Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives
Abstract
:1. Introduction
2. Lignin Depolymerization by Different Microbes
2.1. Advantages of Fungal Microbiota
2.2. Significance of White Rot Fungi in Lignin Degradation
3. Fungal Enzymatic Depolymerization of Lignin
3.1. The Mechanism Involved in Lignin Depolymerization
3.2. Role of Different Enzymes in the Fungal-Assisted Depolymerization Pathway
3.2.1. Laccase
3.2.2. Lignin Peroxidase
3.2.3. Manganese Peroxidase
4. Protein Engineering Approaches towards Improving the Efficiency of Enzymes
5. Hybrid Biochemical Routes of Lignin Valorisation
5.1. Fungal Depolymerization Pathways
5.1.1. Model Organism
5.1.2. Major Pathways
5.2. Current Research and Future Trends
6. Products from Lignin Volarization
7. Challenges in Lignin Biomass Conversion through Microbes
- There is a gap in understanding the synergistic action of the fungal enzymes and the enhancement of the delignification efficiency.
- There is a need of applying molecular-level and genetical biotechnologies to achieve an industrial level of application
- Biosafety Issues-Fungal enzymes allergy for humankind.
- The substrate bioavailability of the lignin and rate of conversion is the main challenge. Moreover, industrial applications and process scale-up still have some challenges and need to be addressed [106].
- Single cultures are ineffective in breaking down the lignocellulose components. Delignification cannot be achieved by a single species, as studies have revealed that in nature, lignin depolymerization is achieved by the combined efforts of many microorganisms under aerobic and anaerobic environments [107].
- The secretion of enzymes from bacteria necessitates a higher level of specificity than other processes. The construction and research of bacterial enzyme complexes are more complicated [108].
8. Way Forward and Future Prospects
- Microbial enzymes via fungi can be produced quicker, cost-effective and is scalable, hence it is crucial in nourishing life and is sustainable
- Continuous search for fungal novel enzymes can lead to numerous nutritional value and health benefits for mankind
- The diverse enzymatic actions of fungi such as mushrooms can leverage low-cost agricultural production systems.
- Exploring of synthetic biology for improving the lignin degradation process.
- Food fermentation can be naturally performed by fungi enzymes whose application will enhance the preservation and shelf life of foods without affecting the characteristics of the organoleptic and nutritional content of foods [111]
- Treatment of lignocellulosic agricultural waste by fungi that are naturally abundant in diverse enzymes can valorize cellulosic material into valuable industrial bioproducts such as biofuels.
- Antioxidants are essential for healthy living and fungi have the capacity to produce antioxidant metabolites such as phenolics and flavonoids.
- Industrial applications of the fungal enzymes represent a sustainable, eco-friendly, and energy-saving solution for many environmental and quality aspects compared to the currently applied conventional chemical approaches.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adewuyi, A. Underutilized Lignocellulosic Waste as Sources of Feedstock for Biofuel Production in Developing Countries. Front. Energy Res. 2022, 10, 1–21. [Google Scholar] [CrossRef]
- Yousuf, A.; Pirozzi, D.; Sannino, F. Chapter 1—Fundamentals of Lignocellulosic Biomass. In Lignocellulosic Biomass to Liquid Biofuels; Yousuf, A., Pirozzi, D., Sannino, F., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–15. ISBN 978-0-12-815936-1. [Google Scholar]
- Ge, X.; Chang, C.; Zhang, L.; Cui, S.; Luo, X.; Hu, S.; Qin, Y.; Li, Y. Chapter Five—Conversion of Lignocellulosic Biomass into Platform Chemicals for Biobased Polyurethane Application. Adv. Bioenergy 2018, 3, 161–213. [Google Scholar]
