Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review
Abstract
:1. Introduction
2. Spent LIBs for Catalysts Preparation
2.1. LIBs Components
2.2. Catalysts Preparation
3. Application in Catalytic Decontamination
3.1. Persulfate/Sulfite-Based AOPs
3.2. Fenton-Like AOPs
3.3. Thermocatalysis
3.4. Photocatalysis
4. Key Factors Influencing Catalytic Activity
4.1. Initial Solution pH
4.2. Reaction Temperature
4.3. Coexisting Anions
4.4. Catalyst Dosage
4.5. Possible Problems in Practical Decontamination
5. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jung, J.C.; Sui, P.; Zhang, J.J. A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. J. Energy Storage 2021, 35, 102217. [Google Scholar] [CrossRef]
- Liu, J.J.; Shi, H.; Hu, X.; Geng, Y.N.; Yang, L.M.; Shao, P.H.; Luo, X.B. Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review. Sci. Total. Environ. 2022, 816, 151621. [Google Scholar] [CrossRef] [PubMed]
- Makuza, B.; Tian, Q.H.; Guo, X.Y.; Chattopadhyay, K.; Yu, D.Y. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2021, 491, 229622. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yuan, X.Z.; Jiang, L.B.; Wen, J.; Wang, H.; Guan, R.P.; Zhang, J.J.; Zeng, G.M. Regeneration and reutilization of cathode materials from spent lithium-ion batteries. Chem. Eng. J. 2021, 383, 123089. [Google Scholar] [CrossRef]
- Zhang, H.X.; Song, Y.Y.; Nengzi, L.C.; Gou, J.F.; Li, B.; Cheng, X.W. Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3 composite for lomefloxacin degradation. Chem. Eng. J. 2020, 379, 122362. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Zhang, X.; Cui, X.; He, S.; Liang, H.; Ding, A. Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate. Chem. Eng. J. 2020, 384, 123319. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.S.; Zhang, Y.; Yu, J.Y.; Yuan, M.; Ma, Y.Q. Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride: Performance and practical application. Appl. Catal. B 2017, 219, 194–199. [Google Scholar] [CrossRef]
- Guan, K.; Zhou, P.J.; Zhang, J.Y.; Zhu, L.L. Synthesis and characterization of ZnO@RSDBC composites and their Photo-Oxidative degradation of Acid Orange 7 in water. J. Mol. Struct. 2020, 1203, 127425. [Google Scholar] [CrossRef]
- Osegueda, O.; Dafinov, A.; Llorca, J.; Medina, F.; Sueiras, J. Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chem. Eng. J. 2015, 262, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Zhou, P.J.; Zhang, J.Y.; Zhu, L.L. Catalytic degradation of acid orange 7 in water by persulfate activated with CuFe2O4@RSDBC. Mater. Res. Express. 2020, 7, 016529. [Google Scholar] [CrossRef]
- Akerdi, A.G.; Bahrami, S.H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review. J. Environ. Chem. Eng. 2019, 7, 103283. [Google Scholar] [CrossRef]
- Hu, P.D.; Long, M.C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and application. Appl. Catal. B 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Yang, S.J.; Yuan, Y.N.; Xu, J.; Zhu, Y.F.; Li, J.J.; Wu, F. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface. J. Hazard. Mater. 2016, 10, 18183. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Lu, T.; Huang, S.Q.; Li, G.B.; Wang, J.; Kong, F.; Cheng, Q.L.; Zhang, Y.H. Recovery of cobalt spent lithium-ion batteries as the dopant of TiO2 photocatalysts for boosting ciprofloxacin degradation. J. Clean. Prod. 2021, 316, 128279. [Google Scholar] [CrossRef]
- Min, X.; Guo, M.M.; Liu, L.Z.; Li, L.; Gu, J.N.; Liang, J.X.; Chen, C.; Li, K.; Jia, J.P.; Sun, T.H. Synthesis of MnO2 derived from spent lithium-ion batteries via advanced oxidation and its application in VOCs oxidation. J. Hazard. Mater. 2021, 406, 124743. [Google Scholar] [CrossRef]
- Jacoby, M. It’s time to get serious about recycling lithium-ion batteries. Chem. Eng. News. 2019, 97, 28. [Google Scholar]
- Golubkov, A.; Fuchs, W.D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 2014, 4, 3633. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Dong, P.; Duan, J.; Wang, D.; Huang, X.; Zhang, Y. Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping. Ceram. Int. 2019. 45, 11792–11801. [CrossRef]
