Carbon-Protected BiVO4—Cu2O Thin Film Tandem Cell for Solar Water Splitting Applications
Abstract
:1. Introduction
2. Results and Discussions
2.1. Vibrational Analysis
2.2. Morphological Analysis
2.3. Optical Analysis
2.4. PEC Performance
3. Materials and Methods
3.1. Deposition of BiVO4 Photoanodes
3.2. Deposition of FeOOH
3.3. Deposition of Cu2O Photocathode
3.4. Deposition of a MoS2 Layer
3.5. Deposition of the Carbon Layer
3.6. Material Characterization
3.7. Photoelectrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, C.H.; Huang, C.W.; Wu, J.C.S. Hydrogen Production from Semiconductor-Based Photocatalysis via Water Splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef] [Green Version]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. Hydrogen—A Sustainable Energy Carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Bornoz, P.; Abdi, F.F.; Tilley, S.D.; Dam, B.; Van De Krol, R.; Graetzel, M.; Sivula, K. A Bismuth Vanadate-Cuprous Oxide Tandem Cell for Overall Solar Water Splitting. J. Phys. Chem. C 2014, 118, 16959–16966. [Google Scholar] [CrossRef]
- Prévot, M.S.; Sivula, K. Photoelectrochemical Tandem Cells for Solar Water Splitting. J. Phys. Chem. C 2013, 117, 17879–17893. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, T.; He, B.; Hu, X.; Huang, J.; Yi, P.; Wang, Y.; Chen, Y.; Li, Z.; Liu, X. Photothermal Effect-Enhanced Photoelectrochemical Water Splitting of a BiVO4 photoanode Modified with Dual-Functional Polyaniline. J. Mater. Chem. A 2020, 8, 15976–15983. [Google Scholar] [CrossRef]
- Bagal, I.V.; Chodankar, N.R.; Hassan, M.A.; Waseem, A.; Johar, M.A.; Kim, D.H.; Ryu, S.W. Cu2O as an Emerging Photocathode for Solar Water Splitting—A Status Review. Int. J. Hydrog. Energy 2019, 44, 21351–21378. [Google Scholar] [CrossRef]
- Arunachalam, P.; Nagai, K.; Amer, M.S.; Ghanem, M.A.; Ramalingam, R.J.; Al-Mayouf, A.M. Recent Developments in the Use of Heterogeneous Semiconductor Photocatalyst Based Materials for a Visible-Light-Inducedwater-Splitting System-a Brief Review. Catalysts 2021, 11, 160. [Google Scholar] [CrossRef]
- Zachäus, C.; Abdi, F.F.; Peter, L.M.; Van De Krol, R. Photocurrent of BiVO4 Is Limited by Surface Recombination, Not Surface Catalysis. Chem. Sci. 2017, 8, 3712–3719. [Google Scholar] [CrossRef] [Green Version]
- Moehl, T.; Suh, J.; Sévery, L.; Wick-Joliat, R.; Tilley, S.D. Investigation of (Leaky) ALD TiO2 Protection Layers for Water-Splitting Photoelectrodes. ACS Appl. Mater. Interfaces 2017, 9, 43614–43622. [Google Scholar] [CrossRef]
- Yoon, K.; Lee, J.H.; Kang, J.; Kang, J.; Moody, M.J.; Hersam, M.C.; Lauhon, L.J. Metal-Free Carbon-Based Nanomaterial Coatings Protect Silicon Photoanodes in Solar Water-Splitting. Nano Lett. 2016, 16, 7370–7375. [Google Scholar] [CrossRef]
- Prakash, J.; Prasad, U.; Alexander, R.; Bahadur, J.; Dasgupta, K.; Kannan, A.N.M. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport. Langmuir 2019, 35, 14492–14504. [Google Scholar] [CrossRef]
- Han, X.; Wei, Y.; Su, J.; Zhao, Y. Low-Cost Oriented Hierarchical Growth of BiVO4/RGO/NiFe Nanoarrays Photoanode for Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018, 6, 14695–14703. [Google Scholar] [CrossRef]