- Gutiérrez-Antonio, C.; Romero-Izquierdo, A.G.; Gómez-Castro, F.I.; Hernández, S. 5-Production Processes from Lignocellulosic Feedstock. In Production Processes of Renewable Aviation Fuel; Gutiérrez-Antonio, C., Romero-Izquierdo, A.G., Gómez-Castro, F.I., Hernández, S., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2021; pp. 129–169. ISBN 978-0-12-819719-6. [Google Scholar]
- Singhvi, M.S.; Gokhale, D.V. Lignocellulosic Biomass: Hurdles and Challenges in Its Valorization. Appl. Microbiol. Biotechnol. 2019, 103, 9305–9320. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.J.; Broda, P. Screening for Lignin-Degrading Actinornycetes and Characterization of Their Activity against [14C] Lignin-Labelled Wheat Lignocellulose. Microbiology 1984, 130, 2905–2913. [Google Scholar] [CrossRef] [Green Version]
- Janusz, G.; Pawlik, A.; Sulej, J.; Świderska-Burek, U.; Jarosz-Wilkołazka, A.; Paszczyński, A. Lignin Degradation: Microorganisms, Enzymes Involved, Genomes Analysis and Evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef] [Green Version]
- Ball, A.S.; Betts, W.B.; Mccarthy, A.J. Degradation of Lignin-Related Compounds by Actinomycetes. Appl. Environ. Microbiol. 1989, 55, 1642–1644. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Cheng, J.; Zhang, Y.; Jiang, X.; Liu, Y. Genomics Analysis and Degradation Characteristics of Lignin by Streptomyces Thermocarboxydus Strain DF3-3. Biotechnol. Biofuels Bioprod. 2022, 15, 78. [Google Scholar] [CrossRef]
- Kumar, M.; Verma, S.; Gazara, R.K.; Kumar, M.; Pandey, A.; Verma, P.K.; Thakur, I.S. Genomic and Proteomic Analysis of Lignin Degrading and Polyhydroxyalkanoate Accumulating β-Proteobacterium Pandoraea Sp. ISTKB. Biotechnol. Biofuels 2018, 11, 154. [Google Scholar] [CrossRef]
- de Souza, W.R. Microbial Degradation of Lignocellulosic Biomass. In Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization; IntechOpen: London, UK, 2013; pp. 207–247. [Google Scholar]
- Brink, D.P.; Ravi, K.; Lidén, G.; Gorwa-Grauslund, M.F. Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the ELignin Database. Appl. Microbiol. Biotechnol. 2019, 103, 3979–4002. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, P.; Salam, N.; Li, X.; Ahmad, M.; Tian, Y.; Duan, L.; Huang, L.; Xiao, M.; Mou, X.; et al. Unraveling Bacteria-Mediated Degradation of Lignin-Derived Aromatic Compounds in a Freshwater Environment. Sci. Total Environ. 2020, 749, 141236. [Google Scholar] [CrossRef]
- Weng, C.; Peng, X.; Han, Y. Depolymerization and Conversion of Lignin to Value-Added Bioproducts by Microbial and Enzymatic Catalysis. Biotechnol. Biofuels 2021, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Radhika, N.L.; Sachdeva, S.; Kumar, M. Microbe Assisted Depolymerization of Lignin Rich Waste and Its Conversion to Gaseous Biofuel. J. Environ. Manag. 2021, 300, 113684. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.I. Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef] [PubMed]
- De Gannes, V.; Eudoxie, G.; Hickey, W.J. Insights into Fungal Communities in Composts Revealed by 454-Pyrosequencing: Implications for Human Health and Safety. Front. Microbiol. 2013, 4, 164. [Google Scholar] [CrossRef] [Green Version]
- Mathew, G.M.; Sukumaran, R.K.; Singhania, R.R.; Pandey, A. Progress in Research on Fungal Cellulases for Lignocellulose Degradation. J. Sci. Ind. Res. 2008, 67, 898–907. [Google Scholar]
- Schoenherr, S.; Ebrahimi, M.; Schoenherr, S.; Ebrahimi, M.; Czermak, P. Lignin Degradation Processes and the Purification of Valuable Products. In Lignin-Trends and Applications; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Keerthana, S.; Kalaiselvi, P.; Maheshwari, M.; Kalaiselvi, T. Isolation and Screening of Lignin and Cellulose Degrading Proficient Microbial Strains from Diverse Biotic Substrates Based on Qualitative Traits. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 475–483. [Google Scholar] [CrossRef]