- Ji, J.; Aleisa, R.; Duan, H.; Zhang, J.; Yin, Y.; Xing, M. Metallic active sites on MoO2 (110) surface to catalyze advanced oxidation processes for efficient pollutant removal. Iscience 2020, 23, 100861. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Zhou, L.; Wu, X.; Sun, W.; Yi, L.; Yang, Y. Technology for recycling and regenerating graphite from spent lithium-ion batteries. Chin. J. Chem. Eng. 2021, 39, 37–50. [Google Scholar] [CrossRef]
- Moradi, B.; Botte, G.G. Recycling of graphite anodes for the next generation of lith-ium ion batteries. J. Appl. Electrochem. 2016, 46, 123–148. [Google Scholar] [CrossRef]
- Moura, M.N.; Barrada, R.V.; Almeida, J.R.; Moreira, T.F.M.; Schettino, M.A.; Freitas, J.C.C.; Ferreira, S.A.D.; Lelis, M.F.F.; Freitas, M.B.J.G. Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries. Chemosphere 2017, 182, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Guo, M.M.; Li, K.; Gu, J.; Hu, X.F.; Jia, J.P.; Sun, T.H. Boosting the VOCs purification over high-performance α-MnO2 separated from spent lithium-ion battery: Synergistic effect of metal doping and acid treatment. Sep. Purif. Technol. 2022, 295, 121316. [Google Scholar] [CrossRef]
- Wang, P.; Lou, X.Y.; Sun, X.H.; Chen, Q.Q.; Liu, Y.J.; Guo, Y.G.; Zhang, X.J.; Guan, J.; Wang, R.X.; Zhang, R.; et al. Spent rather than pristine LiFePO4 cathode materials can catalytically activate sulfite for organic pollutants decontamination. Chem. Eng. J. 2022, 446, 137123. [Google Scholar] [CrossRef]
- Yue, X.H.; Zhang, F.S. Recycling spent LiFePO4 battery for fabricating visible-light photocatalyst with adsorption-photocatalytic synergistic performance and simultaneous recovery of lithium and phosphorus. Chem. Eng. J. 2022, 450, 138388. [Google Scholar] [CrossRef]
- Golmohammadzadeh, R.; Faraji, F.; Rashchi, F. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resour. Conserv. Recy. 2018, 136, 418–435. [Google Scholar] [CrossRef]
- Xu, B.; Qian, D.; Wang, Z.Y.; Meng, Y.S. Recent progress in cathode materials research for advanced lithium ion batteries. Mat. Sci. Eng. R. 2012, 73, 51–65. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Xu, Z. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environ. Sci. Technol. 2020, 54, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, P. Recycling waste batteries: Recovery of valuable resources or reutilization as functional materials. ACS Sustain. Chem. Eng. 2018, 6, 11176–11185. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Fan, E.; Xue, O.; Bian, Y.; Wu, F.; Chen, R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem. Soc. Rev. 2018, 47, 7239–7302. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.C.; Zhang, T.; Zhang, M.D. Advances in intelligent regeneration of cathode materials for sustainable lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2201526. [Google Scholar] [CrossRef]
- Shen, Y.F. Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production. J. Power Sources 2022, 528, 231220. [Google Scholar] [CrossRef]
- Niu, B.; Xiao, J.F.; Xu, Z.M. Advances and challenges in anode graphite recycling from spent lithium-ion batteries. J. Hazard. Mater. 2022, 439, 129678. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; Barbosa, J.C.; Goncalves, R.; Castro, H.; Del Campo, F.J.; Lanceros-Méndez, S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energy Storage Mater. 2021, 37, 433–465. [Google Scholar] [CrossRef]
- Tian, G.D.; Yuan, G.; Aleksandrov, A.; Zhang, T.; Li, Z.W.; Fathollahi-Fard, A.M.; Ivanov, M. Recycling of spent lithium-ion batteries: A comprehensive review for identification of main challenges and future research trends. Sustain. Energy Technol. 2022, 53, 102447. [Google Scholar] [CrossRef]
- Du, K.D.; Wu, X.L.; Liu, Y.C. Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ. Mater. 2022, 5, 1012–1036. [Google Scholar] [CrossRef]
- Leal, V.M.; Ribeiro, J.S.; Coelho, E.L.D.; Freitas, M.B.J.G. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. J. Energy Chem. 2022, in press. [CrossRef]
