A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites
Abstract
:1. Introduction
1.1. Major Derivatives of Graphene
1.1.1. Graphane
1.1.2. Fluorographene
1.1.3. Graphene Oxide
2. Synthesis Methods for the Preparation of Graphene and Its Derivatives
2.1. Chemical Vapor Deposition (CVD) Method
2.2. Mechanical Exfoliation Method
2.3. Chemical Exfoliation Method
2.4. Electrochemical Exfoliation Method
2.5. Epitaxial Growth Method
3. Properties of Graphene and Its Derivatives
3.1. Structural Traits
3.2. Mechanical Traits
3.2.1. Graphene
3.2.2. Graphane
3.2.3. Fluorinated Graphene
3.2.4. Graphene Oxide
3.3. Optical Traits
3.3.1. Graphene
3.3.2. Fluorinated Graphene
3.3.3. Graphane
3.3.4. Graphene Oxide
4. Graphene and Its Derivative-Based Composites
4.1. Graphene with Metal–Organic Frameworks
4.2. Graphene Composites with Semiconductors
4.3. Graphene Composites with Polymer
4.4. Graphene Composites with Hydrogel
5. Environmental Applications of Graphene and Its Derivative-Based Composites
5.1. Filtration
5.2. Adsorption
5.3. Photocatalysis
6. Major Challenges for Environmental Applications of Graphene and Its Derivative-Based Composites
- High-cost requirement for synthesis of high-grade graphene;
- Availability of scientifically matured conventional materials;
- Difficult to produce on a larger scale with the same consistency;
- Introduction of defects while handling graphene can cause significant loss in its properties;
- Graphene and its derivatives show cytotoxic and genotoxic tendencies;
- Sharp edges of graphene can cause cellular damage in the human body.
7. Future Scope and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on Graphene and Its Derivatives: Synthesis Methods and Potential Industrial Implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180. [Google Scholar] [CrossRef]
- Acheson, E.G. Graphite: Its Formation and Manufacture. J. Frankl. Inst. 1899, 147, 475–486. [Google Scholar] [CrossRef]
- Brodie, B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259. [Google Scholar]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Chen, H.; Li, C.; Qu, L. Solution Electrochemical Approach to Functionalized Graphene: History, Progress and Challenges. Carbon 2018, 140, 41–56. [Google Scholar] [CrossRef]
- Abergel, D.S.L.; Apalkov, V.; Berashevich, J.; Ziegler, K.; Chakraborty, T. Properties of Graphene: A Theoretical Perspective. Adv. Phys. 2010, 59, 261–482. [Google Scholar] [CrossRef] [Green Version]
- Kuang, Y.; Lindsay, L.; Shi, S.; Wang, X.; Huang, B. Thermal Conductivity of Graphene Mediated by Strain and Size. Int. J. Heat Mass Transf. 2016, 101, 772–778. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yang, K.; Liu, G.; Chen, Y.; Wang, M.; Li, S.; Li, R. Recent Advances on Graphene: Synthesis, Properties, and Applications. Compos. Part Appl. Sci. Manuf. 2022, 160, 107051. [Google Scholar] [CrossRef]
- Güler, Ö.; Bağcı, N. A Short Review on Mechanical Properties of Graphene Reinforced Metal Matrix Composites. J. Mater. Res. Technol. 2020, 9, 6808–6833. [Google Scholar] [CrossRef]
- Sánchez-Arellano, A.; Pérez-Huerta, J.S.; Ariza-Flores, D.; Sustaita-Torres, I.A.; Madrigal-Melchor, J. Tailoring the Transmission and Absorption Spectra in a Graphene-Dielectric Multilayer System for Lorentzian Profile in the Chemical Potential. Superlattices Microstruct. 2019, 130, 68–75. [Google Scholar] [CrossRef]
- Fernandes, J.A.; Anselmo, D.; Vasconcelos, M.S.; Mello, V.D.; Cottam, M.G. Transmission and Absorption Spectra of Light Waves on Graphene-Embedded Cylindrical Photonic Quasicrystals. Opt. Mater. 2022, 132, 112865. [Google Scholar] [CrossRef]
- Basak, T.; Basak, T. Electro-Absorption Spectra of Magnetic States of Diamond Shaped Graphene Quantum Dots. Mater. Today Proc. 2020, 26, 2058–2061. [Google Scholar] [CrossRef]
- Wimmenauer, C.; Scheller, J.; Fasbender, S.; Heinzel, T. Single-Particle Energy–and Optical Absorption–Spectra of Multilayer Graphene Quantum Dots. Superlattices Microstruct. 2019, 132, 106171. [Google Scholar] [CrossRef]
- Kizuka, T.; Miyazawa, K.; Matsuura, D. Synthesis of Carbon Nanocapsules and Nanotubes Using Fe-Doped Fullerene Nanowhiskers. J. Nanotechnol. 2012, 2012, 613746. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, A.; Nayak, V.; Singh, K.R.; Jain, B.; Baid, M.; Alexis, F.; Singh, A.K. Potentialities of Graphene and Its Allied Derivatives to Combat against SARS-CoV-2 Infection. Mater. Today Adv. 2022, 13, 100208. [Google Scholar] [CrossRef]
- Sofo, J.O.; Chaudhari, A.S.; Barber, G.D. Graphane: A Two-Dimensional Hydrocarbon. Phys. Rev. B 2007, 75, 153401. [Google Scholar]
- Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M. GraphAne: From Synthesis to Applications. arXiv 2015, arXiv:1502.05804. [Google Scholar]
- Yang, Y.-E.; Yang, Y.-R.; Yan, X.-H. Universal Optical Properties of Graphane Nanoribbons: A First-Principles Study. Phys. E Low-Dimens. Syst. Nanostruct. 2012, 44, 1406–1409. [Google Scholar]
- Nagarajan, V.; Chandiramouli, R. A Novel Approach for Detection of NO2 and SO2 Gas Molecules Using Graphane Nanosheet and Nanotubes-A Density Functional Application. Diam. Relat. Mater. 2018, 85, 53–62. [Google Scholar]
- Pumera, M.; Sofer, Z. Towards Stoichiometric Analogues of Graphene: Graphane, Fluorographene, Graphol, Graphene Acid and Others. Chem. Soc. Rev. 2017, 46, 4450–4463. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Long, P.; Feng, Y.; Li, Y. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Adv. Sci. 2016, 3, 1500413. [Google Scholar] [CrossRef] [PubMed]