- Saroj, P.; Manasa, P.; Narasimhulu, K. Characterization of Thermophilic Fungi Producing Extracellular Lignocellulolytic Enzymes for Lignocellulosic Hydrolysis under Solid-State Fermentation. Bioresour. Bioprocess. 2018, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Kantharaj, P.; Boobalan, B.; Sooriamuthu, S. Lignocellulose Degrading Enzymes from Fungi and Their Industrial Applications. Int. J. Curr. Res. Rev. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Idris; Ramadhani, I.; Kanti, A.; Sudiana, I.M. Screening of Potential Lignin-Degrading Fungi from the Tropical Forest for Lignocellulose Biotreatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 308. [Google Scholar] [CrossRef] [Green Version]
- Lopez, M.J.; Vargas-García, M.C.; Suárez-Estrella, F.; Nichols, N.N.; Dien, B.S.; Moreno, J. Lignocellulose-Degrading Enzymes Produced by the Ascomycete Coniochaeta Ligniaria and Related Species: Application for a Lignocellulosic Substrate Treatment. Enzym. Microb. Technol. 2007, 40, 794–800. [Google Scholar] [CrossRef]
- Tengerdy, R.P.; Szakacs, G. Bioconversion of Lignocellulose in Solid Substrate Fermentation. Biochem. Eng. J. 2003, 13, 169–179. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Azzoni, A.R.; Freitas, S. On the Production Cost of Lignocellulose-Degrading Enzymes. Biofuels Bioprod. Biorefining 2021, 15, 85–99. [Google Scholar] [CrossRef]
- Sánchez, C. Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotechnol. Adv. 2009, 27, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Pointing, S.; Hyde, K. Biofouling: The Journal of Bioadhesion and Biofilm Lignocellulose-Degrading Marine Fungi. Biofouling 2000, 15, 221–229. [Google Scholar] [CrossRef]
- Dashtban, M.; Schraft, H.; Qin, W. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives. Int. J. Biol. Sci. 2009, 5, 578–595. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Bak, J.S.; Ko, J.K.; Choi, I.G.; Park, Y.C.; Seo, J.H.; Kim, K.H. Fungal Pretreatment of Lignocellulose by Phanerochaete Chrysosporium to Produce Ethanol from Rice Straw. Biotechnol. Bioeng. 2009, 104, 471–482. [Google Scholar] [CrossRef]
- Breen, A.; Singleton, F.L. Fungi in Lignocellulose Breakdown and Biopulping. Curr. Opin. Biotechnol. 1999, 10, 252–258. [Google Scholar] [CrossRef]
- Wan, C.; Li, Y. Fungal Pretreatment of Lignocellulosic Biomass. Biotechnol. Adv. 2012, 30, 1447–1457. [Google Scholar] [CrossRef]
- Lang, E.; Eller, G.; Zadrazil, F. Lignocellulose Decomposition and Production of Ligninolytic Enzymes during Interaction of White Rot Fungi with Soil Microorganisms. Microb. Ecol. 1997, 34, 1–10. [Google Scholar] [CrossRef]
- Li, S.F.; Wang, H.; Chen, J.L.; Zhu, H.X.; Yao, R.S.; Wu, H. Degradation and Transformation of Lignin by a Fungus Aspergillus Flavus Strain F-1. Iran. J. Biotechnol. 2020, 18, 62–69. [Google Scholar] [CrossRef]
- Xu, C.; Yang, X.; Ma, F.; Yu, H.; Zhang, X. Screening of White Rot Fungi for Biological Pretreatment of Lignocellulosic Biomass. Food Ferment. Ind. 2009, 2, 17–21. (In Chinese) [Google Scholar]
- Piscitelli, A.; Del Vecchio, C.; Faraco, V.; Giardina, P.; MacEllaro, G.; Miele, A.; Pezzella, C.; Sannia, G. Fungal Laccases: Versatile Tools for Lignocellulose Transformation. C. R. Biol. 2011, 334, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Homma, H.; Shinoyama, H.; Nobuta, Y.; Terashima, Y.; Amachi, S.; Fujii, T. Lignin-Degrading Activity of Edible Mushroom Strobilurus Ohshimae That Forms Fruiting Bodies on Buried Sugi (Cryptomeria Japonica) Twigs. J. Wood Sci. 2007, 53, 80–84. [Google Scholar] [CrossRef]
- Platt, M.W.; Hadar, Y.; Chet, I. Fungal Activities Involved in Lignocellulose Degradation by Pleurotus. Appl. Microbiol. Biotechnol. 1984, 20, 150–154. [Google Scholar] [CrossRef]
- Jamil, A.; Ahmed, S.; Al, E.T. Production and Purification of Cellulose- Degrading Enzymes From a Filamentous Fungus. Pak. J. Bot. 2009, 41, 1411–1419. [Google Scholar]
- Liu, G.; Qu, Y. Engineering of Filamentous Fungi for Efficient Conversion of Lignocellulose: Tools, Recent Advances and Prospects. Biotechnol. Adv. 2019, 37, 519–529. [Google Scholar] [CrossRef]