- Gaines, L.; Spangenberger, J.; Dai, Q. Lithium-ion battery recycling process comparison. Meet. Abstr. 2018, 5, 605. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J.F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2019, 2, 148–156. [Google Scholar] [CrossRef]
- Birkl, C.R.; Roberts, M.R.; McTurk, E.; Bruce, P.G.; Howey, D.A. Degradation diagnostics for lithium-ion cells. J. Power Sources 2017, 341, 373–386. [Google Scholar] [CrossRef]
- Wang, Y.; An, N.; Wen, L.; Wang, X.; Jiang, F.; Hou, Y.; Yin, Y.; Jiang, J. Recent progress on the recycling technology of Li-ion batteries. J. Energy Chem. 2021, 55, 391–419. [Google Scholar] [CrossRef]
- Meshram, P.; Pandey, B.D.; Mankhand, T.R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy 2014, 150, 192–208. [Google Scholar] [CrossRef]
- Bell, A.T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.C.A.; Garcia, E.M.; Taroco, H.A.; Gorgulho, H.F.; Melo, J.O.; Silva, R.R.; Souza, A.G. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation. Waste Manag. 2015, 40, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lou, X.Y.; Chen, Q.Q.; Liu, Y.J.; Sun, X.H.; Guo, Y.G.; Zhang, X.J.; Wang, R.X.; Wang, Z.H.; Chen, S.; et al. Spent LiFePO4: An old but vigorous peroxymonosulfate activator for degradation of organic pollutants in water. Environ. Res. 2022, 214, 113780. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, G.; Xu, Z. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Manag. 2016, 52, 221–227. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Liu, L.; Li, J. A low-toxicity and high efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries. J. Hazard. Mater. 2019, 380, 120846. [Google Scholar] [CrossRef]
- Li, B.; Ma, B.; Wei, M.Y.; Li, Y.; Fan, X.B.; Zhang, F.B.; Zhang, G.L.; Xia, Q.; Peng, W.C. Synthesis of Co-NC catalysts from spent lithium-ion batteries for Fenton-like reaction: Generation of singlet oxygen with 100% selectivity. Carbon 2022, 197, 76–86. [Google Scholar] [CrossRef]
- Xiao, J.F.; Niu, B.; Xu, Z.M. Ammonia reduction system for the diversity of cathode processing of Li-ion batteries. ACS Sustain. Chem. Eng. 2021, 9, 12091–12099. [Google Scholar] [CrossRef]
- Dang, S.; Hou, W.; Min, Y.L.; Wu, J.F.; Xua, Q.J.; Shi, P.H. Electro-oxidation: A win-win strategy for the selective recovery of Li from spent lithium-ion batteries and the preparation of highly active catalysts. Chem. Eng. J. 2022, 435, 1335169. [Google Scholar] [CrossRef]
- Lin, X.M.; Ma, Y.M.; Wang, Y.; Wan, J.Q.; Guan, Z.Y. Lithium iron phosphate (LiFePO4) as an effective activator for degradation of organic dyes in water in the presence of persulfate. RSC Adv. 2015, 5, 94694. [Google Scholar] [CrossRef]
- Garcia, E.; Teixeira, H.T. Fast electrochemical method for organic dye decolorization using recycled Li-ion batteries. Recycling 2018, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, W.; Zhou, H.; Yi, X.L.; Bao, Y.M. Highly reactive bulk lattice oxygen exposed by simple water treatment of LiCoO2 for catalytic oxidation of airborne benzene. Mol. Catal. 2020, 492, 111003. [Google Scholar] [CrossRef]
- Chen, X.; Deng, F.; Liu, X.; Cui, K.P.; Weerasooriya, R. Hydrothermal synthesis of MnO2/Fe(0)composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process. Sci. Total. Environ. 2021, 774, 145776. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011, 186, 256–264. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Gao, J.H.; Zhang, Q.; Liu, Z.Y.; Fu, M.L.; Wu, J.L.; Hu, Y.; Ye, D.Q. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chem. Eng. J. 2019, 371, 78–87. [Google Scholar] [CrossRef]
- Li, X.T.; Ma, J.Z.; Yang, L.; He, G.Z.; Zhang, C.B.; Zhang, R.D.; He, H. Oxygen vacancies induced by transition metal doping in gamma-MnO2 for highly efficient ozone decomposition. Environ. Sci. Technol. 2018, 19, 12685–12696. [Google Scholar] [CrossRef]
- Li, G.; He, K.; Zhang, F.L.; Jiang, G.X.; Zhao, Z.Y.; Zhang, Z.S.; Cheng, S.; Hao, Z.P. Defect enhanced CoMnNiOx catalysts derived from spent ternary lithium-ion batteries for low-temperature propane oxidation. Appl. Catal. B-Environ. 2022, 309, 121231. [Google Scholar] [CrossRef]
