Removal Efficiency and Performance Optimization of Organic Pollutants in Wastewater Using New Biochar Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Specific Surface Area Analysis of BC Composites
2.2. Diffraction Results and Morphological Structure of New Biocarbon Composites
2.3. Evaluation of TC Removal Effect of BC Composite
2.4. Effect of TC Concentration on Properties of BC Composites
2.5. Effects of Different pH Environments on the Properties of BC Composites
2.6. TC Removal Mechanism of BC Composites
2.7. Comparison of Cu(II) Adsorption Capacity of BC Composites
3. Materials and Methods
3.1. Preparation Process of BC
3.2. Experimental Design
3.3. Adsorption Kinetic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, M.; Liu, Z.; Sun, K.; Li, Z.; Fan, X.; Li, Q. Bacteriophages in water pollution control: Advantages and limitations. Front. Environ. Sci. Eng. 2020, 15, 84. [Google Scholar] [CrossRef]
- Giorcelli, M.; Bartoli, M.; Sanginario, A.; Padovano, E.; Rosso, C.; Rovere, M.; Tagliaferro, A. High-Temperature Annealed Biochar as a Conductive Filler for the Production of Piezoresistive Materials for Energy Conversion Application. ACS Appl. Electron. Mater. 2021, 3, 838–844. [Google Scholar] [CrossRef]
- Pan, D.; Tang, J. The effects of heterogeneous environmental regulations on water pollution control: Quasi-natural experimental evidence from China. Sci. Total. Environ. 2021, 751, 141550. [Google Scholar] [CrossRef]
- Lu, Q.; Dai, L.; Li, L.; Huang, H.; Zhu, W. Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control. J. Environ. 2021, 9, 105397. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Ge, J. Dynamic game in agriculture and industry cross-sectoral water pollution governance in developing countries. Agric. Water Manag. 2021, 243, 106417. [Google Scholar] [CrossRef]
- Del Grosso, M.; Cutz, L.; Tiringer, U.; Tsekos, C.; Taheri, P.; de Jong, W. Influence of indirectly heated steam-blown gasification process conditions on biochar physico-chemical properties. Fuel Process. Technol. 2022, 235, 107347. [Google Scholar] [CrossRef]
- Hota, S.K.; Diaz, G. Assessment of Pyrolytic Biochar as a Solar Absorber Material for Cost-Effective Water Evaporation Enhancement. Environ. Eng. Sci. 2021, 38, 1120–1128. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Li, T.; Kong, J.; Shen, Y.; Chang, L.; Xie, W.; Bao, W. Catalytic Upgrading of Coal Pyrolysis Volatiles by Porous Carbon Materials Derived from the Blend of Biochar and Coal. ACS Omega 2021, 6, 3800–3808. [Google Scholar] [CrossRef]
- McKenna, A.M.; Chacón-Patiño, M.L.; Chen, H.; Blakney, G.T.; Mentink-Vigier, F.; Young, R.B.; Ippolito, J.A.; Borch, T. Expanding the Analytical Window for Biochar Speciation: Molecular Comparison of Solvent Extraction and Water-Soluble Fractions of Biochar by FT-ICR Mass Spectrometry. Anal. Chem. 2021, 93, 15365–15372. [Google Scholar] [CrossRef]
- Pan, X.; Gu, Z.; Chen, W.; Li, Q. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review. Sci. Total. Environ. 2020, 754, 142104. [Google Scholar] [CrossRef]
- Cao, L.; Ding, Q.; Liu, M.; Lin, H.; Yang, D.P. Biochar-supported Cu2+/Cu+ composite as an electrochemical ultrasensitive interface for ractopamine detection. ACS Appl. Bio Mater. 2021, 4, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ding, Y.; Li, Y.; Han, X.; Xing, B.; Wang, S. Nitrogen and Sulfur Co-doped Hierarchical Porous Biochar Derived from the Pyrolysis of Mantis Shrimp Shell for Supercapacitor Electrodes. Energy Fuels 2021, 35, 1557–1566. [Google Scholar] [CrossRef]
- Lu, Y.; Hussein, A.; Lauzon-Gauthier, J.; Ollevier, T.; Alamdari, H. Biochar as an Additive to Modify Biopitch Binder for Carbon Anodes. ACS Sustain. Chem. Eng. 2021, 9, 12406–12414. [Google Scholar] [CrossRef]