- Znameroski, E.A.; Glass, N.L. Using a Model Filamentous Fungus to Unravel Mechanisms of Lignocellulose Deconstruction. Biotechnol. Biofuels 2013, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Chandra, R. Ligninolytic Enzymes and Its Mechanisms for Degradation of Lignocellulosic Waste in Environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.D.; Bobusheva, S.T. Screening of Wild-Type Fungal Isolates for Cellulolytic Activity. Microbiol. Insights 2011, 4, MBI.S6418. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Rodrigues, P.; Gurgel, L.V.A.; Pasquini, D.; Badotti, F.; Góes-Neto, A.; Baffi, M.A. Lignocellulose-Degrading Enzymes Production by Solid-State Fermentation through Fungal Consortium among Ascomycetes and Basidiomycetes. Renew. Energy 2020, 145, 2683–2693. [Google Scholar] [CrossRef]
- Namnuch, N.; Thammasittirong, A.; Thammasittirong, S.N.R. Lignocellulose Hydrolytic Enzymes Production by Aspergillus Flavus KUB2 Using Submerged Fermentation of Sugarcane Bagasse Waste. Mycology 2021, 12, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cao, G.-L.; Wang, A.-J.; Ren, H.-Y.; Dong, D.; Liu, Z.-N.; Guan, X.-Y.; Xu, C.-J.; Ren, N.-Q. Fungal Pretreatment of Cornstalk with Phanerochaete Chrysosporium for Enhancing Enzymatic Saccharification and Hydrogen Production. Bioresour. Technol. 2012, 114, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Zeng, J.; Laskar, D.D.; Deobald, L.; Hiscox, W.C.; Chen, S. Investigation of Wheat Straw Biodegradation by Phanerochaete Chrysosporium. Biomass Bioenergy 2011, 35, 1030–1040. [Google Scholar] [CrossRef]
- Shirkavand, E.; Baroutian, S.; Gapes, D.J.; Young, B.R. Pretreatment of Radiata Pine Using Two White Rot Fungal Strains Stereum Hirsutum and Trametes Versicolor. Energy Convers. Manag. 2017, 142, 13–19. [Google Scholar] [CrossRef]
- Taniguchi, M.; Suzuki, H.; Watanabe, D.; Sakai, K.; Hoshino, K.; Tanaka, T. Evaluation of Pretreatment with Pleurotus Ostreatus for Enzymatic Hydrolysis of Rice Straw. J. Biosci. Bioeng. 2005, 100, 637–643. [Google Scholar] [CrossRef]
- Kamei, I.; Hirota, Y.; Meguro, S. Integrated Delignification and Simultaneous Saccharification and Fermentation of Hard Wood by a White-Rot Fungus, Phlebia Sp. MG-60. Bioresour. Technol. 2012, 126, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Salvachúa, D.; Katahira, R.; Cleveland, N.S.; Khanna, P.; Resch, M.G.; Black, B.A.; Purvine, S.O.; Zink, E.M.; Prieto, A.; Martínez, M.J. Lignin Depolymerization by Fungal Secretomes and a Microbial Sink. Green Chem. 2016, 18, 6046–6062. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.Q.; Yang, J.S.; Zhu, N.; Wang, E.T.; Yuan, H.L. Sugarcane Bagasse Degradation and Characterization of Three White-Rot Fungi. Bioresour. Technol. 2013, 131, 443–451. [Google Scholar] [CrossRef]
- Yelle, D.J.; Ralph, J.; Lu, F.; Hammel, K.E. Evidence for Cleavage of Lignin by a Brown Rot Basidiomycete. Environ. Microbiol. 2008, 10, 1844–1849. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.A.M.; Salas Sanjúan, M.C.; López, M.J. Evaluation of Physicochemical Properties and Enzymatic Activity of Organic Substrates during Four Crop Cycles in Soilless Containers. Food Sci. Nutr. 2018, 6, 2066–2078. [Google Scholar] [CrossRef] [PubMed]
- Varnaitė, R.; Raudonienė, V. Enzymatic Lignin Degradation in Rye Straw by Micromycetes. Int. Biodeterior. Biodegrad. 2005, 56, 192–195. [Google Scholar] [CrossRef]
- Dey, S.; Maiti, T.K.; Bhattacharyya, B.C. Production of Some Extracellular Enzymes by a Lignin Peroxidase-Producing Brown Rot Fungus, Polyporus Ostreiformis, and Its Comparative Abilities for Lignin Degradation and Dye Decolorization. Appl. Environ. Microbiol. 1994, 60, 4216–4218. [Google Scholar] [CrossRef] [PubMed]
- Knežević, A.; Milovanović, I.; Stajić, M.; Lončar, N.; Brčeski, I.; Vukojević, J.; Ćilerdžić, J. Lignin Degradation by Selected Fungal Species. Bioresour. Technol. 2013, 138, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.J.; Fan, J.; Wen, X. Screening of Fungi Capable of Highly Selective Degradation of Lignin in Rice Straw. Int. Biodeterior. Biodegrad. 2012, 72, 26–30. [Google Scholar] [CrossRef]
