Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Characterization of Strain B-36
2.2. Effects of Key Factors for Synthesizing (S)-1-chloro-2-heptanol by Curvularia hominis B-36
2.2.1. Co-Substrate
2.2.2. Isopropanol Concentration
2.2.3. pH
2.2.4. Temperature
2.2.5. Fungal Concentration
2.3. Time Course of Bioreduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol Catalyzed by Curvularia hominis B-36
2.4. Scale-up Asymmetric Reduction of 1-chloro-2-heptanone to (S)-1-chloro-2-heptanol
2.5. Stereoselective Reduction of Various Ketones
3. Experimental
3.1. Chemicals
3.2. Screening of the Microorganisms and Cultural Conditions
3.3. Sequence Analysis of the Strain B-36
3.4. Asymmetric Bioreduction Process
3.5. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Edit. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Fryszkowska, A.; Devine, P.N. Biocatalysis in drug discovery and development. Curr. Opin. Chem. Biol. 2020, 55, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.P.; Brown, M.J.; Diaz-Rodriguez, A.; Lloyd, R.C.; Roiban, G.D. Biocatalysis: A pharma perspective. Adv. Synth. Catal. 2019, 361, 2421–2432. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhou, L.; Qiu, J.; Yang, K.; Song, Q. Rh-Catalyzed diastereoselective addition of arylboronic acids to α-keto N-tert-butanesulfinyl aldimines: Synthesis of α-amino ketones. Org. Chem. Front. 2022, 9, 1016–1022. [Google Scholar] [CrossRef]
- Bi, X.; Feng, J.; Xue, X.; Gu, Z. Construction of axial chirality and silicon-stereogenic center via Rh-catalyzed asymmetric ring-opening of silafluorenes. Org. Lett. 2021, 23, 3201–3206. [Google Scholar] [CrossRef] [PubMed]
- Zhi, L.; Xue, Y.F.; Liang, X.W.; Wang, J.; Lin, S.J.; Tao, J.; You, S.L.; Liu, W. Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin-Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton. Angew. Chem. Int. Edit. 2021, 60, 8401–8405. [Google Scholar]
- Xiong, L.; Kong, X.; Liu, H.; Wang, P. Efficient biosynthesis of (S)-1-[2-(trifluoromethyl) phenyl] ethanol by a novel isolate Geotrichum silvicola ZJPH1811 in deep eutectic solvent/cyclodextrin-containing system. Bioresour. Technol. 2021, 329, 124832. [Google Scholar] [CrossRef]
- Shajahan, R.; Sarang, R.; Saithalavi, A. Polymer Supported Proline-Based Organocatalysts in Asymmetric Aldol Reactions: A Review. Curr. Organocatal. 2022, 9, 124–146. [Google Scholar]
- Saravanan, A.; Kumar, P.S.; Vo, D.V.N.; Jeevanantham, S.; Karishma, S.; Yaashikaa, P.R. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes. J. Hazard. Mater. 2021, 419, 126451. [Google Scholar] [CrossRef]
- Behr, J. Inhaled Treprostinil in Pulmonary Hypertension in the Context of Interstitial Lung Disease: A Success, Finally. Am. J. Resp. Crit. Care 2022, 205, 144–145. [Google Scholar] [CrossRef]
- Stubbe, B.; Opitz, C.F.; Halank, M.; Habedank, D.; Ewert, R. Intravenous prostacyclin-analogue therapy in pulmonary arterial hypertension–A review of the past, present and future. Resp. Med. 2021, 179, 106336–106347. [Google Scholar] [CrossRef]
- Jana, S.; Sarpe, V.A.; Kulkarni, S.S. Total synthesis of emmyguyacins A and B, potential fusion Inhibitors of Influenza Virus. Org. Lett. 2018, 20, 6938–6942. [Google Scholar] [CrossRef]
