CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure Analysis
2.2. FTIR and XRD Analysis
2.3. XPS Analysis and Mott–Schottky Test
2.4. UV-vis and PL Analysis
2.5. Photocatalytic Degradation Performance
2.6. Photocatalytic Degradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of CZC@PAN
3.2.1. Preparation of CZ-NPs-CNFMs
3.2.2. Preparation of CQD Solution and Growth Solution
3.2.3. Preparation of CZC@PAN
3.3. Measurement and Characterization
3.4. Photocatalytic Degradation Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, X.J.; Shen, C.-H.; Fei, Z.H.; Fang, D.; Liu, Z.T.; Dai, J.T.; Niu, C.G. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application. Chem. Eng. J. 2020, 383, 123083. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, S.; Chen, P.; Li, F.; Hu, X.; Hua, T. Photocatalytic and antifouling properties of TiO2-based photocatalytic membranes. Mater. Today Chem. 2022, 23, 100650. [Google Scholar] [CrossRef]
- Zhang, T.; Dai, Z.; Liang, B.; Mu, Y. Facile Synthesis of SnO2/SiC nanosheets for photocatalytic degradation of MO. J. Inorg. Organomet. Polym. Mater. 2021, 31, 303–310. [Google Scholar] [CrossRef]
- Xu, H.; Fang, W.; Xu, L.; Liu, F. Batch preparation of CuO/ZnO-loaded nanofiber membranes for photocatalytic degradation of organic dyes. Langmuir 2020, 36, 14189–14202. [Google Scholar] [CrossRef]
- Długosz, O.; Wąsowicz, N.; Szostak, K.; Banach, M. Photocatalytic properties of coating materials enriched with bentonite/ZnO/CuO nanocomposite. Mater. Chem. Phys. 2021, 260, 124150. [Google Scholar] [CrossRef]
- Cheng, X.; Li, L.; Jia, L.; Cai, H.; Wang, X.; Ding, Y.; Fan, X. Preparation of K+ doped ZnO nanorods with enhanced photocatalytic performance under visible light. J. Phys. D Appl. Phys. 2019, 53, 035301. [Google Scholar] [CrossRef]
- Liu, H.; Gu, H.; Li, G.; Li, N. Fabrication of PAN/Ag/ZnO microporous membrane and examination of visible light photocatalytic performance. Fiber Polym. 2021, 22, 306–313. [Google Scholar] [CrossRef]
- Xu, M.; Wang, H.; Wang, G.; Zhang, L.; Liu, G.; Zeng, Z.; Ren, T.; Zhao, W.; Wu, X.; Xue, Q. Study of synergistic effect of cellulose on the enhancement of photocatalytic activity of ZnO. J. Mater. Sci. 2017, 52, 8472–8484. [Google Scholar] [CrossRef]
- Sabouni, R.; Gomaa, H. Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO. Environ. Sci. Pollut. Res. 2019, 26, 5372–5380. [Google Scholar] [CrossRef]
- Kayaci, F.; Vempati, S.; Ozgit-Akgun, C.; Biyikli, N.; Uyar, T. Enhanced photocatalytic activity of homoassembled ZnO nanostructures on electrospun polymeric nanofibers: A combination of atomic layer deposition and hydrothermal growth. Appl. Catal. B Environ. 2014, 156–157, 173–183. [Google Scholar] [CrossRef]
- Li, S.; Chu, D.; Wang, L.; Rong, R.; Zhang, N. One-step hydrothermal synthesis of CuO hollow spheres with high photocatalytic activity. Phys. E 2021, 126, 114489. [Google Scholar] [CrossRef]
- Xu, L.; Su, J.; Zheng, G.; Zhang, L. Enhanced photocatalytic performance of porous ZnO thin films by CuO nanoparticles surface modification. Mater. Sci. Eng. B 2019, 248, 114405. [Google Scholar] [CrossRef]
- Liang, H.; Tai, X.; Du, Z.; Yin, Y. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater. Opt. Mater. 2020, 100, 109674. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Xue, J.; Xue, G.; Sheng, X.; Wang, H.; Huo, P.; Yan, Y. CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 2019, 369, 450–461. [Google Scholar] [CrossRef]
- Behnood, R.; Sodeifian, G. Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light photodegradation of organic pollutants. J. Environ. Chem. Eng. 2020, 8, 103821. [Google Scholar] [CrossRef]
- Ding, D.; Lan, W.; Yang, Z.; Zhao, X.; Chen, Y.; Wang, J.; Zhang, X.; Zhang, Y.; Su, Q.; Xie, E. A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Mater. Sci. Semicond. Process. 2016, 47, 25–31. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, P.; Lyu, B.; Li, Y.; Hou, Y.; Ma, J. Carbon quantum dots decorated on ZnO nanoparticles: An efficient visible-light responsive antibacterial agents. Appl. Organomet. Chem. 2020, 34, e5665. [Google Scholar] [CrossRef]