- Bonugli-Santos, R.C.; Durrant, L.R.; da Silva, M.; Sette, L.D. Production of Laccase, Manganese Peroxidase and Lignin Peroxidase by Brazilian Marine-Derived Fungi. Enzym. Microb. Technol. 2010, 46, 32–37. [Google Scholar] [CrossRef]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal Biodegradation and Enzymatic Modification of Lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar] [PubMed]
- Gu, D.; Xiang, X.; Wu, Y.; Zeng, J.; Lin, X. Synergy between Fungi and Bacteria Promotes Polycyclic Aromatic Hydrocarbon Cometabolism in Lignin-Amended Soil. J. Hazard. Mater. 2022, 425, 127958. [Google Scholar] [CrossRef]
- Tuomela, M.; Oivanen, P.; Hatakka, A. Degradation of Synthetic 14C-Lignin by Various White-Rot Fungi in Soil. Soil Biol. Biochem. 2002, 34, 1613–1620. [Google Scholar] [CrossRef]
- Fackler, K.; Gradinger, C.; Hinterstoisser, B.; Messner, K.; Schwanninger, M. Lignin Degradation by White Rot Fungi on Spruce Wood Shavings during Short-Time Solid-State Fermentations Monitored by near Infrared Spectroscopy. Enzym. Microb. Technol. 2006, 39, 1476–1483. [Google Scholar] [CrossRef]
- Pointing, S.B.; Parungao, M.M.; Hyde, K.D. Production of Wood-Decay Enzymes, Mass Loss and Lignin Solubilization in Wood by Tropical Xylariaceae. Mycol. Res. 2003, 107, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Hatakka, A. Lignin-Modifying Enzymes from Selected White-Rot Fungi: Production and Role from in Lignin Degradation. FEMS Microbiol. Rev. 1994, 13, 125–135. [Google Scholar] [CrossRef]
- Dashora, K.; Gattupalli, M.; Javed, Z.; Tripathi, G.D.; Sharma, R.; Mishra, M.; Bhargava, A.; Srivastava, S. Leveraging Multiomics Approaches for Producing Lignocellulose Degrading Enzymes. Cell. Mol. Life Sci. 2022, 79, 132. [Google Scholar] [CrossRef]
- Khlystov, N.A.; Yoshikuni, Y.; Deutsch, S.; Sattely, E.S. A Plant Host, Nicotiana Benthamiana, Enables the Production and Study of Fungal Lignin-Degrading Enzymes. Commun. Biol. 2021, 4, 1027. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Mazurkewich, S.; Pereira, C.S.; Fu, H.; Cai, W.; Shao, X.; Skaf, M.S.; Larsbrink, J.; Lo Leggio, L. Mechanism and Biomass Association of Glucuronoyl Esterase: An α/β Hydrolase with Potential in Biomass Conversion. Nat. Commun. 2022, 13, 1449. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S. Lignin Deconstruction: Chemical and Biological Approaches; Elsevier B.V.: Amsterdam, The Netherlands, 2015; ISBN 9780444595799. [Google Scholar]
- Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Parsa Yeganeh, L.; Angelidaki, I.; Nizami, A.-S.; Bhat, R.; Dashora, K.; Vijay, V.K.; Aghbashlo, M.; et al. Pretreatment of Lignocelluloses for Enhanced Biogas Production: A Review on Influencing Mechanisms and the Importance of Microbial Diversity. Renew. Sustain. Energy Rev. 2021, 135, 110173. [Google Scholar] [CrossRef]
- Abdelaziz, O.Y.; Brink, D.P.; Prothmann, J.; Ravi, K.; Sun, M.; García-Hidalgo, J.; Sandahl, M.; Hulteberg, C.P.; Turner, C.; Lidén, G.; et al. Biological Valorization of Low Molecular Weight Lignin. Biotechnol. Adv. 2016, 34, 1318–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagarika, M.S.; Parameswaran, C.; Senapati, A.; Barala, J.; Mitra, D.; Prabhukarthikeyan, S.R.; Kumar, A.; Nayak, A.K.; Panneerselvam, P. Lytic Polysaccharide Monooxygenases (LPMOs) Producing Microbes: A Novel Approach for Rapid Recycling of Agricultural Wastes. Sci. Total Environ. 2022, 806, 150451. [Google Scholar] [CrossRef]
- Baldrian, P. Fungal Laccases—Occurrence and Properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E.; Chang, M.C.Y. Exploring Bacterial Lignin Degradation. Curr. Opin. Chem. Biol. 2014, 19, 1–7. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, A.; Raj, T.; Chen, C.; Kumar, V.; Tahir, N.; Kim, S.; Dong, C. Lignin Valorisation via Enzymes : A Sustainable Approach. Fuel 2022, 311, 122608. [Google Scholar] [CrossRef]
- Eriksson, K.-E.L.; Bermek, H. Lignin, Lignocellulose, Ligninase. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 373–384. ISBN 978-0-12-373944-5. [Google Scholar]
