Oxidation of Alcohols into Carbonyl Compounds Using a CuO@GO Nano Catalyst in Oxygen Atmospheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. FT-IR Spectroscopy
2.2. XRD Spectroscopy
2.3. XPS Analysis
2.4. TEM, and SEM Analyses
2.5. Screening of CuO@GO for the Oxidation of p-Methyl Benzyl Alcohol to p-Methyl Benzaldehyde
3. Experimental Section
3.1. Materials, Methods, and Characterization
3.2. Synthesis of Graphene Oxide (GO)
3.3. Synthesis of CuO-NPs
3.4. Synthesis of CuO@GO
3.5. General Oxidation Protocol
3.6. ICP-AES Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahl, S.S. Palladium-catalyzed oxidation of organic chemicals with O2. Science 2005, 309, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Ohtaka, A.; Kono, Y.; Inui, S.; Yamamoto, S.; Ushiyama, T.; Shimomura, O.; Nomura, R. Linear polystyrene-stabilized Pt nanoparticles for aerobic alcohol oxidation and hydrogen-transfer reduction in aqueous media. J. Mol. Catal. A Chem. 2012, 360, 48–53. [Google Scholar] [CrossRef]
- Schrinner, M.; Proch, S.; Mei, Y.; Kempe, R.; Miyajima, N.; Ballauff, M. Stable bimetallic gold–platinum nanoparticles immobilized on spherical polyelectrolyte brushes: Synthesis, characterization, and application for the oxidation of alcohols. Adv. Mater. 2008, 20, 1928–1933. [Google Scholar] [CrossRef]
- Hong, Y.; Yan, X.; Liao, X.; Li, R.; Xu, S.; Xiao, L.; Fan, J. Platinum nanoparticles supported on Ca (Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions. Chem. Commun. 2014, 50, 9679–9682. [Google Scholar] [CrossRef]
- Tojo, G.; Fernández, M. Oxidation of primary alcohols to carboxylic acids. In A Guide to Current Common Practice; Springer: Santiago de Compostle, Spain, 2007; Volume 132. [Google Scholar]
- Ali, R.; Adil, S.; Al-warthan, A.; Siddiqui, M.R.H. Identification of active phase for selective oxidation of benzyl alcohol with molecular oxygen catalyzed by copper-manganese oxide nanoparticles. J. Chem. 2013, 2013, 367261. [Google Scholar] [CrossRef] [Green Version]
- Tojo, G.; Fernández, M. Ruthenium tetroxide and other ruthenium compounds. In Oxidation of Primary Alcohols to Carboxylic Acids; Springer: Santiago de Compostle, Spain, 2007; pp. 61–78. [Google Scholar]
- Wang, H.; Fan, W.; He, Y.; Wang, J.; Kondo, J.N.; Tatsumi, T. Selective oxidation of alcohols to aldehydes/ketones over copper oxide-supported gold catalysts. J. Catal. 2013, 299, 10–19. [Google Scholar] [CrossRef]
- Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air. Catal. Sci. Technol. 2015, 5, 2467–2477. [Google Scholar] [CrossRef] [Green Version]
- Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef]
- Namboodiri, V.V.; Polshettiwar, V.; Varma, R.S. Expeditious oxidation of alcohols to carbonyl compounds using iron (III) nitrate. Tetrahedron Lett. 2007, 48, 8839–8842. [Google Scholar] [CrossRef]
- Jerome, P.; Kausalya, G.; Thangadurai, T.D.; Karvembu, R. Green synthesis of CuO nanoflakes from copper pincer complex for effective N-arylation of benzimidazole. Catal. Commun. 2016, 75, 50–54. [Google Scholar] [CrossRef]
- da Silva Neto, E.H.; Comin, R.; He, F.; Sutarto, R.; Jiang, Y.; Greene, R.L.; Sawatzky, G.A.; Damascelli, A. Charge ordering in the electron-doped superconductor Nd2–x CexCuO4. Science 2015, 347, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.-P.; Zhang, H.; Sun, X.-H. A uniform porous multilayer-junction thin film for enhanced gas-sensing performance. Nanoscale 2016, 8, 1430–1436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, G.; Li, Z.; Qu, K.; Wang, L.; Zeng, W.; Zhang, Q.; Duan, H. Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J. Mater. Chem. A 2016, 4, 10585–10592. [Google Scholar] [CrossRef]