- Dang, S.; Zhou, P.S.; Shi, P.H.; Min, Y.L.; Xu, Q.J. In situ aluminothermic reduction induced by mechanochemical activation enhances the ability of the spent LiCoO2 cathode to activate peroxymonosulfate. ACS Sustain. Chem. Eng. 2021, 9, 15375–15385. [Google Scholar] [CrossRef]
- Bao, Y.; Lim, T.T.; Goei, R.; Zhong, Z.; Wang, R.; Hu, X. One-step construction of heterostructured metal-organics@Bi2O3 with improved photo induced charge transfer and enhanced activity in photocatalytic degradation of sulfamethoxazole under solar light irradiation. Chemosphere 2018, 205, 396–403. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Stadler, F.J. Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J. 2018, 334, 462–478. [Google Scholar] [CrossRef]
- Kumar, A.; Kumaric, A.; Sharma, G.; Naushad, M.; Ahamad, T.; Stadlera, F. Utilizing recycled LiFePO4 from batteries in combination with B@C3N4 and CuFe2O4 as sustainable nano-junctions for high performance degradation of atenolol. Chemosphere 2018, 209, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Xiao, J.F.; Xu, Z.M. Utilizing spent Li-ion batteries to regulate the π-conjugated structure of g-C3N4: A win-win approach for waste recycling and highly active photocatalyst construction. J. Mater. Chem. A 2021, 9, 472–481. [Google Scholar] [CrossRef]
- Dunn, J.B.; Gaines, L.; Sullivan, J.; Wang, M.Q. The impact of recycling on cradle to gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ. Sci. Technol. 2012, 46, 12704–12710. [Google Scholar] [CrossRef]
- Zhu, S.J.; Xu, Y.P.; Zhu, Z.G.; Liu, Z.Q.; Wang, W. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chem. Eng. J. 2020, 384, 123298. [Google Scholar] [CrossRef]
- Guo, H.; Min, Z.J.; Hao, Y.; Wang, X.; Fan, J.C.; Shi, P.H.; Min, Y.L.; Xu, Q.J. Sustainable recycling of LiCoO2 cathode scrap on the basis of successive peroxymonosulfate activation and recovery of valuable metals. Sci. Total. Environ. 2021, 759, 143478. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yuan, X.Z.; Jiang, L.B.; Li, X.D.; Zhang, J.J.; Wang, H. Reutilization of cathode material from spent batteries as a heterogeneous catalyst to remove antibiotics in wastewater via peroxymonosulfate activation. Chem. Eng. J. 2020, 400, 125903. [Google Scholar] [CrossRef]
- Pi, Y.Q.; Gao, H.Q.; Cao, Y.D.; Cao, R.L.; Wang, Y.B.; Sun, J.H. Cobalt ferrite supported on carbon nitride matrix prepared using waste battery materials as a perxoymonosulfate activator for the degradation of levofloxacin hydrochloride. Chem. Eng. J. 2020, 379, 122377. [Google Scholar] [CrossRef]
- Liang, J.X.; Xue, Y.X.; Gu, J.N.; Li, J.D.; Shi, F.; Guo, X.; Guo, M.M.; Min, X.; Li, K.; Sun, T.H.; et al. Sustainably recycling spent lithium-ion batteries to prepare magnetically separable cobalt ferrite for catalytic degradation of bisphenol A via peroxymonosulfate activation. J. Hazard. Mater. 2022, 427, 127910. [Google Scholar] [CrossRef]
- Liang, J.X.; Guo, M.M.; Xue, Y.X.; Gu, J.N.; Li, J.D.; Shi, F.; Guo, X.; Min, X.; Jia, J.P.; Li, K.; et al. Constructing magnetically separable manganese-based spinel ferrite from spent ternary lithium-ion batteries for efficient degradation of bisphenol A via peroxymonosulfate activation. Chem. Eng. J. 2022, 435, 135000. [Google Scholar] [CrossRef]
- Liu, T.; Dai, A.; Lu, J.; Yuan, Y.; Xiao, Y.; Yu, L.; Li, M.; Gim, J.; Ma, L.; Liu, J.; et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 2019, 10, 4721. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.F.; Dai, L.; Guo, H.; Shi, P.H.; Min, Y.L.; Xu, Q.J. Recycling the cathode scrap of spent lithium-ion batteries as an easily recoverable peroxymonosulfate catalyst with enhanced catalytic perforemance. ACS Sustain. Chem. Eng. 2020, 8, 11337–11347. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, Q.; Li, L.; Fan, E.; Wu, F.; Chen, R. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries. ACS Sustain. Chem. Eng. 2016, 4, 7041–7049. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wang, H.; Ji, J.Q.; Li, X.D.; Yuan, X.Z.; Duan, A.; Guar, X.; Jiang, L.; Li, Y. Recycling of waste power lithium-ion batteries to prepare nickel/cobalt/manganese-containing catalysts with inter-valence cobalt/manganese synergistic effect for peroxymonosulfate activation. J. Colloid Interf. Sci. 2022, 626, 562–580. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Wang, H.; Ji, J.Q.; Li, X.D.; Yuan, X.Z.; Jiang, L.B.; Yang, J.J.; Shao, Y.N.; Guan, X. Degradation of ciprofloxacin by peroxymonosulfate activation using catalyst derived from spent lithium-ion batteries. J. Clean. Prod. 2022, 362, 132442. [Google Scholar] [CrossRef]