- Zhang, J.; An, X.; Li, X.; Liao, X.; Nie, Y.; Fan, Z. Enhanced antibacterial properties of the bracket under natural light via decoration with ZnO/carbon quantum dots composite coating. Chem. Phys. Lett. 2018, 706, 702–707. [Google Scholar] [CrossRef]
- Vyas, Y.; Chundawat, P.; Dharmendra; Punjabi, P.B.; Ameta, C. Green and facile synthesis of luminescent CQDs from pomegranate peels and its utilization in the degradation of azure B and amido black 10B by decorating it on CuO nanorods. ChemistrySelect 2021, 6, 8566–8580. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, L.; Lu, L.; Xu, X.; Jiang, Y. Enhanced photocatalytic properties of ZnO/Al2O3 nanorod heterostructure. Mater. Res. Express 2021, 8, 045505. [Google Scholar] [CrossRef]
- Fu, L.X.; Guo, Y.; Yang, X.C.; Huang, J.; Wang, L.J. Carbon dots modifier for highly active photocatalysts based on ZnO porous microspheres. J. Mater. Sci. Mater. Electron. 2018, 29, 19994–20002. [Google Scholar] [CrossRef]
- Tasso, G.T.; Wenk, J.; Mattia, D. Photocatalytic ZnO Foams for micropollutant degradation. Adv. Sustain. Syst. 2021, 5, 2000208. [Google Scholar] [CrossRef]
- Karimi, S.M.; Behpour, M. Fabricated CuO-ZnO/nanozeolite X heterostructure with enhanced photocatalytic performance: Mechanism investigation and degradation pathway. Mater. Sci. Eng. B 2021, 269, 115170. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ju, Y.W. Influence of post-heat treatment on photocatalytic activity in metal-embedded TiO2 nanofibers. Korean J. Chem. Eng. 2021, 38, 1522–1528. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, J.; Li, Y.V.; Hao, J.; Pan, K. Novel ZnO/NiO Janus-like nanofibers for effective photocatalytic degradation. Nanotechnology 2018, 29, 435704. [Google Scholar] [CrossRef]
- Alias, N.H.; Jaafar, J.; Samitsu, S.; Yusof, N.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; Aziz, F.; Salleh, W.N.W.; Othman, N.H. Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers. Chemosphere 2018, 204, 79–86. [Google Scholar] [CrossRef]
- Lakshmi, K.; Kadirvelu, K.; Mohan, P.S. Photo-decontamination of p-nitrophenol using reusable lanthanum doped ZnO electrospun nanofiber catalyst. J. Mater. Sci. Mater. Electron. 2018, 29, 12109–12117. [Google Scholar] [CrossRef]
- Tuncel, D.; Ökte, A.N. ZnO@CuO derived from Cu-BTC for efficient UV-induced photocatalytic applications. Catal. Today 2019, 328, 149–156. [Google Scholar] [CrossRef]
- Sakib, A.A.; Masum, S.M.; Hoinkis, J.; Islam, R.; Molla, M.A. Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Compos. Sci. 2019, 3, 91. [Google Scholar] [CrossRef]
- Tissera, N.D.; Wijesena, R.N.; Sandaruwan, C.S.; de Silva, R.M.; de Alwis, A.; de Silva, K.M.N. Photocatalytic activity of ZnO nanoparticle encapsulated poly(acrylonitrile) nanofibers. Mater. Chem. Phys. 2018, 204, 195–206. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Kuo, C.C.; Chen, B.Y.; Chiu, P.C.; Tsai, P.C. Multifunctional polyacrylonitrile-ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV-shielding, and antibacterial applications. J. Polym. Sci. Polym. Phys. 2015, 53, 262–269. [Google Scholar] [CrossRef]
- Wang, H.Y.; Yang, Y.; Li, X.; Li, L.J.; Wang, C. Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning. Chin. Chem. Lett. 2010, 21, 1119–1123. [Google Scholar] [CrossRef]
- Fang, W.; Yu, L.; Xu, L. Preparation, characterization and photocatalytic performance of heterostructured CuO-ZnO-loaded composite nanofiber membranes. Beilstein J. Nanotechnol. 2020, 11, 631–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Zhang, H.; Huang, H.; Liu, Y.; Li, H.; Ming, H.; Kang, Z. ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 2012, 36, 1031–1035. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.P.; Zhao, J.X.; Ge, Z.H.; Zhao, X.K.; Zou, L. ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl. Surf. Sci. 2013, 279, 367–373. [Google Scholar] [CrossRef]
- Raula, M.; Rashid, M.H.; Paira, T.K.; Dinda, E.; Mandal, T.K. Ascorbate-Assisted Growth of Hierarchical ZnO Nanostructures: Sphere, Spindle, and Flower and Their Catalytic Properties. Langmuir 2010, 26, 8769–8782. [Google Scholar] [CrossRef]