- Wang, G.; Huang, B.; Wang, L.; Wang, Z.; Lou, Z.; Qin, X.; Zhang, X.; Dai, Y. CuO/CuSCN valence state heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic activity. Chem. Commun. 2014, 50, 3814–3816. [Google Scholar] [CrossRef]
- Xia, Y.; Pu, X.; Liu, J.; Liang, J.; Liu, P.; Li, X.; Yu, X. CuO nanoleaves enhance the c-Si solar cell efficiency. J. Mater. Chem. A 2014, 2, 6796–6800. [Google Scholar] [CrossRef]
- Li, F.; Li, J.-F.; Li, J.-H.; Yao, F.-Z. The effect of Cu substitution on microstructure and thermoelectric properties of LaCoO3 ceramics. Phys. Chem. Chem. Phys. 2012, 14, 12213–12220. [Google Scholar] [PubMed]
- Cui, P.; Wang, A.-J. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate. J. Saudi Chem. Soc. 2016, 20, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; Van Der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Meric, I.; Han, M.Y.; Young, A.F.; Ozyilmaz, B.; Kim, P.; Shepard, K.L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.S.; Kim, N.; Seo, S.H.; Park, I.S.; Cheedrala, R.K.; Park, J. Recyclable palladium catalyst for highly selective α alkylation of ketones with alcohols. Angew. Chem. Int. Ed. 2005, 44, 6913–6915. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.S.; Kim, S.; Park, S.; Bosco, W.; Chidrala, R.K.; Park, J. One-pot synthesis of imines and secondary amines by Pd-catalyzed coupling of benzyl alcohols and primary amines. J. Org. Chem. 2009, 74, 2877–2879. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085. [Google Scholar] [CrossRef]
- Cheedarala, R.K.; Park, E.J.; Park, Y.B.; Park, H.W. Highly wettable CuO: Graphene oxide core–shell porous nanocomposites for enhanced critical heat flux. Phys. Status Solidi A 2015, 212, 1756–1766. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, W.; Li, J.; Zhou, X.; Qu, Y. Interfacial effects of the CuO/GO composite to mediate the side reactions of N, N-dimethylformamide fragments. ACS Appl. Mater. Interfaces 2014, 6, 22174–22182. [Google Scholar] [CrossRef]
- Vaseem, M.; Umar, A.; Kim, S.H.; Hahn, Y.-B. Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: Formation mechanism and structural properties. J. Phys. Chem. C 2008, 112, 5729–5735. [Google Scholar] [CrossRef]
- Taratayko, A.; Kolobova, E.; Mamontov, G. Graphene Oxide Decorated with Ag and CeO2 Nanoparticles as a Catalyst for Room-Temperature 4-Nitrophenol Reduction. Catalysts 2022, 12, 1393. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, S.; Kong, C.; Song, X.; Ding, B. Designated-tailoring on {100} facets of Cu2O nanostructures: From octahedral to its different truncated forms. J. Nanomater. 2010, 2010, 710584. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, N.; Philip, J.; Raj, B. Effect of clustering on the thermal conductivity of nanofluids. Mater. Chem. Phys. 2008, 109, 50–55. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Abad, A.; Corma, A.; García, H. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: The molecular reaction mechanism. Chem. A Eur. J. 2008, 14, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Gopiraman, M.; Deng, D.; Ganesh Babu, S.; Hayashi, T.; Karvembu, R.; Kim, I.S. Sustainable and versatile CuO/GNS nanocatalyst for highly efficient base free coupling reactions. ACS Sustain. Chem. Eng. 2015, 3, 2478–2488. [Google Scholar] [CrossRef]