- Palacín, M.R. Understanding ageing in Li-ion batteries: A chemical issue. Chem. Soc. Rev. 2018, 47, 4924–4933. [Google Scholar] [CrossRef]
- Peng, D.Z.; Zhang, J.F.; Zou, J.T.; Ji, G.J.; Ye, L.; Li, D.M.; Zhang, B. Closed-loop regeneration of LiFePO4 from spent lithium-ion batterires: A “feed three birds with one scone” strategy toward advanced cathode mateirels. J. Clean. Prod. 2021, 316, 128098. [Google Scholar] [CrossRef]
- Chen, L.; Peng, X.; Liu, J.; Li, J.; Wu, F. Decolorization of Orange I in aqueous solution by an Fe(II)/sulfite system: Replacement of persulfate. Ind. Eng. Chem. Res. 2012, 51, 13632–13638. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, Y.; Zheng, J.; Tan, M.; Wang, Z.; Wu, M. Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions. Environ. Sci. Technol. 2015, 49, 12363–12371. [Google Scholar] [CrossRef]
- Sun, B.; Bao, Q.; Guan, X. Critical role of oxygen for rapid degradation of organic contaminants in permanganate/bisulfite process. J. Hazard. Mater. 2018, 352, 157–164. [Google Scholar] [CrossRef]
- Shi, Z.; Jin, C.; Zhang, J.; Zhu, L. Insight into mechanism of arsanilic acid degradation in permanganate sulfite system: Role of reactive species. Chem. Eng. J. 2019, 359, 1463–1471. [Google Scholar] [CrossRef]
- Dong, H.; Wei, G.; Cao, T.; Shao, B.; Guan, X.; Strathmann, T.J. Insights into the oxidation of organic contaminants during Cr(VI) reduction by sulfite the over- looked significance of Cr(V). Environ. Sci. Technol. 2020, 54, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lou, X.; Fang, C.; Xiao, D.; Wang, Z.; Liu, J. Novel photo-sulfite system: Toward simultaneous transformations of inorganic and organic pollutants. Environ. Sci. Technol. 2013, 47, 11174–11181. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Rochelle, G.T. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: Products, kinetics and mechanism. Environ. Sci. Technol. 1987, 21, 266–272. [Google Scholar] [CrossRef]
- Brandt, C.; Fábián, I.; van Eldik, R. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. Inorg. Chem. 1994, 33, 687–701. [Google Scholar] [CrossRef]
- Guo, Y.G.; Zhao, Y.L.; Lou, X.Y.; Zhou, T.Y.; Wang, Z.H.; Fang, C.L.; Guan, J.; Chen, S.; Xu, X.; Zhang, R.Q. Efficient degradation of industrial pollutants with sulfur(IV) mediated by LiCoO2 cathode powders of spent lithium ion batteries: A “treating waste with waste” strategy. J. Hazard. Mater. 2020, 390, 123090. [Google Scholar] [CrossRef]
- Prasad, D.S.N.; Rani, A.; Gupta, K.S. Surface-catalyzed autoxidation of sulfur(IV) in aqueous silica and copper(II) oxide suspensions. Environ. Sci. Technol. 1992, 26, 1361–1368. [Google Scholar] [CrossRef]
- Brandt, C.; Eldik, M. Transition metal-catalyzed oxidation of sulfur(IV) oxides atmospheric-relevant relevant processes and mechanisms. Chem. Rev. 1995, 93, 119–190. [Google Scholar] [CrossRef]
- Huang, Y.F.; Huang, Y.Y.; Chiueh, P.T.; Lo, S.L. Heterogeneous Fenton oxidation of trichloroethylene catalyzed by sewage sludge biochar: Experimental study and life cycle assessment. Chemosphere 2020, 249, 126139. [Google Scholar] [CrossRef]
- Lyu, L.; Yu, G.F.; Zhang, L.L.; Hu, C.; Sun, Y. 4-phenoxyphenol-functionalized reduced graphene oxide nanosheets: A metal-free Fenton-like catalyst for pollutant destruction. Environ. Sci. Technol. 2018, 52, 747–756. [Google Scholar] [CrossRef]