- García-Lacuna, J.; Domínguez, D.; Blanco-Urgoiti, J.; Pérez-Castells, J. Synthesis of treprostinil: Key Claisen rearrangement and catalytic Pauson–Khand reactions in continuous flow. Org. Biomol. Chem. 2019, 17, 9489. [Google Scholar] [CrossRef]
- Venkataraman, S.; Chadha, A. Whole Cells Mediated Biocatalytic Reduction of Alpha-Keto Esters: Preparation of Optically Enriched Alkyl 2-hydroxypropanoates. Curr. Trends Biotechnol. Pharm. 2022, 16, 111–122. [Google Scholar]
- Çolak, N.S.; Kalay, E.; Şahin, E. Asymmetric reduction of prochiral aromatic and hetero aromatic ketones using whole-cell of Lactobacillus senmaizukei biocatalyst. Synth. Commun. 2021, 51, 2305–2315. [Google Scholar] [CrossRef]
- Sakai, T.; Wada, K.; Murakami, T.; Kohra, K.; Imajo, N.; Ooga, Y.; Tsuboi, S.; Takeda, A.; Utaka, M. A systematic study on the bakers’ yeast reduction of 2-oxoalkyl benzoates and 1-chloro-2-alkanones. Bull. Chem. Soc. Jpn. 1992, 65, 631–638. [Google Scholar] [CrossRef]
- Kalay, E.; Dertli, E.; Şahin, E. Biocatalytic asymmetric synthesis of (S)-1-indanol using Lactobacillus paracasei BD71. Biocatal. Biotransfor. 2021, 40, 386–392. [Google Scholar] [CrossRef]
- Liao, Q.; Liu, W.; Meng, Z. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnol. Adv. 2022, 60, 108024. [Google Scholar] [CrossRef]
- Hollmann, F.; Opperman, D.J.; Paul, C.E. Biocatalytic reduction reactions from a chemist’s perspective. Angew. Chem. Int. Edit. 2021, 60, 5644–5665. [Google Scholar] [CrossRef]
- Bi, S.; Liu, H.; Lin, H.; Wang, P. Integration of natural deep-eutectic solvent and surfactant for efficient synthesis of chiral aromatic alcohol mediated by Cyberlindnera saturnus whole cells. Biochem. Eng. J. 2021, 172, 108053. [Google Scholar] [CrossRef]
- Vivek, H.; Parhi, P.; Mohan, B.; Hazeena, S.H.; Kumar, A.N.; Gullón, B.; Srivastava, A.; Nair, L.M.; Alphy, M.P.; Sindhu, R.; et al. Valorization of renewable resources to functional oligosaccharides: Recent trends and future prospective. Bioresour. Technol. 2021, 346, 126590. [Google Scholar]
- Kalay, E.; Şahin, E. Regioselective asymmetric bioreduction of trans-4-phenylbut-3-en-2-one by whole-cell of Weissella cibaria N9 biocatalyst. Chirality 2021, 33, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Paul, A.K. In-vitro bioreduction of hexavalent chromium by viable whole cells of Arthrobacter sp. SUK 1201. J. Microb. Biotechnol. Food Sci. 2014, 4, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, A.; Şahin, E. Efficient bioreduction of cyclohexyl phenyl ketone by Leuconostoc pseudomesenteroides N13 biocatalyst using a distance-based design-focused optimization model. Mol. Catal. 2022, 528, 112474. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Ang, E.L.; Zhao, H. Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg. Med. Chem. 2018, 26, 1275–1284. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, P.; Gao, S.; Wang, Z.; Luan, P.; González-Sabín, J.; Jiang, Y. Construction of chemoenzymatic cascade reactions for bridging chemocatalysis and Biocatalysis: Principles, strategies and prospective. Chem. Eng. J. 2021, 420, 127659. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Brady, D. Streamlining design, engineering, and applications of enzymes for sustainable biocatalysis. ACS Sustain. Chem. Eng. 2021, 9, 8032–8052. [Google Scholar] [CrossRef]