- Zeng, G.; Deng, Y.; Yu, X.; Zhu, Y.; Fu, X.; Zhang, Y. Ultrathin G-C3N4 as a Hole Extraction Layer to Boost Sunlight-Driven Water Oxidation of BiVO4-Based Photoanode. J. Power Sources 2021, 494, 229701. [Google Scholar] [CrossRef]
- Reddy, D.A.; Kim, Y.; Shim, H.S.; Reddy, K.A.J.; Gopannagari, M.; Praveen Kumar, D.; Song, J.K.; Kim, T.K. Significant Improvements on BiVO4@CoPi Photoanode Solar Water Splitting Performance by Extending Visible-Light Harvesting Capacity and Charge Carrier Transportation. ACS Appl. Energy Mater. 2020, 3, 4474–4483. [Google Scholar] [CrossRef]
- Kunturu, P.P.; Huskens, J. Efficient Solar Water Splitting Photocathodes Comprising a Copper Oxide Heterostructure Protected by a Thin Carbon Layer. ACS Appl. Energy Mater. 2019, 2, 7850–7860. [Google Scholar] [CrossRef] [Green Version]
- Kaneza, N.; Shinde, P.S.; Ma, Y.; Pan, S. Photoelectrochemical Study of Carbon-Modified p-Type Cu2O Nanoneedles and n-Type TiO2-x Nanorods for Z-Scheme Solar Water Splitting in a Tandem Cell Configuration. RSC Adv. 2019, 9, 13576–13585. [Google Scholar] [CrossRef] [Green Version]
- Sitaaraman, S.R.; Nirmala Grace, A.; Sellappan, R. Photoelectrochemical Performance of a Spin Coated TiO2 Protected BiVO4-Cu2O Thin Film Tandem Cell for Unassisted Solar Water Splitting. RSC Adv. 2022, 12, 31380–31391. [Google Scholar] [CrossRef]
- Chhowalla, M.; Ferrari, A.C.; Robertson, J.; Amaratunga, G.A.J. Evolution of Sp2 Bonding with Deposition Temperature in Tetrahedral Amorphous Carbon Studied by Raman Spectroscopy. Appl. Phys. Lett. 2000, 76, 1419–1421. [Google Scholar] [CrossRef]
- Jubu, P.R.; Yam, F.K.; Igba, V.M.; Beh, K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data—A Case Study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Liu, C.; Zhang, Z.; Zhang, F.; Liu, Q. Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C3N4/BiVO4 Heterojunction. Coatings 2021, 11, 1027. [Google Scholar] [CrossRef]
- Kumar, M.; Meena, B.; Subramanyam, P.; Suryakala, D.; Subrahmanyam, C. Emerging Copper-Based Semiconducting Materials for Photocathodic Applications in Solar Driven Water Splitting. Catalysts 2022, 12, 1198. [Google Scholar] [CrossRef]
- Luo, W.; Li, Z.; Yu, T.; Zou, Z. Effects of Surface Electrochemical Pretreatment on the Photoelectrochemical Performance of Mo-Doped BiVO 4. J. Phys. Chem. C 2012, 116, 5076–5081. [Google Scholar] [CrossRef]
- Hilliard, S.; Friedrich, D.; Kressman, S.; Strub, H.; Artero, V.; Laberty-Robert, C. Solar-Water-Splitting BiVO4 Thin-Film Photoanodes Prepared By Using a Sol-Gel Dip-Coating Technique. ChemPhotoChem 2017, 1, 273–280. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. Angew. Chemie Int. Ed. 2018, 57, 2248–2252. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Liu, J.; Cui, M.; Luo, R.; He, J.; Chen, A. Two-Step Electrodeposition to Fabricate the p-n Heterojunction of a Cu2O/BiVO4 Photoanode for the Enhancement of Photoelectrochemical Water Splitting. Dalt. Trans. 2018, 47, 6763–6771. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Yang, Z.Y.; Zhang, Y.X.; Jing, L.; Guo, X.; Ke, Z.; Hu, P.; Wang, G.; Yan, Y.M.; Sun, K.N. Cu2O Decorated with Cocatalyst MoS2 for Solar Hydrogen Production with Enhanced Efficiency under Visible Light. J. Phys. Chem. C 2014, 118, 14238–14245. [Google Scholar] [CrossRef]
