0 mg/L; Time: 30.0 min | 0.33 mg·L−1· min−1 | 0.23 mg·L−1· min−1 | [108] |
Wang et al. | Methylbenzene | TiO2/BaTiO3 | Discharge power: 20.0 W; Time: 24.0 min | 88.3% | 59.1% | [109] |
Wang et al. | MO | TiO2/Fe3O4 | Input voltage: 13.0 kV; TiO2/Fe3O4 concentration: 100.0 mg/L; Time: 30.0 min | 88.0% | - | [110] |
Shang et al. | P-nitrophenol (PNP) | PS/Fe2+ | Discharge power: 17.0 kW; PH: 4.8–6.3; Time: 50.0 min | 81.1% | 34.8% | [111] |
Deng et al. | Diclofenac (DCF) | Nano Fe0/CeO2 | Discharge voltage: 12.0 kV; DCF concentration: 10.0 mg/L; PH: 7.0; Time: 10.0 min | 96.4% | 45.8% | [112] |
Researchers | Target Pollutant | Catalyst | Initial Concentration | Degradation Rate | Energy Efficiency of Single DBD System | Energy Efficiency of Co-Catalysis | Ref. |
---|---|---|---|---|---|---|---|
Sang et al. | DMF | Mn-AC | 1000.0 mg/L | 82.2% | - | 74,844.0 mg/kWh | [64] |
Wu et al. | BTA | Sodium persulfate | 10.0 mg/L | 97.0% | 910.0 mg/kWh | 1670.0 mg/kWh | [101] |
Tang et al. | TC | Potassium persulfate | 40.0 mg/L | 49.0% | 23.7 mg/kJ | 160,200.0 mg/kWh | [102] |
Wang et al. | PFOA | Potassium persulfate/O3 | 5.0 mg/L | 94.8% | 72.5 mg/kWh | 120.0 mg/kWh | [103] |
Wang et al. | TC | Mn/γ/Al2O3 | - | 99.3% | - | 91,700.0 mg/kWh | [104] |
Tang et al. | Phenol | TiO2/GAC | 500.0 mg/L | 88.0% | - | GAC:5760.0 mg/kWh; TiO2-GAC:6840.0 mg/kWh | [107] |
Wang et al. | TCC | TiO2/ACFs | 10.0 mg/L | 84.9% | 30.0 mg/kWh | 45.0 mg/kWh | [108] |
Shang et al. | PNP | PS/Fe2+ | 5.0 mg/L | 81.1% | - | Fe2+:200.0 mg/kWh; PS:180.0 mg/kWh; PS-Fe2+:230.0 mg/kWh | [111] |
Deng et al. | DCF | Nano Fe0/CeO2 | 10.0 mg/L | 96.4% | 2460.0 mg/kWh | Fe0:5350.0 mg/kWh; Fe0 -CeO2:9940.0 mg/kWh | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Su, Y.; Yang, X.; Wang, Y.; Li, Z.; Wu, Y.; Ren, J. Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review. Catalysts 2023, 13, 10. https://doi.org/10.3390/catal13010010
Guo H, Su Y, Yang X, Wang Y, Li Z, Wu Y, Ren J. Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review. Catalysts. 2023; 13(1):10. https://doi.org/10.3390/catal13010010
Chicago/Turabian StyleGuo, He, Yingying Su, Xinyi Yang, Yawen Wang, Zhen Li, Yifeng Wu, and Jingyu Ren. 2023. "Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review" Catalysts 13, no. 1: 10. https://doi.org/10.3390/catal13010010
APA StyleGuo, H., Su, Y., Yang, X., Wang, Y., Li, Z., Wu, Y., & Ren, J. (2023). Dielectric Barrier Discharge Plasma Coupled with Catalysis for Organic Wastewater Treatment: A Review. Catalysts, 13(1), 10. https://doi.org/10.3390/catal13010010