- Hrubỳ, V.; Zdražil, L.; Dzíbelová, J.; Šedajová, V.; Bakandritsos, A.; Lazar, P.; Otyepka, M. Unveiling the True Band Gap of Fluorographene and Its Origins by Teaming Theory and Experiment. Appl. Surf. Sci. 2022, 587, 152839. [Google Scholar] [CrossRef]
- Wei, C.-K.; Peng, H.-Y.; Tsai, Y.-C.; Chen, T.-C.; Yang, C.-M. Fluorographene Sensing Membrane in a Light-Addressable Potentiometric Sensor. Ceram. Int. 2019, 45, 9074–9081. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene Prehistory. Phys. Scr. 2012, 2012, 014003. [Google Scholar] [CrossRef]
- Geim, A.K. Nobel Lecture: Random Walk to Graphene. Rev. Mod. Phys. 2011, 83, 851. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B.H.; Min, D.-H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, Properties, and Applications of Graphene Oxide/Reduced Graphene Oxide and Their Nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Coroş, M.; Pogăcean, F.; Măgeruşan, L.; Socaci, C.; Pruneanu, S. A Brief Overview on Synthesis and Applications of Graphene and Graphene-Based Nanomaterials. Front. Mater. Sci. 2019, 13, 1123. [Google Scholar] [CrossRef]
- Muhmood, T.; Xia, M.; Lei, W.; Wang, F.; Khan, M.A. Design of Graphene Nanoplatelet/Graphitic Carbon Nitride Heterojunctions by Vacuum Tube with Enhanced Photocatalytic and Electrochemical Response. Eur. J. Inorg. Chem. 2018, 2018, 1726–1732. [Google Scholar] [CrossRef]
- Mahmood, A.; Muhmood, T.; Ahmad, F. Carbon Nanotubes Heterojunction with Graphene like Carbon Nitride for the Enhancement of Electrochemical and Photocatalytic Activity. Mater. Chem. Phys. 2022, 278, 125640. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.; Ruan, Y.; Lin, S.; Wang, K.; Lu, H. Monolithic Crystalline Swelling of Graphite Oxide: A Bridge to Ultralarge Graphene Oxide with High Scalability. Chem. Mater. 2018, 30, 1888–1897. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Wang, C.; Sun, X.; Zhu, X.; Sun, B. Synthesis of Graphene via In-Liquid Discharge Plasma: A Green, Novel Strategy and New Insight. Colloid Interface Sci. Commun. 2022, 47, 100605. [Google Scholar] [CrossRef]
- Wang, C.; Sun, X.; Zhu, X.; Sun, B. Alcohol Addition Improves the Liquid-Phase Plasma Process for “Green” Reduction of Graphene Oxide. Vacuum 2022, 205, 111373. [Google Scholar] [CrossRef]
- Kalita, G.; Jaisi, B.P.; Umeno, M. Effective Reduction and Doping of Graphene Oxide Films at Near-Room Temperature by Microwave-Excited Surface-Wave Plasma Process. Diam. Relat. Mater. 2022, 126, 109066. [Google Scholar] [CrossRef]
- Chettri, P.; Tripathi, A.; Tiwari, A. Effect of Silver Nanoparticles on Electrical and Magnetic Properties of Reduced Graphene Oxide. Mater. Res. Bull. 2022, 150, 111752. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Sharma, N.; Tomar, S.; Shkir, M.; Choubey, R.K.; Singh, A. Study of Optical and Electrical Properties of Graphene Oxide. Mater. Today Proc. 2021, 36, 730–735. [Google Scholar] [CrossRef]
- Rowley-Neale, S.J.; Randviir, E.P.; Dena, A.S.A.; Banks, C.E. An Overview of Recent Applications of Reduced Graphene Oxide as a Basis of Electroanalytical Sensing Platforms. Appl. Mater. Today 2018, 10, 218–226. [Google Scholar] [CrossRef]
- Tarcan, R.; Todor-Boer, O.; Petrovai, I.; Leordean, C.; Astilean, S.; Botiz, I. Reduced Graphene Oxide Today. J. Mater. Chem. C 2020, 8, 1198–1224. [Google Scholar] [CrossRef]
- Sreeprasad, T.S.; Maliyekkal, S.M.; Lisha, K.P.; Pradeep, T. Reduced Graphene Oxide–Metal/Metal Oxide Composites: Facile Synthesis and Application in Water Purification. J. Hazard. Mater. 2011, 186, 921–931. [Google Scholar] [CrossRef]
- Ciammaruchi, L.; Bellucci, L.; Castillo, G.C.; Sánchez, G.M.-D.; Liu, Q.; Tozzini, V.; Martorell, J. Water Splitting of Hydrogen Chemisorbed in Graphene Oxide Dynamically Evolves into a Graphane Lattice. Carbon 2019, 153, 234–241. [Google Scholar] [CrossRef]
- Joshi, N.C.; Gururani, P. Advances of Graphene Oxide Based Nanocomposite Materials in the Treatment of Wastewater Containing Heavy Metal Ions and Dyes. Curr. Res. Green Sustain. Chem. 2022, 5, 100306. [Google Scholar] [CrossRef]
- Colmiais, I.; Silva, V.; Borme, J.; Alpuim, P.; Mendes, P.M. Towards RF Graphene Devices: A Review. FlatChem 2022, 35, 100409. [Google Scholar] [CrossRef]
- Donaldson, L. New Graphene Transistors Could Offer New High-Frequency Devices. Mater. Today 2014, 9, 421. [Google Scholar] [CrossRef]
- Routray, K.L.; Saha, S.; Behera, D. Nanosized CoFe2O4-Graphene Nanoplatelets with Massive Dielectric Enhancement for High Frequency Device Application. Mater. Sci. Eng. B 2020, 257, 114548. [Google Scholar] [CrossRef]
- Szkopek, T.; Martel, E. Suspended Graphene Electromechanical Switches for Energy Efficient Electronics. Prog. Quantum Electron. 2021, 76, 100315. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Mariatti, M. Printed Graphene and Hybrid Conductive Inks for Flexible, Stretchable, and Wearable Electronics: Progress, Opportunities, and Challenges. J. Sci. Adv. Mater. Devices 2022, 7, 100435. [Google Scholar] [CrossRef]
- Arshad, M.U.; Dutta, D.; Sin, Y.Y.; Hsiao, S.W.; Wu, C.Y.; Chang, B.K.; Dai, L.; Su, C.Y. Multi-Functionalized Fluorinated Graphene Composite Coating for Achieving Durable Electronics: Ultralow Corrosion Rate and High Electrical Insulating Passivation. Carbon 2022, 195, 141–153. [Google Scholar] [CrossRef]
- Miao, Y.; Li, P.; Cheng, S.; Zhou, Q.; Cao, M.; Yi, J.; Zhang, H. Preparation of Multi-Axial Compressible 3D PVDF Nanofibre/Graphene Wearable Composites Sensor Sponge and Application of Integrated Sensor. Sens. Actuators Phys. 2022, 342, 113648. [Google Scholar] [CrossRef]