- Guo, M.; He, Q.; Wang, A.; Wang, W.; Fu, Z. A Novel, Simple and Greenway to Fabricate BiVO4 with Excellent Photocatalytic Activity and Its Methylene Blue Decomposition Mechanism. Crystals 2016, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Rohloff, M.; Anke, B.; Zhang, S.; Gernert, U.; Scheu, C.; Lerch, M.; Fischer, A. Mo-Doped BiVO4 Thin Films-High Photoelectrochemical Water Splitting Performance Achieved by a Tailored Structure and Morphology. Sustain. Energy Fuels 2017, 1, 1830–1846. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Ding, J.; Peng, H.; Chen, K. Facile Synthesis and Photocatalytic Activity of Monoclinic BiVO 4 Micro/Nanostructures with Controllable Morphologies. Mater. Res. Bull. 2012, 47, 3814–3818. [Google Scholar] [CrossRef]
- Aktar, A.; Ahmmed, S.; Hossain, J.; Ismail, A.B.M. Solution-Processed Synthesis of Copper Oxide (CuxO) Thin Films for Efficient Photocatalytic Solar Water Splitting. ACS Omega 2020, 5, 25125–25134. [Google Scholar] [CrossRef]
- Sahoo, D.; Kumar, B.; Sinha, J.; Ghosh, S.; Roy, S.S.; Kaviraj, B. Cost Effective Liquid Phase Exfoliation of MoS2 Nanosheets and Photocatalytic Activity for Wastewater Treatment Enforced by Visible Light. Sci. Rep. 2020, 10, 10759. [Google Scholar] [CrossRef]
- Patil, S.S.; Mali, M.G.; Hassan, M.A.; Patil, D.R.; Kolekar, S.S.; Ryu, S.W. One-Pot in Situ Hydrothermal Growth of BiVO4/Ag/RGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation. Sci. Rep. 2017, 7, 8404. [Google Scholar] [CrossRef] [Green Version]
- Zeng, G.; Hou, L.; Zhang, J.; Zhu, J.; Yu, X.; Fu, X.; Zhu, Y.; Zhang, Y. FeOOH/RGO/BiVO4 Photoanode for Highly Enhanced Photoelectrochemical Water Splitting Performance. ChemCatChem 2020, 12, 3769–3775. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Y.; Jiang, W.; Zhang, Y.; Pan, K.; Wang, S.; Hu, C.; Zhang, L.H.; Xia, L. In-Situ Generation of g-C3N4 on BiVO4 Photoanode for Highly Efficient Photoelectrochemical Water Oxidation. Appl. Surf. Sci. 2020, 523, 146441. [Google Scholar] [CrossRef]
- Hamdani, I.R.; Bhaskarwar, A.N. Cu2O Nanowires Based P-n Homojunction Photocathode for Improved Current Density and Hydrogen Generation through Solar-Water Splitting. Int. J. Hydrog. Energy 2021, 46, 28064–28077. [Google Scholar] [CrossRef]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat Band Potential Determination: Avoiding the Pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, D.; Wu, Q.; Diao, P. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction. Sci. Rep. 2016, 6, 35158. [Google Scholar] [CrossRef] [Green Version]
- Tayebi, M.; Lee, B.K. The Effects of W/Mo-Co-Doped BiVO4 Photoanodes for Improving Photoelectrochemical Water Splitting Performance. Catal. Today 2021, 361, 183–190. [Google Scholar] [CrossRef]
- Tian, C.M.; Li, W.W.; Lin, Y.M.; Yang, Z.Z.; Wang, L.; Du, Y.G.; Xiao, H.Y.; Qiao, L.; Zhang, J.Y.; Chen, L.; et al. Electronic Structure, Optical Properties, and Photoelectrochemical Activity of Sn-Doped Fe2O3 Thin Films. J. Phys. Chem. C 2020, 124, 12548–12558. [Google Scholar] [CrossRef]