- Bugg, T.D.H.; Rahmanpour, R. Enzymatic Conversion of Lignin into Renewable Chemicals. Curr. Opin. Chem. Biol. 2015, 29, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.F.; Amarelle, V.; Alves, L.F.; Viana de Siqueira, G.M.; Lovate, G.L.; Borelli, T.C.; Guazzaroni, M.-E. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts. Molecules 2019, 24, 2879. [Google Scholar] [CrossRef] [PubMed]
- Pour, R.R.; Ehibhatiomhan, A.; Huang, Y.; Ashley, B.; Rashid, G.M.; Mendel-Williams, S.; Bugg, T.D.H. Protein Engineering of Pseudomonas Fluorescens Peroxidase Dyp1B for Oxidation of Phenolic and Polymeric Lignin Substrates. Enzyme Microb. Technol. 2019, 123, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugg, T.D.H.; Williamson, J.J.; Rashid, G.M.M. Bacterial Enzymes for Lignin Depolymerisation: New Biocatalysts for Generation of Renewable Chemicals from Biomass. Curr. Opin. Chem. Biol. 2020, 55, 26–33. [Google Scholar] [CrossRef]
- Li, M.; Wilkins, M. Lignin Bioconversion into Valuable Products: Fractionation, Depolymerization, Aromatic Compound Conversion, and Bioproduct Formation. Syst. Microbiol. Biomanuf. 2021, 1, 166–185. [Google Scholar] [CrossRef]
- Liu, E.; Segato, F.; Prade, R.A.; Wilkins, M.R. Exploring Lignin Depolymerization by a Bi-Enzyme System Containing Aryl Alcohol Oxidase and Lignin Peroxidase in Aqueous Biocompatible Ionic Liquids. Bioresour. Technol. 2021, 338, 125564. [Google Scholar] [CrossRef] [PubMed]
- Goodell, B.; Qian, Y.; Jellison, J. Fungal Decay of Wood: Soft Rot—Brown Rot—White Rot; ACS Publications: Washington, DC, USA, 2008; ISBN 1947-5918. [Google Scholar]
- Aarti, C.; Arasu, M.V.; Agastian, P. Lignin Degradation: A Microbial Approach. Indian J. Biol. Sci. 2015, 1, 119–127. [Google Scholar]
- Radhika, N.L.; Sachdeva, S.; Kumar, M. Lignin Depolymerization and Biotransformation to Industrially Important Chemicals/Biofuels. Fuel 2022, 312, 122935. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Le, R.K.; Kosa, M.; Yang, B.; Yuan, J.; Ragauskas, A.J. Identifying and Creating Pathways to Improve Biological Lignin Valorization. Renew. Sustain. Energy Rev. 2019, 105, 349–362. [Google Scholar] [CrossRef]
- Del Cerro, C.; Erickson, E.; Dong, T.; Wong, A.R.; Eder, E.K.; Purvine, S.O.; Mitchell, H.D.; Weitz, K.K.; Markillie, L.M.; Burnet, M.C. Intracellular Pathways for Lignin Catabolism in White-Rot Fungi. Proc. Natl. Acad. Sci. USA 2021, 118, e2017381118. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Yuan, B.; Guo, H.; Tian, H.; Wang, W.; Ma, Y.; Li, C.; Fei, Q. Enhanced Lignin Biodegradation by Consortium of White Rot Fungi: Microbial Synergistic Effects and Product Mapping. Biotechnol. Biofuels 2021, 14, 162. [Google Scholar] [CrossRef]
- Benavides, V.; Pinto-Ibieta, F.; Serrano, A.; Rubilar, O.; Ciudad, G. Use of Anthracophyllum Discolor and Stereum Hirsutum as a Suitable Strategy for Delignification and Phenolic Removal of Olive Mill Solid Waste. Foods 2022, 11, 1587. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Ruan, Z. Production of a Lignocellulolytic Enzyme System for Simultaneous Bio-Delignification and Saccharification of Corn Stover Employing Co-Culture of Fungi. Bioresour. Technol. 2015, 175, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Meehnian, H.; Jana, A.K.; Jana, M.M. Pretreatment of Cotton Stalks by Synergistic Interaction of Daedalea Flavida and Phlebia Radiata in Co-Culture for Improvement in Delignification and Saccharification. Int. Biodeterior. Biodegrad. 2017, 117, 68–77. [Google Scholar] [CrossRef]
- Luo, R.; Liao, Q.; Xia, A.; Deng, Z.; Huang, Y.; Zhu, X.; Zhu, X. Synergistic Treatment of Alkali Lignin via Fungal Coculture for Biofuel Production: Comparison of Physicochemical Properties and Adsorption of Enzymes Used as Catalysts. Front. Energy Res. 2020, 8, 575371. [Google Scholar] [CrossRef]