- Shen, T.; Gong, A.; Chen, J.; Liu, C.; Liu, X.; Feng, Y.; Duan, S. An Investigation on Temperature Sensor of SDTMS Structure with Ag-ZnO/Graphene Cladding. Opt. Laser Technol. 2022, 153, 108275. [Google Scholar] [CrossRef]
- Benjamin, S.R.; Junior, E.J.M.R. Graphene-Based electrochemical sensors for detection of environmental pollutants. Curr. Opin. Environ. Sci. Health 2022, 29, 100381. [Google Scholar] [CrossRef]
- Yabaş, E.; Biçer, E.; Altındal, A. Novel Reduced Graphene Oxide/Zinc Phthalocyanine and Reduced Graphene Oxide/Cobalt Phthalocyanine Hybrids as High Sensitivity Room Temperature Volatile Organic Compound Gas Sensors. J. Mol. Struct. 2023, 1271, 134076. [Google Scholar] [CrossRef]
- Yusof, N.M.; Ibrahim, S.; Rozali, S. Synthesis of Graphene Oxide-Cobalt Oxide Hybrid Materials for Gas Sensors Application. Mater. Today Proc. 2022, 66, 2680–2684. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Qin, H.; Chen, K.; Li, Z.; Chen, Y.; Li, J.; Hu, T.; Chen, S.; Qiao, Z. Stress-Assisted Design of Stiffened Graphene Electrode Structure toward Compact Energy Storage. J. Energy Chem. 2022, 71, 478–487. [Google Scholar] [CrossRef]
- Liu, Z.; Navik, R.; Tan, H.; Xiang, Q.; Goto, M.; Ibarra, R.M.; Zhao, Y. Graphene-Based Materials Prepared by Supercritical Fluid Technology and Its Application in Energy Storage. J. Supercrit. Fluids 2022, 188, 105672. [Google Scholar] [CrossRef]
- Kumar, R.; Samykano, M.; Ngui, W.K.; Pandey, A.K.; Kalidasan, B.; Kadirgama, K.; Tyagi, V.V. Investigation of Thermal Performance and Chemical Stability of Graphene Enhanced Phase Change Material for Thermal Energy Storage. Phys. Chem. Earth Parts ABC 2022, 128, 103250. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F.Y.; Yan, Q.; Chen, P.; Zhang, H. In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces. J. Phys. Chem. C 2009, 113, 10842–10846. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L.; Chen, B.; Ji, N.; Chen, F.; Zhang, Y.; Zhang, Z. Nanocomposites of Size-Controlled Gold Nanoparticles and Graphene Oxide: Formation and Applications in SERS and Catalysis. Nanoscale 2010, 2, 2733–2738. [Google Scholar] [CrossRef]
- Marquardt, D.; Vollmer, C.; Thomann, R.; Steurer, P.; Mülhaupt, R.; Redel, E.; Janiak, C. The Use of Microwave Irradiation for the Easy Synthesis of Graphene-Supported Transition Metal Nanoparticles in Ionic Liquids. Carbon 2011, 49, 1326–1332. [Google Scholar] [CrossRef]
- Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction. J. Phys. Chem. C 2010, 114, 12955–12959. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene Oxide- MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010, 4, 2822–2830. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Wu, S.; Zhou, X.; Huang, X.; Zhang, Q.; Boey, F.; Zhang, H. Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 2010, 6, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.I.; Zhang, L.; Zhou, C. Review of Chemical Vapor Deposition of Graphene and Related Applications. Acc. Chem. Res. 2013, 46, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- Pirzado, A.A.; Le Normand, F.; Romero, T.; Paszkiewicz, S.; Papaefthimiou, V.; Ihiawakrim, D.; Janowska, I. Few-Layer Graphene from Mechanical Exfoliation of Graphite-Based Materials: Structure-Dependent Characteristics. ChemEngineering 2019, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Othman, N.H.; Alias, N.H.; Shahruddin, M.Z.; Marpani, F.; Aba, N.D. Synthesis Methods of Graphene. In Graphene, Nanotubes and Quantum Dots-Based Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 19–42. [Google Scholar]
- Saeed, M.; Alshammari, Y.; Majeed, S.A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. [Google Scholar] [CrossRef]
- Diallo, T.M.; Aziziyan, M.R.; Arvinte, R.; Ares, R.; Fafard, S.; Boucherif, A. CVD Growth of High-Quality Graphene over Ge (100) by Annihilation of Thermal Pits. Carbon 2021, 174, 214–226. [Google Scholar] [CrossRef]
- Ji, Z.; Lin, Q.; Huang, Z.; Chen, S.; Gong, P.; Sun, Z.; Shen, B. Enhanced Lubricity of CVD Diamond Films by In-Situ Synthetization of Top-Layered Graphene Sheets. Carbon 2021, 184, 680–688. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, C.; Gong, Z.; Pan, J.; Wei, W.; Wang, G.; Cui, Y. Hydrogen-Promoted Graphene Growth on Pt(111) via CVD Methods. Surf. Interfaces 2021, 26, 101383. [Google Scholar] [CrossRef]
- Bahri, M.; Shi, B.; Djebbi, K.; Elaguech, M.A.; Zhou, D.; Ben Ali, M.; Tlili, C.; Wang, D. Toward Clean and Crackless Polymer-Assisted Transfer of CVD-Grown Graphene and Its Recent Advances in GFET-Based Biosensors. Mater. Today Chem. 2021, 22, 100578. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Baqiya, M.A.; Nugraheni, A.Y.; Islamiyah, W.; Kurniawan, A.F.; Ramli, M.M.; Yamaguchi, S.; Furukawa, Y.; Soontaranon, S.; Putra, E.G.R.; Cahyono, Y.; et al. Structural Study on Graphene-Based Particles Prepared from Old Coconut Shell by Acid–Assisted Mechanical Exfoliation. Adv. Powder Technol. 2020, 31, 2072–2078. [Google Scholar] [CrossRef]
- Jayasena, B.; Melkote, S.N. An Investigation of PDMS Stamp Assisted Mechanical Exfoliation of Large Area Graphene. Procedia Manuf. 2015, 1, 840–853. [Google Scholar] [CrossRef] [Green Version]
- Hayes, W.I.; Lubarsky, G.; Li, M.; Papakonstantinou, P. Mechanical Exfoliation of Graphite in 1-Butyl-3-Methylimidazolium Hexafluorophosphate (BMIM-PF6) Providing Graphene Nanoplatelets That Exhibit Enhanced Electrocatalysis. J. Power Sources 2014, 271, 312–325. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Kumar, V.; Huczko, A.; Oraon, R.; Adhikari, A.D.; Nayak, G.C. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2016, 41, 257–317. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Gebreegziabher, G.G.; Asemahegne, A.S.; Ayele, D.W.; Dhakshnamoorthy, M.; Kumar, A. One-Step Synthesis and Characterization of Reduced Graphene Oxide Using Chemical Exfoliation Method. Mater. Today Chem. 2019, 12, 233–239. [Google Scholar] [CrossRef]