- Kwon, M.S.; Kim, N.; Park, C.M.; Lee, J.S.; Kang, K.Y.; Park, J. Palladium nanoparticles entrapped in aluminum hydroxide: Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation. Org. Lett. 2005, 7, 1077–1079. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Das, B.; Sharma, M.; Deka, B.K.; Park, Y.B.; Bhargava, S.K.; Usum, K.; Bania, K.K. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols. ACS Appl. Mater. Interfaces 2017, 9, 35453–35462. [Google Scholar] [CrossRef]
- Cheedarala, R.K.; Park, E.; Kong, K.; Park, Y.-B.; Park, H.W. Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nanofluid templates. Int. J. Heat Mass Transf. 2016, 100, 396–406. [Google Scholar] [CrossRef]
- Cheedarala, R.K.; Song, J.I. In situ generated hydrophobic micro ripples via π–π stacked pop-up reduced graphene oxide nanoflakes for extended critical heat flux and thermal conductivities. RSC Adv. 2019, 9, 31735–31746. [Google Scholar] [CrossRef] [Green Version]
- Dandia, A.; Bansal, S.; Sharma, R.; Rathore, K.; Parewa, V. Microwave-assisted nanocatalysis: A CuO NPs/rGO composite as an efficient and recyclable catalyst for the Petasis-borono–Mannich reaction. RSC Adv. 2018, 8, 30280–30288. [Google Scholar] [CrossRef] [Green Version]
- Torbina, V.V.; Vodyankin, A.A.; Ten, S.; Mamontov, G.V.; Salaev, M.A.; Sobolev, V.I.; Vodyankina, O.V. Ag-Based Catalysts in Heterogeneous Selective Oxidation of Alcohols: A Review. Catalysts 2018, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Cheedarala, R.K.; Sunkara, V.; Park, J.W. Facile synthesis of second-generation dendrons with an orthogonal functional group at the focal point. Synth. Commun. 2009, 39, 1966–1980. [Google Scholar] [CrossRef]
- Cheedrala, R.K.; Sachwani, R.; Krishna, P.R. Lipase mediated kinetic resolution of benzimidazolyl ethanols. Tetrahedron Asymmetry 2008, 19, 901–905. [Google Scholar] [CrossRef]
- Jeon, J.H.; Cheedarala, R.K.; Kee, C.D.; Oh, I.K. Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater. 2013, 23, 6007–6018. [Google Scholar] [CrossRef]
- Rao, T.N.; AlOmar, S.Y.; Ahmed, F.; Albalawi, F.; Ahmad, N.; Rao, N.K.; Rao, M.B.; Cheedarala, R.K.; Reddy, G.R.; Naidu, T.M. Reusable nano-zirconia-catalyzed synthesis of benzimidazoles and their antibacterial and antifungal activities. Molecules 2021, 26, 4219. [Google Scholar] [CrossRef]
- Cheedarala, R.K.; Chidambaram, R.R.; Siva, A.; Song, J.I. An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst. RSC Adv. 2021, 11, 32942–32954. [Google Scholar] [CrossRef]
- Gaikwad, S.; Cheedarala, R.K.; Gaikwad, R.; Kim, S.; Han, S. Controllable Synthesis of 1, 3, 5-tris (1H-benzo [d] imidazole-2-yl) Benzene-Based MOFs. Appl. Sci. 2021, 11, 9856. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@C composite. J. Environ. Chem. Eng. 2021, 9, 104401. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Metal-organic frameworks (MOFs) and MOFs-derived CuO@C for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 2019, 44, 31230–31238. [Google Scholar] [CrossRef]
- Chidambaram, R.; Ramaswamy, R.R.; Kopparapu, I.; Raykar, A.; Kulkarani, A.; Vijaya Sankar, A.V.; Siva Ayyanar, S.; Nagarjuna, A.; Cheedarala, R.K. A continuous protocol for the epoxidation of olefins, monocyclic terpenes, and Alpha Beta Unsaturated Carbonyl Synthons using eco-friendly Flow Reactor Conditions. Results Eng. 2022, 16, 100652. [Google Scholar]
- Dhinagaran, G.; Harichandran, G.; Suvaitha, S.P.; Venkatachalam, K. Catalytic activity of SBA-15 supported CuO for selective oxidation of veratryl alcohol to veratraldehyde. Mol. Catal. 2022, 528, 112454. [Google Scholar] [CrossRef]
Entry | Catalyst | CuO mol % | Reaction Time [h] | Conversion [%] [b] | Yield [%] [c] | TOF (×10−3 mol.g−1.min−1) [f] |
---|---|---|---|---|---|---|
1 | GO | 5 | 4(10) | <00 | 00 | 0.0 |