- Chen, K.-J.; Tang, J.-C.; Xu, B.-H.; Lan, S.-L.; Cao, Y. Degradation Enhancement of Rice Straw by Co-Culture of Phanerochaete Chrysosporium and Trichoderma Viride. Sci. Rep. 2019, 9, 19708. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yuan, T.; Cui, B. Biological Pretreatment with White Rot Fungi and Their Co-Culture to Overcome Lignocellulosic Recalcitrance for Improved Enzymatic Digestion. BioResources 2014, 9, 3968–3976. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Xu, R.; Abomohra, A.E.-F.; Xie, S.; Yu, Z.; Guo, Q.; Liu, P.; Peng, L.; Li, X. A Sustainable Approach for Efficient Conversion of Lignin into Biodiesel Accompanied by Biological Pretreatment of Corn Straw. Energy Convers. Manag. 2019, 199, 111928. [Google Scholar] [CrossRef]
- Nandal, P.; Arora, A.; Virmani, S. An Appraisal on Valorization of Lignin: A Byproduct from Biorefineries and Paper Industries. Biomass Bioenergy 2021, 155, 106295. [Google Scholar] [CrossRef]
- Sonoki, T.; Takahashi, K.; Sugita, H.; Hatamura, M.; Azuma, Y.; Sato, T.; Suzuki, S.; Kamimura, N.; Masai, E. Glucose-Free Cis, Cis-Muconic Acid Production via New Metabolic Designs Corresponding to the Heterogeneity of Lignin. ACS Sustain. Chem. Eng. 2018, 6, 1256–1264. [Google Scholar] [CrossRef]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.T. Lignin Degradation by Microorganisms: A Review. Biotechnol. Prog. 2022, 38, e3226. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.; Immethun, C.; Alsiyabi, A.; Long, D.; Wilkins, M.; Saha, R. Heterologous Phasin Expression in Rhodopseudomonas Palustris CGA009 for Bioplastic Production from Lignocellulosic Biomass. Metab. Eng. Commun. 2022, 14, e00191. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Kaur, A.; Saini, J.K.; Patel, A.K.; Varjani, S.; Chen, C.-W.; Singhania, R.R.; Dong, C.-D. Trends in Lignin Biotransformations for Bio-Based Products and Energy Applications. BioEnergy Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Dos Santos, A.C.S.; Henrique, H.M.; Cardoso, V.L.; Reis, M.H.M. Slow Release Fertilizer Prepared with Lignin and Poly (Vinyl Acetate) Bioblend. Int. J. Biol. Macromol. 2021, 185, 543–550. [Google Scholar] [CrossRef]
- Sharma, V.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Sun, P.-P.; Singhania, R.R.; Patel, A.K.; Dong, C.-D. Journey of Lignin from a Roadblock to Bridge for Lignocellulose Biorefineries: A Comprehensive Review. Sci. Total Environ. 2022, 160560. [Google Scholar] [CrossRef]
- Zhou, N.; Thilakarathna, W.; He, Q.S.; Rupasinghe, H.P. A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects. Front. Energy Res. 2022, 9, 758744. [Google Scholar] [CrossRef]
- Chan, J.C.; Paice, M.; Zhang, X. Enzymatic Oxidation of Lignin: Challenges and Barriers toward Practical Applications. ChemCatChem 2020, 12, 401–425. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y. Biotransformation of Lignin: Mechanisms, Applications and Future Work. Biotechnol. Prog. 2020, 36, e2922. [Google Scholar] [CrossRef]
- Chukwuma, O.B.; Rafatullah, M.; Tajarudin, H.A.; Ismail, N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. Int. J. Environ. Res. Public Health 2021, 18, 6001. [Google Scholar] [CrossRef]
- López-Mondéjar, R.; Algora, C.; Baldrian, P. Lignocellulolytic Systems of Soil Bacteria: A Vast and Diverse Toolbox for Biotechnological Conversion Processes. Biotechnol. Adv. 2019, 37, 107374. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Mishra, J.; Arora, N.; Mishra, P.; Li, H.; Bhatti, S.; Zhou, S. Microbial Cellulolytic Enzymes: Diversity and Biotechnology with Reference to Lignocellulosic Biomass Degradation. Rev. Environ. Sci. Bio/Technol. 2020, 19, 621–648. [Google Scholar] [CrossRef]
- Davis, K.; Moon, T.S. Tailoring Microbes to Upgrade Lignin. Curr. Opin. Chem. Biol. 2020, 59, 23–29. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.R. Enzyme Technology in Food Preservation: A Promising and Sustainable Strategy for Biocontrol of Post-Harvest Fungal Pathogens. Food Chem. 2019, 277, 531–532. [Google Scholar] [CrossRef]
S. No | Type of Bacteria | Name of the Bacteria | References |
---|---|---|---|
1 | Actinomycetes | Streptomyces viridosporus | [6,7,8,9] |
paucinobilis | |||