- Parvez, K.; Yang, S.; Feng, X.; Müllen, K. Exfoliation of Graphene via Wet Chemical Routes. Synth. Met. 2015, 210, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Zhang, L.; Zheng, S.; Shi, X.; Li, Y.; Wu, Z.-S. Rapid Fabrication of High-Quality Few-Layer Graphene through Gel-Phase Electrochemical Exfoliation of Graphite for High-Energy-Density Ionogel-Based Micro-Supercapacitors. Carbon 2022, 196, 203–212. [Google Scholar] [CrossRef]
- Loudiki, A.; Matrouf, M.; Azriouil, M.; Farahi, A.; Lahrich, S.; Bakasse, M.; Mhammedi, M.A.E. Preparation of Graphene Samples via Electrochemical Exfoliation of Pencil Electrode: Physico-Electrochemical Characterization. Appl. Surf. Sci. Adv. 2022, 7, 100195. [Google Scholar] [CrossRef]
- Alshamkhani, M.T.; Lahijani, P.; Lee, K.T.; Mohamed, A.R. Electrochemical Exfoliation of Graphene Using Dual Graphite Electrodes by Switching Voltage and Green Molten Salt Electrolyte. Ceram. Int. 2022, 48, 22534–22546. [Google Scholar] [CrossRef]
- Pingale, A.D.; Owhal, A.; Katarkar, A.S.; Belgamwar, S.U.; Rathore, J.S. Facile Synthesis of Graphene by Ultrasonic-Assisted Electrochemical Exfoliation of Graphite. Mater. Today Proc. 2021, 44, 467–472. [Google Scholar] [CrossRef]
- Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L.Z.; Guo, H.M.; Du, S.X.; Gao, H.-J. Epitaxial Growth and Structural Property of Graphene on Pt (111). Appl. Phys. Lett. 2011, 98, 033101. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Q.; Zhang, C.; Sun, Q.; Wang, C.; Dong, M.; Wang, Z.; Ohmori, H.; Kosinova, M.; Goto, T.; et al. Laser-Induced Growth of Large-Area Epitaxial Graphene with Low Sheet Resistance on 4H-SiC(0001). Appl. Surf. Sci. 2020, 514, 145938. [Google Scholar] [CrossRef]
- Deng, B.; Xin, Z.; Xue, R.; Zhang, S.; Xu, X.; Gao, J.; Tang, J.; Qi, Y.; Wang, Y.; Zhao, Y.; et al. Scalable and Ultrafast Epitaxial Growth of Single-Crystal Graphene Wafers for Electrically Tunable Liquid-Crystal Microlens Arrays. Sci. Bull. 2019, 64, 659–668. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Fan, Z.-J.; Yan, J.; Wei, T.; Ning, G.-Q.; Zhi, L.-J.; Liu, J.-C.; Cao, D.-X.; Wang, G.-L.; Wei, F. Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries. ACS Nano 2011, 5, 2787–2794. [Google Scholar] [CrossRef]
- Yang, S.; Lohe, M.R.; Müllen, K.; Feng, X. New-Generation Graphene from Electrochemical Approaches: Production and Applications. Adv. Mater. 2016, 28, 6213–6221. [Google Scholar] [CrossRef]
- Leenaerts, O.; Peelaers, H.; Hernández-Nieves, A.D.; Partoens, B.; Peeters, F.M. First-Principles Investigation of Graphene Fluoride and Graphane. Phys. Rev. B 2010, 82, 195436. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.Q.; Zhang, J.H.; Wu, S.Q.; Zhu, Z.Z. Hybrid Functional Studies on the Optical and Electronic Properties of Graphane and Silicane. Solid State Commun. 2015, 209–210, 59–65. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, Z.; De, S. A Density Functional Theory Study of the Mechanical Properties of Graphane With van Der Waals Corrections. Mech. Adv. Mater. Struct. 2015, 22, 717–721. [Google Scholar] [CrossRef]
- Şahin, H.; Ataca, C.; Ciraci, S. Electronic and Magnetic Properties of Graphane Nanoribbons. Phys. Rev. B 2010, 81, 205417. [Google Scholar] [CrossRef] [Green Version]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Jacob, T. Strong Many-Body Effects in Silicene-Based Structures. Phys. Rev. B 2013, 88, 045203. [Google Scholar] [CrossRef]
- Şahin, H.; Topsakal, M.; Ciraci, S. Structures of Fluorinated Graphene and Their Signatures. Phys. Rev. B 2011, 83, 115432. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Hou, Z.F.; Hu, C.H.; Yang, Y.; Zhu, Z.Z. Electronic and Magnetic Properties of Fluorinated Graphene with Different Coverage of Fluorine. J. Phys. Chem. C 2012, 116, 18193–18201. [Google Scholar] [CrossRef]
- Klintenberg, M.; Lebègue, S.; Katsnelson, M.I.; Eriksson, O. Theoretical Analysis of the Chemical Bonding and Electronic Structure of Graphene Interacting with Group IA and Group VIIA Elements. Phys. Rev. B 2010, 81, 085433. [Google Scholar] [CrossRef] [Green Version]
- Hernández Rosas, J.J.; Ramírez Gutiérrez, R.E.; Escobedo-Morales, A.; Chigo Anota, E. First Principles Calculations of the Electronic and Chemical Properties of Graphene, Graphane, and Graphene Oxide. J. Mol. Model. 2011, 17, 1133–1139. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Cao, G. Atomistic Studies of Mechanical Properties of Graphene. Polymers 2014, 6, 2404–2432. [Google Scholar] [CrossRef] [Green Version]
- Frank, I.W.; Tanenbaum, D.M.; van der Zande, A.M.; McEuen, P.L. Mechanical Properties of Suspended Graphene Sheets. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2007, 25, 2558–2561. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pan, C. Measurements of Mechanical Properties and Number of Layers of Graphene from Nano-Indentation. Diam. Relat. Mater. 2012, 24, 1–5. [Google Scholar] [CrossRef]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A Theoretical Analysis of the Effect of the Hydrogenation of Graphene to Graphane on Its Mechanical Properties. Phys. Chem. Chem. Phys. 2013, 15, 2003–2011. [Google Scholar] [CrossRef]
- Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications-Feng-2016-Advanced Science-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/advs.201500413 (accessed on 27 September 2022).
- Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Mechanical Properties of Graphene Oxides. Nanoscale 2012, 4, 5910–5916. [Google Scholar] [CrossRef]
- Kang, S.-H.; Fang, T.-H.; Hong, Z.-H. Electrical and Mechanical Properties of Graphene Oxide on Flexible Substrate. J. Phys. Chem. Solids 2013, 74, 1783–1793. [Google Scholar] [CrossRef]
- Sahin, H.; Leenaerts, O.; Singh, S.K.; Peeters, F.M. Graphane. WIREs Comput. Mol. Sci. 2015, 5, 255–272. [Google Scholar] [CrossRef]
- Robinson, J.T.; Burgess, J.S.; Junkermeier, C.E.; Badescu, S.C.; Reinecke, T.L.; Perkins, F.K.; Zalalutdniov, M.K.; Baldwin, J.W.; Culbertson, J.C.; Sheehan, P.E.; et al. Properties of Fluorinated Graphene Films. Nano Lett. 2010, 10, 3001–3005. [Google Scholar] [CrossRef]
- Jeon, K.-J.; Lee, Z.; Pollak, E.; Moreschini, L.; Bostwick, A.; Park, C.-M.; Mendelsberg, R.; Radmilovic, V.; Kostecki, R.; Richardson, T.J.; et al. Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence. ACS Nano 2011, 5, 1042–1046. [Google Scholar] [CrossRef]
- Nair, R.R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V.G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A.S.; Yuan, S.; et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. [Google Scholar] [CrossRef]
- Zhao, F.-G.; Zhao, G.; Liu, X.-H.; Ge, C.-W.; Wang, J.-T.; Li, B.-L.; Wang, Q.-G.; Li, W.-S.; Chen, Q.-Y. Fluorinated Graphene: Facile Solution Preparation and Tailorable Properties by Fluorine-Content Tuning. J. Mater. Chem. A 2014, 2, 8782–8789. [Google Scholar] [CrossRef]
- Karlicky, F.; Otyepka, M. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals. J. Chem. Theory Comput. 2013, 9, 4155–4164. [Google Scholar] [CrossRef] [PubMed]
- Rattana; Chaiyakun, S.; Witit-anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P. Preparation and Characterization of Graphene Oxide Nanosheets. Procedia Eng. 2012, 32, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Goumri, M.; Venturini, J.W.; Bakour, A.; Khenfouch, M.; Baitoul, M. Tuning the Luminescence and Optical Properties of Graphene Oxide and Reduced Graphene Oxide Functionnalized with PVA. Appl. Phys. A 2016, 122, 212. [Google Scholar] [CrossRef]
- Qu, H.; Huang, L.; Han, Z.; Wang, Y.; Zhang, Z.; Wang, Y.; Chang, Q.; Wei, N.; Kipper, M.J.; Tang, J. A Review of Graphene-Oxide/Metal–Organic Framework Composites Materials: Characteristics, Preparation and Applications. J. Porous Mater. 2021, 28, 1837–1865. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-Organic Frameworks/Graphene-Based Materials: Preparations and Applications. Adv. Funct. Mater. 2018, 28, 1804950. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Mao, J.; Guo, Q.; Chen, Z.; Lai, Y. Metal–Organic Frameworks and Their Derivatives with Graphene Composites: Preparation and Applications in Electrocatalysis and Photocatalysis. J. Mater. Chem. A 2020, 8, 2934–2961. [Google Scholar] [CrossRef]
- Li, S.; Tian, X.; Wang, J.; Xia, S.; Ma, L.; Zhou, J.; Li, C.; Qin, Z.; Qu, S. Design and Synthesis of Core-Shell Structure 3D-Graphene/Fe3O4@N-C Composite Derived from Fe-MOF as Lightweight Microwave Absorber. Diam. Relat. Mater. 2022, 124, 108941. [Google Scholar] [CrossRef]
- Liu, S.; Li, B.; Yang, H.; Zhou, Y.; Xu, X.; Li, J. MOF-Derived Carbon/N-Doped Three Dimensional Reduced Graphene Oxide Composite with High Capacitive Deionization Performance. Mater. Today Sustain. 2022, 20, 100228. [Google Scholar] [CrossRef]
- Mi, X.; Li, X. Construction of a Stable Porous Composite with Tunable Graphene Oxide in Ce-Based-MOFs for Enhanced Solar-Photocatalytic Degradation of Sulfamethoxazole in Water. Sep. Purif. Technol. 2022, 301, 122006. [Google Scholar] [CrossRef]
- Bai, Y.-W.; Shi, G.; Gao, J.; Shi, F.-N. Synthesis, Crystal Structure of a Iron-Manganese Bimetal MOF and Its Graphene Composites with Enhanced Microwave Absorption Properties. J. Phys. Chem. Solids 2021, 148, 109657. [Google Scholar] [CrossRef]
- Tang, B.; Dai, Y.; Sun, Y.; Chen, H.; Wang, Z. Graphene and MOFs Co-Modified Composites for High Adsorption Capacity and Photocatalytic Performance to Remove Pollutant under Both UV- and Visible-Light Irradiation. J. Solid State Chem. 2020, 284, 121215. [Google Scholar] [CrossRef]
- Yang, M.-Q.; Zhang, N.; Pagliaro, M.; Xu, Y.-J. Artificial Photosynthesis over Graphene–Semiconductor Composites. Are We Getting Better? Chem. Soc. Rev. 2014, 43, 8240–8254. [Google Scholar] [CrossRef] [PubMed]
- Muhmood, T.; Cai, Z.; Lin, S.; Xiao, J.; Hu, X.; Ahmad, F. Graphene/Graphitic Carbon Nitride Decorated with AgBr to Boost Photoelectrochemical Performance with Enhanced Catalytic Ability. Nanotechnology 2020, 31, 505602. [Google Scholar] [CrossRef] [PubMed]
- Muhmood, T.; Uddin, A. Fabrication of Spherical-Graphitic Carbon Nitride via Hydrothermal Method for Enhanced Photo-Degradation Ability towards Antibiotic. Chem. Phys. Lett. 2020, 753, 137604. [Google Scholar] [CrossRef]
- Lu, K.-Q.; Chen, Y.; Xin, X.; Xu, Y.-J. Rational Utilization of Highly Conductive, Commercial Elicarb Graphene to Advance the Graphene-Semiconductor Composite Photocatalysis. Appl. Catal. B Environ. 2018, 224, 424–432. [Google Scholar] [CrossRef]
- Serry, M.; Sakr, M.A. Graphene-Metal-Semiconductor Composite Structure for Multimodal Energy Conversion. Sens. Actuators Phys. 2016, 245, 169–179. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, B.; Liang, Y. Enhanced Degradation Performance of Organic Dyes Removal by Semiconductor/MOF/Graphene Oxide Composites under Visible Light Irradiation. Diam. Relat. Mater. 2019, 98, 107508. [Google Scholar] [CrossRef]
- Dash, T.; Bihari Palei, B.; Dash, B.; Kumar Sahu, R.; Kumar Moharana, R.; Dhar, S.; Kumar Biswal, S. Graphene Reinforced Silicon Composites and Their Characterizations. Mater. Today Proc. 2022, 62, 5962–5964. [Google Scholar] [CrossRef]
- Mallik, A.; Roy, I.; Chalapathi, D.; Narayana, C.; Das, T.D.; Bhattacharya, A.; Bera, S.; Bhattacharya, S.; De, S.; Das, B.; et al. Single Step Synthesis of Reduced Graphene Oxide/SnO2 Nanocomposites for Potential Optical and Semiconductor Applications. Mater. Sci. Eng. B 2021, 264, 114938. [Google Scholar] [CrossRef]