- Zhang, D.; Tong, Z.; Zheng, W. Does designed financial regulation policy work efficiently in pollution control? Evidence from manufacturing sector in China. J. Clean. Prod. 2021, 289, 125611. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Adhikari, S.; Ma, H.; Kim, D.-H.; Bai, Y.; Hou, D. Progress and future prospects in biochar composites: Application and reflection in the soil environment. Crit. Rev. Environ. Sci. Technol. 2020, 51, 219–271. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights. Chin. J. Catal. 2022, 43, 2652–2664. [Google Scholar] [CrossRef]
- Fu, Y.; Tan, M.; Guo, Z.; Hao, D.; Xu, Y.; Du, H.; Zhang, C.; Guo, J.; Li, Q.; Wang, Q. Fabrication of wide-spectra-responsive NA/NH2-MIL-125(Ti) with boosted activity for Cr(VI) reduction and antibacterial effects. Chem. Eng. J. 2023, 452, 139417. [Google Scholar] [CrossRef]
- Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 2023, 304, 122401. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, H.; Wang, Y.; Peng, C.; Dai, J. Chinese industrial water pollution and the prevention trends: An assessment based on environmental complaint reporting system (ECRS). Alex. Eng. J. 2021, 60, 5803–5812. [Google Scholar] [CrossRef]
- Bukhari, Q.U.A.; Silveri, F.; Della Pelle, F.; Scroccarello, A.; Zappi, D.; Cozzoni, E.; Compagnone, D. Water-Phase Exfoliated Biochar Nanofibers from Eucalyptus Scraps for Electrode Modification and Conductive Film Fabrication. ACS Sustain. Chem. Eng. 2021, 9, 13988–13998. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, D.; Qiu, S.; He, Q.; Luo, Y.; Zhang, K.; Shen, S.; Wang, F. Adsorption of Phosphate in Aqueous Phase by Biochar Prepared from Sheep Manure and Modified by Oyster Shells. ACS Omega 2021, 6, 33046–33056. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and Modification of Biochar Materials and their Application in Soil Remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Eltaweil, A.; Mohamed, H.A.; El-Monaem, E.M.A.; El-Subruiti, G. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 2020, 31, 1253–1263. [Google Scholar] [CrossRef]
- Khan, Z.H.; Gao, M.; Qiu, W.; Islam, M.S.; Song, Z. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere 2020, 246, 125701. [Google Scholar] [CrossRef] [PubMed]
Performance Testing | BC/ZVI | BC | ZVI |
---|---|---|---|
The specific surface area (m2/g) | 52.05 | - | 33.11 |
The specific surface area of other methods (m2/g) | 39.75 | - | - |
Carbonization Temperature (°C) | Heating Rate (°C/min) | Retention Time (h) | Qe (mg/g) |
---|---|---|---|
A: 500 | 10 | 4 | 16.82 |
A: 600 | 10 | 4 | 17.71 |
A: 700 | 10 | 4 | 19.79 |
A: 700 | 10 | 3 | 19.59 |
A: 700 | 10 | 2 | 18.82 |
A: 700 | 20 | 4 | 18.03 |
A: 700 | 5 | 4 | 18.52 |
B: 700 | 10 | 4 | 19.02 |
Sample | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm (mg/g) | PL (L/mg) | R2 | 1/n | PF (mg/g) | R2 | |
ZVI | 19.28 | 2.0145 | 0.9999 | 0.0159 | 17.7281 | 0.9708 |
BC/ZVI | 33.45 | 0.0997 | 0.9995 | 0.1172 | 17.0025 | 0.9812 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zong, S.; Ma, H.; Wan, B.; Tian, Q. Removal Efficiency and Performance Optimization of Organic Pollutants in Wastewater Using New Biochar Composites. Catalysts 2023, 13, 184. https://doi.org/10.3390/catal13010184
Wang G, Zong S, Ma H, Wan B, Tian Q. Removal Efficiency and Performance Optimization of Organic Pollutants in Wastewater Using New Biochar Composites. Catalysts. 2023; 13(1):184. https://doi.org/10.3390/catal13010184
Chicago/Turabian StyleWang, Guodong, Shirong Zong, Hang Ma, Banglong Wan, and Qiang Tian. 2023. "Removal Efficiency and Performance Optimization of Organic Pollutants in Wastewater Using New Biochar Composites" Catalysts 13, no. 1: 184. https://doi.org/10.3390/catal13010184
APA StyleWang, G., Zong, S., Ma, H., Wan, B., & Tian, Q. (2023). Removal Efficiency and Performance Optimization of Organic Pollutants in Wastewater Using New Biochar Composites. Catalysts, 13(1), 184. https://doi.org/10.3390/catal13010184