Chiral Bis(8-Quinolyl)Ethane-Derived Diimine: Structure Elucidation and Catalytic Performance in Asymmetric Synthesis of (S)-Warfarin
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of pre-III
3.2. Synthesis of Rh(III) Complex 6
3.3. Gram-Scale Synthesis of (S)-Warfarin 3a
3.4. Synthesis of Compounds 3b–e
3.4.1. (S)-4-hydroxy-3-(1-(4-methoxyphenyl)-3-oxobutyl)-2H-chromen-2-one (3b)
3.4.2. (S)-3-(1-(4-chlorophenyl)-3-oxobutyl)-4-hydroxy-2H-chromen-2-one (3c) (Coumachlor)
3.4.3. (S)-4-hydroxy-3-(1-(4-methoxyphenyl)-3-oxobutyl)-6-methyl-2H-pyran-2-one (3d)
3.4.4. (S)-3-(1-(4-chlorophenyl)-3-oxobutyl)-4-hydroxy-6-methyl-2H-pyran-2-one (3e)
3.5. X-ray Crystallography
General Procedure for Crystal Growing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, B.; He, X.H.; Liu, Y.Q.; He, G.; Peng, C.; Li, J.L. Asymmetric organocatalysis: An enabling technology for medicinal chemistry. Chem. Soc. Rev. 2021, 50, 1522–1586. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Bhowmick, S.; Ghosh, A.; Chanda, T.; Bhowmick, K.C. Advances on asymmetric organocatalytic 1, 4-conjugate addition reactions in aqueous and semi-aqueous media. Tetrahedron Asymmetry 2017, 28, 849–875. [Google Scholar] [CrossRef]
- Chopade, M.U.; Chopade, A.U.; Momin, A.A. Asymmetric michael adducts as key building blocks for synthesis of bioactive molecules. MOJ Biorg. Org. Chem. 2017, 1, 148–151. [Google Scholar] [CrossRef]
- Hirsh, J.; Fuster, V.; Ansell, J.; Halperin, J.L. American Heart Association/American College of Cardiology foundation guide to warfarin therapy. J. Am. Coll. Cardiol. 2003, 41, 1633–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcia de Figueiredo, R.; Christmann, M. Organocatalytic Synthesis of Drugs and Bioactive Natural Products. EurJOC 2007, 16, 2575–2600. [Google Scholar] [CrossRef]
- Park, B.K. Warfarin: Metabolism and mode of action. Biochem. Pharmacol. 1988, 37, 19–27. [Google Scholar] [CrossRef]
- Sano, K.; Saito, S.; Hirose, Y.; Kohari, Y.; Nakano, H.; Seki, C.; Tokiwa, M.; Takeshita, M.; Uwai, K. Development of a novel method for warfarin synthesis via lipase-catalyzed steroselective Michael reaction. Heterocycles 2013, 87, 1269–1278. [Google Scholar]
- Yang, H.M.; Gao, Y.H.; Li, L.; Jiang, Z.Y.; Lai, G.Q.; Xia, C.G.; Xu, L.W. Iron-catalyzed Michael reactions revisited: A synthetically useful process for the preparation of tri-carbonyl compounds and chiral warfarin. Tetrahedron Lett. 2010, 51, 3836–3839. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, L.; Chen, X.; Liu, X.; Lin, L.; Feng, X. Organocatalytic enantioselective Michael addition of 4-hydroxycoumarin to α,β-unsaturated ketones: A simple synthesis of warfarin. EurJOC 2009, 2009, 5192–5197. [Google Scholar] [CrossRef]
- Xie, B.H.; Guan, Z.; He, Y.H. Promiscuous enzyme-catalyzed Michael addition: Synthesis of warfarin and derivatives. J. Chem. Technol. Biotechnol. 2012, 87, 1709–1714. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Hamashima, Y.; Sodeoka, M. A new entry to Pd− H chemistry: Catalytic asymmetric conjugate reduction of enones with EtOH and a highly enantioselective synthesis of warfarin. Org. Lett. 2006, 8, 4851–4854. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.D.G.; Cardoso, M.F.D.C.; Forezi, L.D.S.M. Organocatalysis: A brief overview on its evolution and applications. Catalysts 2018, 8, 605. [Google Scholar] [CrossRef] [Green Version]