- Saran, N.; Thomas, T.L.; Bhavana, P. Dioxygen Reduction Using Electrochemically Reduced Graphene Oxide-Polymerized Cobalt-4-Pyridylporphyrin Composite. Int. J. Hydrog. Energy 2022, 47, 13629–13640. [Google Scholar] [CrossRef]
- Hamidinejad, M.; Salari, M.; Ma, L.; Moghimian, N.; Zhao, B.; Taylor, H.K.; Filleter, T.; Park, C.B. Electrically and Thermally Graded Microcellular Polymer/Graphene Nanoplatelet Composite Foams and Their EMI Shielding Properties. Carbon 2022, 187, 153–164. [Google Scholar] [CrossRef]
- Yao, L.; Liu, J.; Eedugurala, N.; Mahalingavelar, P.; Adams, D.J.; Wang, K.; Mayer, K.S.; Azoulay, J.D.; Ng, T.N. Ultrafast High-Energy Micro-Supercapacitors Based on Open-Shell Polymer-Graphene Composites. Cell Rep. Phys. Sci. 2022, 3, 100792. [Google Scholar] [CrossRef]
- Oni, B.A.; Sanni, S.E. Cationic Graphene-Based Polymer Composite Modified with Chromium-Based Metal-Organic Framework [GP/MIL-53(Cr)] for the Degradation of 2,4-Dichlorophenol in Aqueous Solution. Mater. Today Sustain. 2022, 18, 100134. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, F.; Peng, X.; Scarpa, F.; Huang, Z.; Tao, G.; Liu, H.-Y.; Zhou, H.; Zhou, H. Improving the Damping Properties of Carbon Fiber Reinforced Polymer Composites by Interfacial Sliding of Oriented Multilayer Graphene Oxide. Compos. Sci. Technol. 2022, 224, 109309. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, L.; Liu, X.; Ma, W.; Lou, C.; Wang, J.; Fan, S. Nanocellulose/N, O Co-Doped Graphene Composite Hydrogels for High Gravimetric and Volumetric Performance Symmetric Supercapacitors. Int. J. Hydrog. Energy 2022, 47, 33827–33838. [Google Scholar] [CrossRef]
- Noureen, L.; Xie, Z.; Hussain, M.; Li, M.; Lyu, Q.; Wang, K.; Zhang, L.; Zhu, J. BiVO4 and Reduced Graphene Oxide Composite Hydrogels for Solar-Driven Steam Generation and Decontamination of Polluted Water. Sol. Energy Mater. Sol. Cells 2021, 222, 110952. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Xiao, B.; Xiong, X.; Liu, G.; Wang, X. Reduced Graphene Oxide/Cu7·2S4 Composite Hydrogels for Highly Efficient Solar Steam Generation. Mater. Today Sustain. 2022, 18, 100121. [Google Scholar] [CrossRef]
- Fong, K.K.; Tan, I.S.; Foo, H.C.Y.; Lam, M.K.; Tiong, A.C.Y.; Lim, S. Optimization and Evaluation of Reduced Graphene Oxide Hydrogel Composite as a Demulsifier for Heavy Crude Oil-in-Water Emulsion. Chin. J. Chem. Eng. 2021, 33, 297–305. [Google Scholar] [CrossRef]
- Meng, Q.; Du, C.; Xu, Z.; Nie, J.; Hong, M.; Zhang, X.; Chen, J. Siloxene-Reduced Graphene Oxide Composite Hydrogel for Supercapacitors. Chem. Eng. J. 2020, 393, 124684. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M. Energy and Environmental Applications of Graphene and Its Derivatives. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 105–129. [Google Scholar]
- Perreault, F.; de Faria, A.F.; Elimelech, M. Environmental Applications of Graphene-Based Nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896. [Google Scholar] [CrossRef] [PubMed]
- Aghigh, A.; Alizadeh, V.; Wong, H.Y.; Islam, M.S.; Amin, N.; Zaman, M. Recent Advances in Utilization of Graphene for Filtration and Desalination of Water: A Review. Desalination 2015, 365, 389–397. [Google Scholar] [CrossRef]
- Ge, X.; Su, G.; Che, W.; Yang, J.; Zhou, X.; Wang, Z.; Qu, Y.; Yao, T.; Liu, W.; Wu, Y. Atomic Filtration by Graphene Oxide Membranes to Access Atomically Dispersed Single Atom Catalysts. ACS Catal. 2020, 10, 10468–10475. [Google Scholar] [CrossRef]
- Vishwanath, H.S.; Shilpa, M.P.; Gurumurthy, S.C.; Gedda, M.; Ramam, K.; Eshwarappa, K.M.; Kirana, R.; Mishra, N.N.; Mundinamani, S. Flexible, Large-Area, Multi-Layered Graphene/Cellulose Composite for Dye Filtration Applications. Mater. Today Commun. 2022, 30, 103134. [Google Scholar] [CrossRef]
- Gayen, S.; Bej, B.; Sankar Boxi, S.; Ghosh, R. Synthesis of Graphene Oxide and Its Application for Purification of River Water. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Ndlwana, L.; Motsa, M.M.; Mamba, B.B. A Unique Method for Dopamine-Cross-Linked Graphene Nanoplatelets within Polyethersulfone Membranes (GNP-PDA/PES) for Enhanced Mechanochemical Resistance during NF and RO Desalination. Eur. Polym. J. 2020, 136, 109889. [Google Scholar] [CrossRef]
- Kong, L.; Enders, A.; Rahman, T.S.; Dowben, P.A. Molecular Adsorption on Graphene. J. Phys. Condens. Matter 2014, 26, 443001. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, B.; Eriksson, O.; Jansson, U.; Grennberg, H. Molecular Adsorption in Graphene with Divacancy Defects. Phys. Rev. B 2009, 79, 113409. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, S.; Lakshmi, J. The Adsorption of Phosphate by Graphene from Aqueous Solution. RSC Adv. 2012, 2, 5234–5242. [Google Scholar] [CrossRef]
- Zhu, P.; Tang, F.; Wang, S.; Cao, W.; Wang, Q. Adsorption Performance of CNCl, NH3 and GB on Modified Graphene and the Selectivity in O2 and N2 Environment. Mater. Today Commun. 2022, 33, 104280. [Google Scholar] [CrossRef]
- Dai, J.; Huang, T.; Tian, S.; Xiao, Y.; Yang, J.; Zhang, N.; Wang, Y.; Zhou, Z. High Structure Stability and Outstanding Adsorption Performance of Graphene Oxide Aerogel Supported by Polyvinyl Alcohol for Waste Water Treatment. Mater. Des. 2016, 107, 187–197. [Google Scholar] [CrossRef]
- Nandi, D.; Ghosh, S.K.; Ghosh, A.; Siengchin, S.; Roy, A.; Gupta, K.; Parameswaranpillai, J.; Bhowmick, A.K.; Ghosh, U.C. Arsenic Removal from Water by Graphene Nanoplatelets Prepared from Nail Waste: A Physicochemical Study of Adsorption Based on Process Optimization, Kinetics, Isotherm and Thermodynamics. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100564. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; Choi, Y.-L.; Chang, Y.-Y.; Yang, J.-K. Adsorption Removal of Co(II) from Waste-Water Using Graphene Oxide. Hydrometallurgy 2016, 165, 90–96. [Google Scholar] [CrossRef]
- Azam, M.G.; Kabir, M.H.; Shaikh, M.A.A.; Ahmed, S.; Mahmud, M.; Yasmin, S. A Rapid and Efficient Adsorptive Removal of Lead from Water Using Graphene Oxide Prepared from Waste Dry Cell Battery. J. Water Process Eng. 2022, 46, 102597. [Google Scholar] [CrossRef]