- Zou, W.S.; Li, J.; Wang, R.H.; Ma, J.Y.; Chen, Z.J.; Duan, L.L.; Mi, H.W.; Chen, H. Hydroxylamine mediated Fenton-like interfacial reaction dynamics on sea urchin-like catalyst derived from spent LiFePO4 battery. J. Hazard. Mater. 2022, 431, 128590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Z.; Zhou, L.; Wu, P.; Zhao, Y.; Lai, Y.; Wang, F. Heterogeneous Fenton degradation of bisphenol AusingFe304@beta-CD/rGO composite: Synergistic effect, principle and way of degradation. Environ. Pollut. 2019, 244, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Peng, J.; Li, J.; You, J.; Lai, L.; Liu, R.; Ao, Z.; Ya, G.; La, B. Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe+/Fe2+ cycle for peroxymonosulfate activation. Water Res. 2021, 188, 116529. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the Heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B Environ. 2019, 255, 117739. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Yan, L.; Fu, H.; Xi, Y.; Zhou, H.; Zhu, G.; Zhu, J.; He, H. Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton Reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl. Catal. B Environ. 2018, 239, 280–289. [Google Scholar] [CrossRef]
- Yan, Q.; Lian, C.; Huang, K.; Liang, L.; Xing, M. Constructing an acidic microenvironment by MoS2 in heterogeneous Fenton reaction for pollutant control. Angew. Chem. 2021, 60, 2–11. [Google Scholar] [CrossRef]
- Guan, J.; Li, Z.X.; Chen, X.; Gu, W.X. Zero-valent iron supported on expanded graphite from spent lithium-ion battery anodes and ferric chloride for the degradation of 4-chlorophenol in water. Chemosphere 2022, 290, 133381. [Google Scholar] [CrossRef]
- Zhang, M.H.; Dong, H.; Zhao, L.; Wang, D.X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef]
- Bedia, J.; Belver, C.; Ponce, S.; Rodriguez, J.; Rodriguez, J.J. Adsorption of antipyrine by activated carbons from FeCl3 activation of tara gum. Chem. Eng. J. 2018, 333, 58–65. [Google Scholar] [CrossRef]
- Mishra, S.; Bal, R.; Dey, R.K. Heterogeneous recyclable copper oxide supported on activated red mud as an efficient and stable catalyst for the one pot hydroxylation of benzene to phenol. Mol. Catal. 2021, 499, 111310. [Google Scholar] [CrossRef]
- Vega, G.; Quintanilla, A.; Belmonte, M.; Casas, J.A. Kinetic study of phenol hydroxylation by H2O2 in 3D Fe/SiC honeycomb monolithic reactors: Enabling the sustainable production of dihydroxy benzenes. Chem. Eng. J. 2022, 428, 131128. [Google Scholar] [CrossRef]
- Guo, M.M.; Li, K.; Liu, L.Z.; Zhang, H.B.; Guo, W.M.; Hu, X.F.; Min, X.; Jia, J.P.; Sun, T.H. Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation. J. Hazard. Mater. 2019, 380, 120905. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.M.; Liu, L.Z.; Gu, J.N.; Zhang, H.B.; Min, X.; Liang, J.X.; Jia, J.P.; Li, K.; Sun, T.H. Improved performance of volatile organic compounds oxidation over MnOx and GdMnO3 composite oxides from spent lithium-ion batteries: Effect of acid treatment. Chin. J. Chem. Eng. 2021, 34, 278–288. [Google Scholar] [CrossRef]
- Sun, J.T.; Liu, L.Z.; Zhang, Y.; Guo, M.M.; Zhou, B. Improved catalytic oxidation of propylene glycol methyl ether over Sm-Mn and Sm-Co perovskite-based catalysts prepared by the recycling of spent ternary lithium-ion battery. Environ. Sci. Pollut. R. 2021, 28, 38829–38838. [Google Scholar] [CrossRef]
- Sun, J.T.; Min, X.; Gu, J.N.; Liang, J.X.; Guo, M.M. Improved performance of Mn-, Co-based oxides from spent lithium-ion batteries supported on CeO2 with different morphol Recovery of cathode materialsogies for 2-ethoxyethyl acetate oxidation. J. Environ. Chem. Eng. 2021, 9, 104964. [Google Scholar] [CrossRef]
- Guo, M.M.; Li, K.; Zhang, H.B.; Min, X.; Liang, J.X.; Hu, X.F.; Guo, W.M.; Jia, J.P.; Sun, T.H. Promotional removal of oxygenated VOC over manganese-based multi oxides from spent lithium-ions manganate batteries: Modification with Fe, Bi and Ce dopants. Sci. Total Environ. 2020, 740, 139951. [Google Scholar] [CrossRef]