- Krištofíková, D.; Modrocká, V.; Mečiarová, M.; Šebesta, R. Green asymmetric organocatalysis. ChemSusChem 2020, 13, 2828–2858. [Google Scholar] [CrossRef] [PubMed]
- Mei, R.Q.; Xu, X.Y.; Li, Y.C.; Fu, J.Y.; Huang, Q.C.; Wang, L.X. Highly effective and enantioselective Michael addition of 4-hydroxycoumarin to α, β-unsaturated ketones promoted by simple chiral primary amine thiourea bifunctional catalysts. Tetrahedron Lett. 2011, 52, 1566–1568. [Google Scholar] [CrossRef]
- Dong, J.; Du, D.M. Highly enantioselective synthesis of Warfarin and its analogs catalysed by primary amine–phosphinamide bifunctional catalysts. Org. Biomol. Chem. 2012, 10, 8125–8131. [Google Scholar] [CrossRef]
- Kucherenko, A.S.; Siyutkin, D.E.; Nigmatov, A.G.; Chizhov, A.O.; Zlotin, S.G. Chiral Primary Amine Tagged to Ionic Group as Reusable Organocatalyst for Asymmetric Michael Reactions of C-Nucleophiles with α, β-Unsaturated Ketones. Adv. Synth. Catal. 2012, 354, 3078. [Google Scholar] [CrossRef]
- Kucherenko, A.S.; Lisnyak, V.G.; Chizhov, A.O.; Zlotin, S.G. Primary Amine Attached to an N-(Carboxyalkyl) imidazolium Cation: A Recyclable Organocatalyst for the Asymmetric Michael Reaction. Eur. J. Org. Chem. 2014, 18, 3808–3813. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, A.; Shi, Y.; Guo, J.; Zhu, C.; Cheng, Y. Enantioselective synthesis of polycyclic coumarin derivatives catalyzed by an in situ formed primary amine-imine catalyst. Org. Lett. 2011, 13, 4382–4385. [Google Scholar] [CrossRef]
- Kim, H.; Nguyen, Y.; Lough, A.J.; Chin, J. Stereospecific Diaza-Cope Rearrangement Driven by Steric Strain. Angew. Chem. 2008, 120, 8806–8809. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, H.; Shi, D.; Shen, Z.; Xia, C. An Efficient Synthesis of Chiral Diamines with Rigid Backbones: Application in Enantioselective Michael Addition of Malonates to Nitroalkenes. Org. Lett. 2009, 11, 4536–4539. [Google Scholar] [CrossRef]
- So, S.M.; Mui, L.; Kim, H.; Chin, J. Understanding the Interplay of Weak Forces in [3,3]-Sigmatropic Rearrangement for Stereospecific Synthesis of Diamines. Acc. Chem. Res. 2012, 45, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.; Kim, H.; Chin, J. Synthesis of Enantiopure Mixed Alkyl-Aryl Vicinal Diamines by the Diaza-Cope Rearrangement: A Synthesis of (+)-CP-99,994. J. Org. Chem. 2017, 82, 12050–12058. [Google Scholar] [CrossRef] [PubMed]
- Saito, F.; Schreiner, P.R. Determination of the absolute configurations of chiral alkanes–an analysis of the available tools. Eur. J. Org. Chem. 2020, 40, 6328–6339. [Google Scholar] [CrossRef]
- Jimeno, C. Water in asymmetric organocatalytic systems: A global perspective. Org. Biomol. Chem. 2016, 14, 6147–6164. [Google Scholar] [CrossRef] [PubMed]
- Mlynarski, J.; Baś, S. Catalytic asymmetric aldol reactions in aqueous media—A 5 year update. Chem. Soc. Rev. 2014, 43, 577–587. [Google Scholar] [CrossRef]
- Bhowmick, S.; Mondal, A.; Ghosh, A.; Bhowmick, K.C. Water: The most versatile and nature’s friendly media in asymmetric organocatalyzed direct aldol reactions. Tetrahedron Asymmetry 2015, 26, 1215–1244. [Google Scholar] [CrossRef]
- Bhowmick, S.; Bhowmick, K.C. Catalytic asymmetric carbon–carbon bond-forming reactions in aqueous media. Tetrahedron Asymmetry 2011, 22, 1945–1979. [Google Scholar] [CrossRef]
- Raj, M.; Singh, V.K. Organocatalytic reactions in water. Chem. Commun. 2009, 44, 6687–6703. [Google Scholar] [CrossRef]