- Rueda-Marquez, J.J.; Levchuk, I.; Fernández Ibañez, P.; Sillanpää, M. A Critical Review on Application of Photocatalysis for Toxicity Reduction of Real Wastewaters. J. Clean. Prod. 2020, 258, 120694. [Google Scholar] [CrossRef]
- Li, F.; Cheng, L.; Fan, J.; Xiang, Q. Steering the Behavior of Photogenerated Carriers in Semiconductor Photocatalysts: A New Insight and Perspective. J. Mater. Chem. A 2021, 9, 23765–23782. [Google Scholar] [CrossRef]
- Marinho, B.A.; Suhadolnik, L.; Likozar, B.; Huš, M.; Marinko, Ž.; Čeh, M. Photocatalytic, Electrocatalytic and Photoelectrocatalytic Degradation of Pharmaceuticals in Aqueous Media: Analytical Methods, Mechanisms, Simulations, Catalysts and Reactors. J. Clean. Prod. 2022, 343, 131061. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present Applications of Titanium Dioxide for the Photocatalytic Removal of Pollutants from Water: A Review. J. Environ. Manage. 2020, 270, 110906. [Google Scholar] [CrossRef]
- Li, Y.-H.; Tang, Z.-R.; Xu, Y.-J. Multifunctional Graphene-Based Composite Photocatalysts Oriented by Multifaced Roles of Graphene in Photocatalysis. Chin. J. Catal. 2022, 43, 708–730. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wang, B.-K.; Hou, W.-C. Graphitic Carbon Nitride Embedded with Graphene Materials towards Photocatalysis of Bisphenol A: The Role of Graphene and Mediation of Superoxide and Singlet Oxygen. Chemosphere 2021, 278, 130334. [Google Scholar] [CrossRef] [PubMed]
- Israr, M.; Iqbal, J.; Arshad, A.; Rani, M.; Gómez-Romero, P.; Benages, R. Graphene Triggered Enhancement in Visible-Light Active Photocatalysis as Well as in Energy Storage Capacity of (CFO)1-x(GNPs)x Nanocomposites. Ceram. Int. 2020, 46, 2630–2639. [Google Scholar] [CrossRef]
- Yan, S.; Song, H.; Li, Y.; Yang, J.; Jia, X.; Wang, S.; Yang, X. Integrated Reduced Graphene Oxide/Polypyrrole Hybrid Aerogels for Simultaneous Photocatalytic Decontamination and Water Evaporation. Appl. Catal. B Environ. 2022, 301, 120820. [Google Scholar] [CrossRef]
- Muhmood, T.; Xia, M.; Lei, W.; Wang, F. Under Vacuum Synthesis of Type-I Heterojunction between Red Phosphorus and Graphene like Carbon Nitride with Enhanced Catalytic, Electrochemical and Charge Separation Ability for Photodegradation of an Acute Toxicity Category-III Compound. Appl. Catal. B Environ. 2018, 238, 568–575. [Google Scholar] [CrossRef]
- Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef]
- Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials 2019, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Rout, D.R.; Jena, H.M. Polyethylene Glycol Functionalized Reduced Graphene Oxide Coupled with Zinc Oxide Composite Adsorbent for Removal of Phenolic Wastewater. Environ. Res. 2022, 214, 114044. [Google Scholar] [CrossRef]
- Cao, M.; Chen, L.; Xu, W.; Gao, J.; Gui, Y.; Ma, F.; Liu, P.; Xue, Y.; Yan, Y. Preparation of Graphene Oxide Composite Nitrogen-Doped Carbon (GO@NCs) by One-Step Carbonization with Enhanced Electrosorption Performance for U(VI). J. Water Process Eng. 2022, 48, 102930. [Google Scholar] [CrossRef]
- Sheng, J.; Yin, H.; Qian, F.; Huang, H.; Gao, S.; Wang, J. Reduced Graphene Oxide-Based Composite Membranes for in-Situ Catalytic Oxidation of Sulfamethoxazole Operated in Membrane Filtration. Sep. Purif. Technol. 2020, 236, 116275. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Tian, G.; Xie, S.; Xu, Q.; Wang, L.; Tian, J.; Bu, Y. Fabrication of Graphene-Modified Nano-Sized Red Phosphorus for Enhanced Photocatalytic Performance. J. Mol. Catal. Chem. 2016, 423, 356–364. [Google Scholar] [CrossRef]
- Noreen, S.; Tahira, M.; Ghamkhar, M.; Hafiz, I.; Bhatti, H.N.; Nadeem, R.; Murtaza, M.A.; Yaseen, M.; Sheikh, A.A.; Naseem, Z.; et al. Treatment of Textile Wastewater Containing Acid Dye Using Novel Polymeric Graphene Oxide Nanocomposites (GO/PAN, GO/PPy, GO/PSty). J. Mater. Res. Technol. 2021, 14, 25–35. [Google Scholar] [CrossRef]
- Sohani, S.; Ara, B.; Khan, H.; Gul, K.; Khan, M. Photocatalytic Assessed Adsorptive Removal of Tinidazole from Aqueous Environment Using Reduced Magnetic Graphene Oxide-Bismuth Oxychloride and Its Silver Composite. Environ. Res. 2022, 215, 114262. [Google Scholar] [CrossRef]
- Ullah, T.; Gul, K.; Khan, H.; Ara, B.; Zia, T.U.H. Efficient Removal of Selected Fluoroquinolones from the Aqueous Environment Using Reduced Magnetic Graphene Oxide/Polyaniline Composite. Chemosphere 2022, 293, 133452. [Google Scholar] [CrossRef]
- Xie, W.; Chen, M.; Wei, S.; Huang, Z.; Li, Z. Lignin Nanoparticles-Intercalated Reduced Graphene Oxide/Glass Fiber Composite Membranes for Highly Efficient Oil-in-Water Emulsions Separation in Harsh Environment. Colloids Surf. Physicochem. Eng. Asp. 2022, 648, 129190. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Juang, R.-S. Efficient Removal of Methylene Blue Dye by a Hybrid Adsorption–Photocatalysis Process Using Reduced Graphene Oxide/Titanate Nanotube Composites for Water Reuse. J. Ind. Eng. Chem. 2019, 76, 296–309. [Google Scholar] [CrossRef]
- Liu, C.; Lin, Y.; Dong, Y.; Wu, Y.; Bao, Y.; Yan, H.; Ma, J. Fabrication and Investigation on Ag Nanowires/TiO2 Nanosheets/Graphene Hybrid Nanocomposite and Its Water Treatment Performance. Adv. Compos. Hybrid Mater. 2020, 3, 402–414. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. Calcined Graphene/MgAl-Layered Double Hydroxides for Enhanced Cr(VI) Removal. Chem. Eng. J. 2013, 221, 204–213. [Google Scholar] [CrossRef]
- Chen, L.; Yang, S.; Mu, L.; Ma, P.-C. Three-Dimensional Titanium Dioxide/Graphene Hybrids with Improved Performance for Photocatalysis and Energy Storage. J. Colloid Interface Sci. 2018, 512, 647–656. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Li, X.; Zeng, G.; Wang, D.; Niu, C.; Zhao, J.; An, H.; Xie, T.; Deng, Y. Hierarchical Assembly of Graphene-Bridged Ag3PO4/Ag/BiVO4 (040) Z-Scheme Photocatalyst: An Efficient, Sustainable and Heterogeneous Catalyst with Enhanced Visible-Light Photoactivity towards Tetracycline Degradation under Visible Light Irradiation. Appl. Catal. B Environ. 2017, 200, 330–342. [Google Scholar] [CrossRef]