2 | CuO-NPs | 5 | 4(6) | 75(78) | 66 | 0.7 |
3 | CuO@GO | 0.5 | 4(6) | 78(83) | 69 | 1.16 |
4 | CuO@GO | 1.0 | 4(6) | 84(87) | 73 | 1.54 |
5 | CuO@GO | 1.5 | 4(6) | 93(95) | 85 | 1.93 |
6 | CuO@GO | 2.0 | 4(6) | 98(98) | 96(97) | 2.56 |
7 | CuO@GO | 3.0 | 4(6) | 98(99) | 96(97) | 2.59 |
8 | PdO/CuO-Y | 2.0 | 1 | 70 | 70 [d] | 1.22 |
9 | MES-CuO | 3.0 | 24 | 71 | 71 [e] | 1.22 |
10 | Com-CuO | 3.0 | 24 | 69 | 68 [e] | 1.15 |
Use | T [°C] | T [h] | Yield [b, c] | Leaching of CuO µg/mL |
---|---|---|---|---|
1 | 80 | 6 | 96 | 0.015 |
2 | 80 | 6 | 94 | 0.015 |
3 | 80 | 6 | 91 | 0.016 |
4 | 80 | 6 | 89 | 0.017 |
5 | 80 | 6 | 67 | 0.025 |
6 | 80 | 6 | 54 | 0.032 |
Entry | Substrate | Reaction Time | Product | Yield [b, c] (%) | 1H NMR (300 MHz, CDCl3, δ ppm) |
---|---|---|---|---|---|
1 | 4 | 93(98) [d] | 4-Methylbenzyldehyde (entry 1): 10.01 (s, 1H, CHO), 7.73 (d, 2H, aryl), 7.24 (d, 2H, aryl), 2.45 (s, 3H, CH3). | ||
2 | 4 | 94(99) [d] | Benzaldehyde (entry 2): 9.91 (s, 1H, CHO), 7.7–7.51 (m, 5H, aryl). | ||
3 | 5 | 92(98) [d] | 4-Hydroxybenzaldehyde (entry 3): 9.86 (s, 1H, CHO), 7.82 (d, 2H, aryl), 6.98 (d, 2H, aryl), 6.52 (brs, 1H, OH). | ||
4 | 6 | 94(98) [d] | 4-Nitrobenzaldehyde (entry 4): 10.17 (s, 1H, CHO), 8.35 (d, 2H, aryl), 8.10 (d, 2H, aryl). | ||
5 | 6.5 | 95 | (entry5), 9-Anthraldehyde (entry 5) 10.9 (s, 1H, CHO), 8.87 (dd, 2H, CH, aryl), 8.52 (s, 1H, CH, aryl), 7.93(q, 2H, aryl), 7.46 and 7.50 (m, 4H, CH, aryl). | ||
6 | 7 | 88(95) [d] | Cyclopentanone (entry 6): 2.12 (t, 4H, COCH2), 1.97 (m, 4H, CH2CH2); | ||
7 | 5 | 92(97) [d] | Acetophenone (entry 7): 7.97 (d, 2H, aryl), 7.56 (t, 1H, aryl), 7.46 (t, 2H, aryl), 2.60 (s, 3H, COCH3); | ||
8 | 6 | 94(98) [d] | 4-Methylacetophenone 5 (entry 8): 7.54 (d, 2H, aryl), 6.6 (d, 2H, aryl), 2.65 (s, 3H, COCH3); 2.55 (s, 3H, CH3); | ||
9 | 8 | 91 | 1H Benzo[d]imidazole-2-carbaldehyde (entry 9): 9.82 (s, 1H, CHO), 7.62–7.22 (m, 4H, C6H4), 4.9 (br s, 1H, NH); | ||
10 | 8 | 90 | 1-(1H-Benzo[d]imidazol-2-yl)ethanone (entry 10): 10.1 (br s, 1H, NH), 7.90 (d, 1H, C6H4), 7.5 (d, 1H, C6H4), 7.41–7.35 (m, 2H, C6H4), 2.8 (s, 3H, COCH3); | ||
11 | 8 | 90 | 1-(1-Methylbenzo[d]imidazol-2-yl)ethanone (entry 11): 7.88 (d, 1H, C6H4), 7.43 (d, 1H, C6H4), 7.37 (m, 2H, C6H4), 4.1 (s, 3H, NCH3), 2.83 (s, 3H, COCH3); | ||
12 | 9 | 89 | 1-(1-Benzoylbenzo[d]imidazol-2-yl)ethanone (entry 12): 8.08 (d, 1H, C6H4), 7.69 (d,1H, C6H4), 7.63–7.60 (m, 2H, C6H4), 7.49–7.42 (m, 5H, CO C6H4), 2.72 (s, 3H, COCH C6H4); |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, M.A.; Surepally, R.; Akula, N.; Cheedarala, R.K.; Alshehri, A.A.; Alzahrani, K.A. Oxidation of Alcohols into Carbonyl Compounds Using a CuO@GO Nano Catalyst in Oxygen Atmospheres. Catalysts 2023, 13, 55. https://doi.org/10.3390/catal13010055
Malik MA, Surepally R, Akula N, Cheedarala RK, Alshehri AA, Alzahrani KA. Oxidation of Alcohols into Carbonyl Compounds Using a CuO@GO Nano Catalyst in Oxygen Atmospheres. Catalysts. 2023; 13(1):55. https://doi.org/10.3390/catal13010055
Chicago/Turabian StyleMalik, Maqsood Ahmad, Ravikumar Surepally, Nagarjuna Akula, Ravi Kumar Cheedarala, Abdulmohsen Ali Alshehri, and Khalid Ahmed Alzahrani. 2023. "Oxidation of Alcohols into Carbonyl Compounds Using a CuO@GO Nano Catalyst in Oxygen Atmospheres" Catalysts 13, no. 1: 55. https://doi.org/10.3390/catal13010055
APA StyleMalik, M. A., Surepally, R., Akula, N., Cheedarala, R. K., Alshehri, A. A., & Alzahrani, K. A. (2023). Oxidation of Alcohols into Carbonyl Compounds Using a CuO@GO Nano Catalyst in Oxygen Atmospheres. Catalysts, 13(1), 55. https://doi.org/10.3390/catal13010055