- Alias, N.H.; Jaafar, J.; Samitsu, S.; Ismail, A.F.; Mohamed, M.A.; Othman, M.H.D.; Rahman, M.A.; Othman, N.H.; Nor, N.A.M.; Yusof, N.; et al. Mechanistic insight of the formation of visible-light responsive nanosheet graphitic carbon nitride embedded polyacrylonitrile nanofibres for wastewater treatment. J. Water Process. Eng. 2020, 33, 101015. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Z.; Bai, Y.; Huang, Z.H.; Kang, F.; Yang, Q.H. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci. China Mater. 2017, 60, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Bellini, J.V.; Machado, R.; Morelli, M.R.; Kiminami, R.H.G.A. Thermal, Structural and Morphological Characterisation of Freeze-dried Copper(II) Acetate Monohydrate and its Solid Decomposition Products. Mater. Res. 2002, 5, 453–457. [Google Scholar] [CrossRef]
- Baláž, P.; Aláčová, A.; Achimovičová, M.; Ficeriová, J.; Godočíková, E. Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy 2005, 77, 9–17. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Liu, Z.; Xia, P.; Xie, Y.; Xiong, D. Synthesis of the 0D/3D CuO/ZnO Heterojunction with Enhanced Photocatalytic Activity. J. Phys. Chem. C 2018, 122, 9531–9539. [Google Scholar] [CrossRef]
- Ni, M.; Zhang, H.; Khan, S.; Chen, X.; Chen, F.; Guo, C.; Zhong, Y.; Hu, Y. In-situ photodeposition of cadmium sulfide nanocrystals on manganese dioxidenanorods with rich oxygen vacancies for boosting water-to-oxygen photooxidation. J. Colloid Interface Sci. 2022, 613, 764–774. [Google Scholar] [CrossRef]
- Roza, L.; Fauzia, V.; Rahman, M.Y.A.; Isnaeni, I.; Putro, P.A. ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution. Opt. Mater. 2020, 109, 110360. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, Y.; Liu, Y.; Yang, W.; Qian, H. Microwave-assisted route to fabricate coaxial ZnO/C/CdS nanocables with enhanced visible light-driven photocatalytic activity. CrystEngComm 2012, 14, 7686–7693. [Google Scholar] [CrossRef]
- Malik, J.; Kumar, S.; Srivastava, P.; Bag, M.; Mandal, T.K. Cation disorder and octahedral distortion control of internal electric field, band bending and carrier lifetime in Aurivillius perovskite solid solutions for enhanced photocatalytic activity. Mater. Adv. 2021, 2, 4832. [Google Scholar] [CrossRef]
- Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526–9531. [Google Scholar] [CrossRef]
Photocatalyst | Pollutants | Photocatalytic Degradation | Reference |
---|---|---|---|
NFMs loaded with CuO/ZnO | MB:10 mg/L | UV light: 60% for 3 h, 94.2% for 7 h | [5] |
PAN/Ag/ZnO microporous membranes | Rhodamine B (RhB):10 mg/L | Visible light: 72% for 3 h | [8] |
ZnO@CuO nanoparticles | methyl orange (MO) MB | UV light: 93.3% (MO) and 94.4% (MB) for 100 min | [29] |
CuO/ZnO nanoparticles | MB: 10 mg/L | Sunlight: 98% for 2 h | [30] |
ZnO nanoparticles encapsulated NFMs | MO: 20 mg/L | UV light: 95% for 9 h | [31] |
PAN-ZnO/Ag NFMs | MB: 5 mg/L | UV light: 85% for 2 h | [32] |
Porous TiO2/ZnO NFMs | MB: 12.8 mg/L | Xenon-lamp: 30% for 1 h | [33] |
NFMs loaded with CuO/ZnO | MO:10 mg/L | UV light: 92.2% for 5 h | [34] |
ZnO/CQDs nanopaticles | Benzene: 15.6 ppm | Visible light: 86% for 24 h | [35] |
ZnO/CQDs nanopaticles | RhB | Visible light: 80% for 2 h | [36] |
CZC@PAN NFMs | MB:10 mg/L | UV light: 92.38% for 1.5 h, Sunlight: 99.56% for 4 h | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Fan, P.; Xu, L. CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts 2023, 13, 110. https://doi.org/10.3390/catal13010110
Xu H, Fan P, Xu L. CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts. 2023; 13(1):110. https://doi.org/10.3390/catal13010110
Chicago/Turabian StyleXu, Huanhuan, Peizhi Fan, and Lan Xu. 2023. "CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance" Catalysts 13, no. 1: 110. https://doi.org/10.3390/catal13010110
APA StyleXu, H., Fan, P., & Xu, L. (2023). CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance. Catalysts, 13(1), 110. https://doi.org/10.3390/catal13010110