- Li, J.; Qian, F.; Wang, P. Exploiting benign ionic liquids to effectively synthesize chiral intermediate of NK-1 receptor antagonists catalysed by Trichoderma asperellum cells. Biocatal. Biotransfor. 2021, 39, 124–129. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; He, Y.S.; Zhu, Z.R.; Huang, J. Toward Designing a Novel Oligopeptide-Based Deep Eutectic Solvent: Applied in Biocatalytic Reduction. ACS Sustain. Chem. Eng. 2019, 7, 1318–1326. [Google Scholar] [CrossRef]
- Alberto, M.; Núria, S.; Mercè, T.; Ramon, C.G. Biocatalytic transformation of 5-hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a newly isolated Fusarium striatum strain. Catalysts 2021, 11, 216. [Google Scholar]
- Morellon-Sterling, R.; Carballares, D.; Arana-Peña, S.; Siar, E.H.; Braham, S.A.; Fernandez-Lafuente, R. Advantages of supports activated with divinyl sulfone in enzyme coimmobilization: Possibility of multipoint covalent immobilization of the most stable enzyme and immobilization via ion exchange of the least stable enzyme. ACS Sustain. Chem. Eng. 2021, 9, 7508–7518. [Google Scholar] [CrossRef]
- Ramos, M.D.; Miranda, L.P.; Giordano, R.L.; Fernandez-Lafuente, R.; Kopp, W.; Tardioli, P.W. 1,3-Regiospecific ethanolysis of soybean oil catalyzed by crosslinked porcine pancreas lipase aggregates. Biotechnol. Progr. 2018, 34, 910–920. [Google Scholar] [CrossRef]
- Schwarz, S.; Truckenbrodt, G.; Schick, H.; Depner, J. Microbial transformation of chloroheptan-2-one; preliminary results of the synthesis of a chiral phosphonium salt for prostaglandin synthesis. Chem. Inf. 1982, 13. [Google Scholar] [CrossRef]
Reaction Conditions | Yield (%) | ee (%) | |
---|---|---|---|
pH a | 4.0 | 89.6 ± 1.1 | >99 |
5.0 | 90.4 ± 0.9 | >99 | |
5.6 | 87.4 ± 2.1 | >99 | |
6.0 | 94.5 ± 0.7 | >99 | |
6.5 | 90.8 ± 1.5 | >99 | |
7.0 | 87.9 ± 2.3 | >99 | |
8.0 | 89.5 ± 2.8 | >99 | |
pH 6.0 | Distilled water b | 74.9 ± 1.3 | >99 |
Na2HPO4-NaH2PO4 | 94.5 ± 0.7 | >99 | |
Na2HPO4-KH2PO4 | 96.1 ± 1.5 | >99 | |
Na 2HPO4-Citric acid | 93.7 ± 2.9 | >99 | |
K2HPO4-KH2PO4 | 97.8 ± 0.9 | >99 |
Ketone | Structure b | Yield a (%) | ee a (%) |
---|---|---|---|
Butan-2-one | >99 | 99 (S) | |
Pentan-2-one | >99 | 99 (S) | |
Hexan-2-one | 97 | 99 (S) | |
Octan-2-one | 95 | 99 (S) | |
Methyl 4-chloro-3-oxobutanoate | 93 | 99 (S) | |
Ethyl 4-chloro-3-oxobutanoate | 90 | 99 (S) | |
Acetophenone | 54 | 99 (R) | |
1-(3,5-Bis(trifluoromethyl)phenyl)ethan-1-one | 31 | 99 (R) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Lin, Q.; Chen, W.; Lin, R.; Shen, Y.; Tang, P.; Yu, S.; Du, W.; Li, J. Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36. Catalysts 2023, 13, 52. https://doi.org/10.3390/catal13010052
Xu S, Lin Q, Chen W, Lin R, Shen Y, Tang P, Yu S, Du W, Li J. Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36. Catalysts. 2023; 13(1):52. https://doi.org/10.3390/catal13010052
Chicago/Turabian StyleXu, Shenpeng, Qinzhe Lin, Wentian Chen, Ruoyu Lin, Yikai Shen, Pinchuan Tang, Sisi Yu, Wenting Du, and Jun Li. 2023. "Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36" Catalysts 13, no. 1: 52. https://doi.org/10.3390/catal13010052
APA StyleXu, S., Lin, Q., Chen, W., Lin, R., Shen, Y., Tang, P., Yu, S., Du, W., & Li, J. (2023). Efficient Biosynthesis of (S)-1-chloro-2-heptanol Catalyzed by a Newly Isolated Fungi Curvularia hominis B-36. Catalysts, 13(1), 52. https://doi.org/10.3390/catal13010052