- Guo, M.M.; Wang, X.N.; Liu, L.Z.; Min, X.; Hu, X.F.; Guo, W.M.; Zhu, N.W.; Jia, J.P.; Sun, T.H.; Li, K. Recovery of cathode materials from spent lithium-ion batteries and their application in preparing multi-metal oxides for the removal of oxygenated VOCs: Effect of synthetic methods. Environ. Res. 2021, 193, 110563. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Liu, J.; Tian, Z.; Jing, Y. Regulation of oxygen vacancies in vobalt-cerium oxide catalyst for boosting decontamination of VOCs by catalytic oxidation. Sep. Purif. Technol. 2021, 277, 119505. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Chen, C.; Lan, Y.Q. Rapid photodegradation of methyl orange by oxalic acid assisted with cathode material of lithium ion batteries LiFePO4. J. Taiwan Inst. Chem. E 2016, 62, 187–191. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Wang, X. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108. [Google Scholar] [CrossRef]
- Niu, B.; Xiao, J.F.; Xu, Z.M. Recycling spent LiCoO2 battery as a high-efficient lithium doped graphitic carbon nitride/Co3O4 composite photocatalyst and its synergistic photocatalytic mechanism. Energy Environ. Mater. 2022. [CrossRef]
- Huang, H.; Xu, Y.; Feng, Q.; Leung, D.Y.C. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2015, 5, 2649–2669. [Google Scholar] [CrossRef]
- Hu, X.; Yu, Y.; Chen, D.; Xu, W.; Fang, J.; Liu, Z.; Li, R.; Yao, L.; Qin, J.; Fang, Z. Anatase/rutile homojunction quantum dots anchored on g-C3N4 nanosheets for antibiotics degradation in seawater matrice via coupled adsorption-photocatalysis: Mechanism insight and toxicity evaluation. Chem. Eng. J. 2022, 432, 134375. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Rumana, H.; Veena, S. Microrecycled Co3O4 from waste lithium-ion battery: Synthesis, characterization and implication in environmental application. J. Environ. Chem. Eng. 2022, 10, 107858. [Google Scholar] [CrossRef]
- Friedmann, D.; Mendive, C.; Bahnemann, D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 2010, 99, 398–406. [Google Scholar] [CrossRef]
- Zhu, S.J.; Wang, W.; Xu, Y.P.; Zhu, Z.G.; Liu, Z.Q.; Cu, F.Y. Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 2019, 365, 99–110. [Google Scholar] [CrossRef]
- Wu, Y.T.; Cai, T.; Chen, X.J.; Duan, X.D.; Xu, G.G.; Bu, L.J.; Zhou, S.Q.; Shi, Z. Unveiling the interaction of epigallocatechin-3-gallate with peroxymonosulfate for degradation of bisphenol S: Two-stage kinetics and identification of reactive species. Sep. Purif. Technol. 2021, 274, 119040. [Google Scholar] [CrossRef]
- Hong, Y.C.; Zhou, H.Y.; Xiong, Z.K.; Liu, Y.; Yao, G.; Lai, B. Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways. Chem. Eng. J. 2020, 391, 123604. [Google Scholar] [CrossRef]
- Chen, X.X.; Fu, L.Y.; Yu, Y.; Wu, C.Y.; Li, M.; Jin, X.G.; Yang, J.; Wang, P.X.; Chen, Y. Recent development in sludge biochar-based catalysts for advanced oxidation processes of wastewater. Catalysts 2021, 11, 1275. [Google Scholar] [CrossRef]
- Xiao, J.D.; Xie, Y.B.; Cao, H.B. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 2015, 121, 1–17. [Google Scholar] [CrossRef]
- Weng, X.; Sun, P.; Long, Y.; Meng, Q.; Wu, Z. Catalytic oxidation of chlorobenzene over MnxCe1-xO2/HZSM-5 catalysts: A study with practical implications. Environ. Sci. Technol. 2017, 51, 8057–8066. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, F.; He, Y.; Liu, X.Y.; Song, C.J.; Xu, Y.H.; Zhang, Y.J. Heterogeneous Fenton-like degradation of ofloxacin over sludge derived carbon as catalysts: Mechanism and performance. Sci. Total Environ. 2019, 654, 942–947. [Google Scholar] [CrossRef]
- Guo, M.M.; Li, K.; Liu, L.Z.; Zhang, H.B.; Guo, W.M.; Hu, X.F.; Min, X.; Jia, J.P.; Sun, T.H. Insight into a sustainable application of spent lithium-ion cobaltate batteries: Preparation of a cobalt-based oxide catalyst and its catalytic performance in toluene oxidation. Ind. Eng. Chem. Res. 2020, 59, 194–204. [Google Scholar] [CrossRef]
- Dai, T.C.; Zhou, H.; Liu, Y.; Cao, R.R.; Zhan, J.J.; Liu, L.F.; Jang, W.L. Synergy of lithium, cobalt, and oxygen vacancies in lithium cobalt oxide for airborne benzene oxidation: A concept of reusing electronic wastes for air pollutant removal. ACS Sustain. Chem. Eng. 2019, 7, 5072–5081. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, W.; Zhan, J.J.; Bao, Y.M.; Cao, R.R.; Zhou, H.; Liu, L.F. One-pot synthesis of Ag-H3PW12O40-LiCoO2 composites for thermal oxidation of airborn benzene. Chem. Eng. J. 2019, 375, 121956. [Google Scholar] [CrossRef]