- Yuan, A.; Lei, H.; Xi, F.; Liu, J.; Qin, L.; Chen, Z.; Dong, X. Graphene Quantum Dots Decorated Graphitic Carbon Nitride Nanorods for Photocatalytic Removal of Antibiotics. J. Colloid Interface Sci. 2019, 548, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ma, Y.-L.; Li, C.-E. The Residual Tetracycline in Pharmaceutical Wastewater Was Effectively Removed by Using MnO2/Graphene Nanocomposite. Sci. Total Environ. 2019, 651, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Short Review on the Use of Graphene as a Biomaterial –Prospects, and Challenges in Brazil. J. Mater. Res. Technol. 2022, 19, 2410–2430. [CrossRef]
- Yan, Z.; Yang, X.; Lynch, I.; Cui, F. Comparative Evaluation of the Mechanisms of Toxicity of Graphene Oxide and Graphene Oxide Quantum Dots to Blue-Green Algae Microcystis Aeruginosa in the Aquatic Environment. J. Hazard. Mater. 2022, 425, 127898. [Google Scholar] [CrossRef]
- Raja, I.S.; Molkenova, A.; Kang, M.S.; Lee, S.H.; Lee, J.E.; Kim, B.; Han, D.-W.; Atabaev, T.S. Differential Toxicity of Graphene Family Nanomaterials Concerning Morphology. In Multifaceted Biomedical Applications of Graphene; Springer: Berlin/Heidelberg, Germany, 2022; pp. 23–39. [Google Scholar]
- Yue, X.; Fan, J.; Xiang, Q. Internal Electric Field on Steering Charge Migration: Modulations, Determinations and Energy-Related Applications. Adv. Funct. Mater. 2022, 32, 2110258. [Google Scholar] [CrossRef]
Synthesis | Composite | Application | Reference |
---|---|---|---|
In Situ | Ag/GO and r-GO | Biosensing, Catalysis | [59] |
Simple physisorption method | Au-GO and Au-rGO | SERS (Surface-enhanced Raman scattering) and Catalytic | [60] |
Oxidation/thermal reduction process | Ru/rGO and Rh/rGO | Catalysis | [61] |
In Situ | TiO2/GO | Photocatalysis | [62] |
In situ | MnO2/GO | Supercapacitor | [63] |
Electrochemical Deposition | ZnO/rGO | Photovoltaics | [64] |
Chemical Vapor Deposition | Graphene/Ni/Cu | Transistor | [65] |
Mechanical Exfoliation | Few-layer graphene | Supercapacitors electrodes | [66] |
Synthesis Methods | Advantages | Disadvantages | References |
---|---|---|---|
Chemical vapor deposition | High-quality graphene with high yield | High cost | [89] |
Mechanical exfoliation | Cost-efficient and high-quality graphene production | Low Yield | [73] |
Chemical exfoliation | Rapid process and high-quality graphene production with high yield | Uses toxic chemical and have toxic by-products | [79] |
Electrochemical exfoliation | High yield (commercialized) | Can contain impurities between graphene layers | [90] |
Epitaxial Growth | High-purity graphene production | Time-consuming with low Yield | [85] |
dCX (Å) | dCC (Å) | ɵCCX (Degree) | ɵCCC (Degree) | a (Å) | References | |
---|---|---|---|---|---|---|
Graphene | - | 1.42 | - | 120 | - | [91] |
- | 1.421 | - | 120 | 2.46 | [92] | |
- | 1.425 | - | 120 | 2.468 | [93] | |
- | 1.42 | - | 120 | 2.46 | [94] | |
- | 1.42 | - | 120 | 2.46 | [95] | |
Graphane | 1.111 | 1.533 | 107.45 | 111.39 | 2.532 | [93] |
1.11 | 1.53 | 107.43 | 111.42 | 2.54 | [92] | |
1.12 | 1.52 | 107.35 | 111.51 | 2.51 | [94] | |
1.111 | 1.53 | - | - | 2.54 | [96] | |
Fluorinated graphene | 1.37 | 1.55 | 108 | 111 | 2.55 | [97] |
1.383 | 1.581 | - | - | 2.606 | [98] | |
1.38 | 1.58 | - | - | 2.61 | [99] | |
1.371 | 1.579 | - | - | 2.6 | [91] | |
Graphene oxide | 1.095 | 1.41 | - | 120.1 | - | [100] |
1.094 | 1.41 | - | 120.1 | - | [100] | |
1.095 | 1.41 | - | 120.2 | - | [100] |
Composite | Method | Pollutants | Efficiency | References |
---|---|---|---|---|
ZnO/RGO/Polyethylene glycole | Adsorption | Phenolic Pollutants | 86.54% in 45 min | [171] |
GO/Nitrogen-doped carbon | Adsorption | Uranium Pollutants | 879.2 mg/g | [172] |
rGO/CNT | Adsorptive filtration | Sulfamethoxazole | 98–93% | [173] |
Red phosphorus/Graphene | Photocatalysis | Rhodamine B | 100% in 3 min | [174] |
GO/PAN, GO/PPy, GO/Psty | Adsorption | Actacid orange | 9.65, 43.99, 21.10 mg/g | [175] |
mrGO/BiOCl, mrGO/BiOCl/Ag | Photocatalysis assisted Adsorption | Tinidazole | 24% and 94% | [176] |
RmGO/Polyaniline | Adsorption | Moxifloxacin and Ofloxacin | 27.33 and 47.7 mg/g | [177] |
GO/glass fibre | Filtration | Oil/water emulsion | 99.4% retention rate | [178] |
rGO/titanate nanotube | Hybrid adsorption/photocatalysis | Methylene blue | 99.8% | [179] |
Ag nanowires/TiO2 nanosheets/graphene | Photocatalysis | Methylene blue | 71–100% (under optimal condition) | [180] |
graphene/MgAl | Adsorption | Chromium (VI) | 172.55 mg/g | [181] |
TiO2/graphene | Photocatalysis | Methyl orange | 100% in 210 min | [182] |
Ag/Ag3PO4/BiVO4/RGO | Photocatalysis | Tetracycline | 94.96% in 60 min | [183] |
g-C3N4/graphene quantum dots | Photocatalysis | Oxytetracycline | 80% in 120 min | [184] |
MnO2/graphene | Adsorption | Tetracycline | 1798 mg/g | [185] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Himanshi; Prakash, J.; Verma, A.; Suman; Jasrotia, R.; Kandwal, A.; Verma, R.; Kumar Godara, S.; Khan, M.A.M.; et al. A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites. Catalysts 2023, 13, 111. https://doi.org/10.3390/catal13010111
Kumar S, Himanshi, Prakash J, Verma A, Suman, Jasrotia R, Kandwal A, Verma R, Kumar Godara S, Khan MAM, et al. A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites. Catalysts. 2023; 13(1):111. https://doi.org/10.3390/catal13010111
Chicago/Turabian StyleKumar, Sanjay, Himanshi, Jyoti Prakash, Ankit Verma, Suman, Rohit Jasrotia, Abhishek Kandwal, Ritesh Verma, Sachin Kumar Godara, M. A. Majeed Khan, and et al. 2023. "A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites" Catalysts 13, no. 1: 111. https://doi.org/10.3390/catal13010111
APA StyleKumar, S., Himanshi, Prakash, J., Verma, A., Suman, Jasrotia, R., Kandwal, A., Verma, R., Kumar Godara, S., Khan, M. A. M., Alshehri, S. M., & Ahmed, J. (2023). A Review on Properties and Environmental Applications of Graphene and Its Derivative-Based Composites. Catalysts, 13(1), 111. https://doi.org/10.3390/catal13010111