- Jessl, S.; Rongé, J.; Copic, D.; Jones, M.A.; Martens, J.; De Volder, M. Honeycomb-Shaped Carbon Nanotube Supports for BiVO4 Based Solar Water Splitting. Nanoscale 2019, 11, 22964–22970. [Google Scholar] [CrossRef]
- Ye, K.H.; Wang, Z.; Gu, J.; Xiao, S.; Yuan, Y.; Zhu, Y.; Zhang, Y.; Mai, W.; Yang, S. Carbon Quantum Dots as a Visible Light Sensitizer to Significantly Increase the Solar Water Splitting Performance of Bismuth Vanadate Photoanodes. Energy Environ. Sci. 2017, 10, 772–779. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhang, B.; Jiang, W.; Bao, X.; Cheng, H.; Zheng, Z.; Wang, P.; Liu, Y.; Whangbo, M.H.; et al. Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs. ACS Catal. 2020, 10, 13031–13039. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Li, S.; Zhang, B.; Wang, M.; Shen, Y. Carbon Coated Cu2O Nanowires for Photo-Electrochemical Water Splitting with Enhanced Activity. Appl. Surf. Sci. 2015, 358, 404–411. [Google Scholar] [CrossRef]
- Hou, T.F.; Shanmugasundaram, A.; Hassan, M.A.; Johar, M.A.; Ryu, S.W.; Lee, D.W. ZnO/Cu2O-Decorated RGO: Heterojunction Photoelectrode with Improved Solar Water Splitting Performance. Int. J. Hydrog. Energy 2019, 44, 19177–19192. [Google Scholar] [CrossRef]
- Fu, X.; Chang, H.; Shang, Z.; Liu, P.; Liu, J.; Luo, H. Three-Dimensional Cu2O Nanorods Modified by Hydrogen Treated Ti3C2TX MXene with Enriched Oxygen Vacancies as a Photocathode and a Tandem Cell for Unassisted Solar Water Splitting. Chem. Eng. J. 2020, 381, 122001. [Google Scholar] [CrossRef]
Photoanodes | Onset Potential (V vs. RHE) | Current Density (mA cm−2) at 1.23 V vs. RHE | Flat Band Potential EFB (V) vs. RHE | Charge Transfer Resistance (Rct) Ω | Dopant Concentration (cm−3) |
---|---|---|---|---|---|
Mo-BiVO4 | 0.51 V | 0.40 | 0.033 V | 1486 Ω | 4.70 × 1019 |
Mo-BiVO4/C | 0.49 V | 0.74 | −0.141 V | 716.3 Ω | 5.68 × 1020 |
Mo-BiVO4/C/FeOOH | 0.41 V | 1.24 | −0.171 V | 454.8 Ω | 1.56 × 1021 |
Cu2O | 0.61 V | −0.55 | 0.565 V | 1671 Ω | 1.95 × 1020 |
Cu2O/C | 0.65 V | −1.24 | 0.616 V | 1425 Ω | 7.04 × 1019 |
Cu2O/C/MoS2 | 0.75 V | −1.48 | 0.740 V | 1171 Ω | 3.04 × 1020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raghavan, S.S.R.; Andrews, N.G.; Sellappan, R. Carbon-Protected BiVO4—Cu2O Thin Film Tandem Cell for Solar Water Splitting Applications. Catalysts 2023, 13, 144. https://doi.org/10.3390/catal13010144
Raghavan SSR, Andrews NG, Sellappan R. Carbon-Protected BiVO4—Cu2O Thin Film Tandem Cell for Solar Water Splitting Applications. Catalysts. 2023; 13(1):144. https://doi.org/10.3390/catal13010144
Chicago/Turabian StyleRaghavan, Sitaaraman Srinivasa Rao, Nirmala Grace Andrews, and Raja Sellappan. 2023. "Carbon-Protected BiVO4—Cu2O Thin Film Tandem Cell for Solar Water Splitting Applications" Catalysts 13, no. 1: 144. https://doi.org/10.3390/catal13010144
APA StyleRaghavan, S. S. R., Andrews, N. G., & Sellappan, R. (2023). Carbon-Protected BiVO4—Cu2O Thin Film Tandem Cell for Solar Water Splitting Applications. Catalysts, 13(1), 144. https://doi.org/10.3390/catal13010144