- Chan, K.H.; Chu, W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counter anions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Res. 2009, 43, 2513–2521. [Google Scholar] [CrossRef]
- Lyu, J.; Ge, M.; Hu, Z.; Guo, C. One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 2020, 389, 124456. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in waste water systems. Sci. Total. Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Xiong, Z.; Ao, Z.; Pu, S.; Yao, G.; Lai, B. Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Appl. Catal. B Environ. 2020, 277, 119136. [Google Scholar] [CrossRef]
- Zhu, M.P.; Yang, J.C.E.; Delai Sun, D.; Yuan, B.; Fu, M.L. Deciphering the simultaneous removal of carbamazepine and metronidazole by monolithic Co2AlO4@Al2O3 activated peroxymonosulfate. Chem. Eng. J. 2022, 436, 135201. [Google Scholar] [CrossRef]
- Dong, X.; Ren, B.; Sun, Z.; Li, C.; Zhang, X.; Kong, M.; Zheng, S.; Dionysiou, D.D. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl. Catal. B 2019, 253, 206–217. [Google Scholar] [CrossRef]
- Cai, C.; Kang, S.; Xie, X.; Liao, C.; Duan, X.; Dionysiou, D.D. Efficient degradation of bisphenol A in water by heterogeneous activation of peroxymonosulfate using highly active cobalt ferrite nanoparticles. J. Hazard. Mater. 2020, 399, 122979. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Deng, B.; Tan, W.; Li, R.; Xu, Y.; Zhang, H. Degradation of bisphenol A by activating peroxymonosulfate with Mn0.6Zn0.4Fe2O4 fabricated from spent Zn-Mn alkline batteries. Chem. Eng. J. 2019, 364, 541–551. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Z.; Naidu, R.; Bush, R.; Yang, F.; Liu, J.; Huang, M. Role of halide ions on organic pollutants degradation by peroxygens-based advanced oxidation processes: A critical review. Chem. Eng. J. 2022, 433, 134546. [Google Scholar] [CrossRef]
- Dan, J.; Rao, P.; Wang, Q.; Dong, L.; Chen, J. MgO-supported CuO with encapsulated structure for enhanced peroxymonosulfate activation to remove thiamphenicol. Sep. Purif. Technol. 2021, 280, 119782. [Google Scholar] [CrossRef]
Catalysts | Ict a | T50 b | T90 b | Pollutants | Ref |
---|---|---|---|---|---|
SLMB-MnO2-2 | 1000 | 208 | 224 | Toluene | [23] |
H2O-LCO | 407–467 | 250 | 430 | Airborne benzene | [60] |
MnOx(SY)-0.1 | 1000 | 150 | 180 | 2-ethoxy-ethanol | [102] |
GdMnO3(SY)-0.05 | 1000 | 190 | 220 | 2-ethoxy-ethano | [102] |
SmMnO3-STLIB | 1000 | 208 | 244 | Propylene glycol methyl | [103] |
SmCoO3-STLIB | 1000 | 216 | 307 | Propylene glycol methyl | [103] |
MnOx(MS)/CeO2-C | 1000 | 196 | 253 | 2-ethoxyethyl acetate | [104] |
CoOx(GS)/CeO2-P | 1000 | 194 | 253 | 2-ethoxyethyl acetate | [104] |
MnOx(SY)/CeO2-C | 1000 | 179 | 222 | 2-ethoxyethyl acetate | [104] |
MnOx-M-350 | 1000 | 243 | 290 | Toluene | [105] |
MnOx-M-5% Fe | 1000 | 174 | 212 | 1-methoxu-2propyl-acetate | [106] |
MnOx-M-10% Ce | 1000 | 192 | 224 | 1-methoxu-2propyl-acetate | [106] |
MnOx-M-15% Bi | 1000 | 184 | 214 | 1-methoxu-2propyl-acetate | [106] |
MnOx(SY)(HT) | 1000 | 181 | 218 | 1-methoxy-2-propanol | [107] |
CoOx(GS)(CP) | 1000 | 180 | 213 | 1-methoxy-2-propanol | [107] |
Co3−xMxO4-500 | 1000 | 247 | 274 | Toluene | [125] |
H-LiCo | 370–430 | 215 | 250 | Airborne benzene | [126] |
AgHPWLiCo | 450–480 | 225 | 275 | Airborne benzene | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Guo, Y.; Guan, J.; Wang, Z. Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts 2023, 13, 189. https://doi.org/10.3390/catal13010189
Wang P, Guo Y, Guan J, Wang Z. Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts. 2023; 13(1):189. https://doi.org/10.3390/catal13010189
Chicago/Turabian StyleWang, Pu, Yaoguang Guo, Jie Guan, and Zhaohui Wang. 2023. "Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review" Catalysts 13, no. 1: 189. https://doi.org/10.3390/catal13010189
APA StyleWang, P., Guo, Y., Guan, J., & Wang, Z. (2023). Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts, 13(1), 189. https://doi.org/10.3390/catal13010189