Rhodococcus jostii | |||
2 | α-proteobacteria | Brucella sp., | [10,11,12] |
Ochrobactrum sp., | |||
Sphingobium sp., | |||
Sphingomonas sp., | |||
3 | γ-proteobacteria | Pseudomonas fluorescens | |
putida | |||
Enterobacter lignolyticus | |||
Escherichia coli |
Pretreatment | Name of the Pretreatment | Advantages |
---|---|---|
Biological | Microbial | Consumption of cellulose and helicellulose No inhibitory compound formation, Low energy consumption. |
Enzymes | Alteration of cellulose structure, Delignification, Partial hydrolysis of hemicellulose, Fast process, Low energy demand |
Name of the Fungi | Percentage of Lignin Degradation | References |
---|---|---|
Phanerochaete chrysosporium | 30 and 34.3 | [47,48] |
Trametes versicolor | 22 | [49] |
Pleurotus ostreatus | 41 | [50] |
Phlebia sp. MG-60 | 40.7 | [51] |
Pleurotus eryngii | 63 and 75 | [52] |
Lentinula edode LE16 | 87.6 | [53] |
Gloeophyllum trabeum | 16 | [54] |
Ceriporiopsis subvermispora | 22 | [55] |
Galactomyces geotrichum | 48 | [56] |
Polyporus ostreiformis | 18.6 | [57] |
Dichomytus squalens | 34.1 | [58] |
Phlebia sp. MG-60 | 40.7 | [51] |
Fomitopsis pinicola | 32.4 | [58] |
Fusarium sp. 89, Fusarium moniliforme | 33.5, 34.7 | [59] |
Name of the White Rot Fungi | Name of the Enzymes | References |
---|---|---|
Artemisia biennis | Laccase, Manganese peroxidase | [63] |
Hypoxylon fragiforme | Lignin peroxidase, Manganese peroxidase | [64,65] |
Bjerkandera adusta | Laccase, lignin peroxidase, Manganese peroxidase, Aryl alcohol oxidase | [63] |
Oxyporus latemarginatus | Lignin peroxidase, Manganese peroxidase | [64] |
Dichomitus squalens | Laccase, Manganese peroxidase | [63,66] |
Phanerochaete sordida | Manganese peroxidase | [63] |
Phlebia. radiata | Laccase, lignin peroxidase, Manganese peroxidase, Glyoxyl oxidase | [63,64,66] |
Phlebia brevispora | Laccase, lignin peroxidase, Manganese peroxidase. | [64,66] |
Pleurotus ostreatus | Laccase, Manganese peroxidase, Aryl alcohol oxidase | [63] |
Phlebia tremellosa | Laccase, lignin peroxidase, Manganese peroxidase. | [64,66] |
Trametes hirsuta | Laccase, Manganese peroxidase | [63] |
Ceriporiopsis subvermispora | Laccase, Manganese peroxidase | [64,66] |
Trametes versicolor | Laccase, lignin peroxidase, Manganese peroxidase, Aryl alcohol oxidase. | [63] |
Dual Culture or Consortium | Lignin Degradation Percentage | References |
---|---|---|
Anthracophyllum discolor + Stereum hirsutum | 94.1 | [90] |
Lenzites betulina + Trametes versicolor | More than 40 % enhancement than monoculture | [89] |
Coprinus comatus + Trichoderma reesei | 66.5 | [91] |
Daedalea flavida MTCC 145 + Phlebia radiata MTCC 2791 | 36.29 | [92] |
Phanerochaete chrysosporium + Irpex lacteus CD2 | 26.4 | [93] |
Phanerochaete chrysosporium +Trichoderma viride | 26.38 | [94] |
Lenzites betulinus+Trametes Orientalis + Trametes Velutina | 58 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashora, K.; Gattupalli, M.; Tripathi, G.D.; Javed, Z.; Singh, S.; Tuohy, M.; Sarangi, P.K.; Diwan, D.; Singh, H.B.; Gupta, V.K. Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives. Catalysts 2023, 13, 149. https://doi.org/10.3390/catal13010149
Dashora K, Gattupalli M, Tripathi GD, Javed Z, Singh S, Tuohy M, Sarangi PK, Diwan D, Singh HB, Gupta VK. Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives. Catalysts. 2023; 13(1):149. https://doi.org/10.3390/catal13010149
Chicago/Turabian StyleDashora, Kavya, Meghana Gattupalli, Gyan Datta Tripathi, Zoya Javed, Shweta Singh, Maria Tuohy, Prakash Kumar Sarangi, Deepti Diwan, Harikesh B. Singh, and Vijai Kumar Gupta. 2023. "Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives" Catalysts 13, no. 1: 149. https://doi.org/10.3390/catal13010149
APA StyleDashora, K., Gattupalli, M., Tripathi, G. D., Javed, Z., Singh, S., Tuohy, M., Sarangi, P. K., Diwan, D., Singh, H. B., & Gupta, V. K. (2023). Fungal Assisted Valorisation of Polymeric Lignin: Mechanism, Enzymes and Perspectives. Catalysts, 13(1), 149. https://doi.org/10.3390/catal13010149