- Blackmond, D.G.; Armstrong, A.; Coombe, V.; Wells, A. Water in organocatalytic processes: Debunking the myths. Angew. Chem. Int. Ed. 2007, 46, 3798–3800. [Google Scholar] [CrossRef]
- Nyberg, A.I.; Usano, A.; Pihko, P.M. Proline-catalyzed ketone-aldehyde aldol reactions are accelerated by water. Synlett 2004, 11, 1891–1896. [Google Scholar] [CrossRef]
- Guillena, G.; Alonso, D.; Baeza, A.; Chinchilla, R.; Flores-Ferrándiz, J.; Gómez-Martínez, M.; Trillo, P. Pursuing chemical efficiency by using supported organocatalysts for asymmetric reactions under aqueous conditions. Curr. Organocatal. 2015, 2, 102–123. [Google Scholar] [CrossRef]
- Mase, N.; Barbas III, C.F. In water, on water, and by water: Mimicking nature’s aldolases with organocatalysis and water. Org. Biomol. Chem. 2010, 8, 4043–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruttadauria, M.; Giacalone, F.; Noto, R. Water in stereoselective organocatalytic reactions. Adv. Synth. Catal. 2009, 351, 33–57. [Google Scholar] [CrossRef]
- Kucherenko, A.S.; Kostenko, A.A.; Zhdankina, G.M.; Kuznetsova, O.Y.; Zlotin, S.G. Green asymmetric synthesis of Warfarin and Coumachlor in pure water catalyzed by quinoline-derived 1,2-diamines. Green Chem. 2018, 20, 754–759. [Google Scholar] [CrossRef]
- Xie, J.W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J.G.; Chen, Y.C. Highly enantioselective Michael addition of cyclic 1, 3-dicarbonyl compounds to α, β-unsaturated ketones. Org. Lett. 2007, 9, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Guo, Z.; Yu, H.; Xie, J.; Zhong, Y.; Zhu, W. Atom-economic synthesis of optically active Warfarin anticoagulant over a chiral MOF organocatalyst. Adv. Synth. Catal. 2013, 355, 2538–2543. [Google Scholar] [CrossRef]
- Kochetkov, S.V.; Kucherenko, A.S.; Zlotin, S.G. Asymmetric synthesis of warfarin and its analogs catalyzed by C2-symmetric squaramide-based primary diamines. Org. Biomol. Chem. 2018, 16, 6423–6429. [Google Scholar] [CrossRef]
Entry | Solvent | Acid | Yield b, 3a + 3a’ (%) | eec (%) |
---|---|---|---|---|
1 | THF, CH2Cl2 or PhCH3 | - | n/r | - |
2 | THF | n-C5H11COOH | 76 | 87 |
3 d | THF/H2O (3:1) | - | 88 | 86 e |
4 | THF/H2O (2:1) | - | 84 | 82 |
5 | THF/H2O (1:1) | - | 86 | 80 |
6 | H2O | - | 85 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitin, I.D.; Kovalevsky, R.A.; Kucherenko, A.S.; Kuznetsova, O.Y.; Zlotin, S.G. Chiral Bis(8-Quinolyl)Ethane-Derived Diimine: Structure Elucidation and Catalytic Performance in Asymmetric Synthesis of (S)-Warfarin. Catalysts 2023, 13, 136. https://doi.org/10.3390/catal13010136
Nikitin ID, Kovalevsky RA, Kucherenko AS, Kuznetsova OY, Zlotin SG. Chiral Bis(8-Quinolyl)Ethane-Derived Diimine: Structure Elucidation and Catalytic Performance in Asymmetric Synthesis of (S)-Warfarin. Catalysts. 2023; 13(1):136. https://doi.org/10.3390/catal13010136
Chicago/Turabian StyleNikitin, Ilya D., Ruslan A. Kovalevsky, Alexander S. Kucherenko, Olga Y. Kuznetsova, and Sergei G. Zlotin. 2023. "Chiral Bis(8-Quinolyl)Ethane-Derived Diimine: Structure Elucidation and Catalytic Performance in Asymmetric Synthesis of (S)-Warfarin" Catalysts 13, no. 1: 136. https://doi.org/10.3390/catal13010136
APA StyleNikitin, I. D., Kovalevsky, R. A., Kucherenko, A. S., Kuznetsova, O. Y., & Zlotin, S. G. (2023). Chiral Bis(8-Quinolyl)Ethane-Derived Diimine: Structure Elucidation and Catalytic Performance in Asymmetric Synthesis of (S)-Warfarin. Catalysts, 13(1), 136. https://doi.org/10.3390/catal13010136