Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. The Fundamentals of Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production
3. Bimetallic Single-Atom Electrocatalytic Hydrogen Production
3.1. Bimetallic Single-Atom Catalysts Supported on Graphene
3.2. Bimetallic Single-Atom Catalysts Supported on TMDs
4. Bimetallic Single-Atom Photocatalysts for Hydrogen Production
4.1. Bimetallic Single-Atom Catalysts Supported on Phosphorus-Doped Carbon Nitride
4.2. Bimetallic Single-Atom Catalysts Supported on Two-Dimensional Polymerized Carbon Nitride
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, T.F.; Jørgensen, K.P.; Bonde, J.; Nielsen, J.H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Hinnemann, B.; Moses, P.G.; Bonde, J.; Jørgensen, K.P.; Nielsen, J.H.; Horch, S.; Chorkendorff, I.; Nørskov, J.K. Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Mebrahtu, C.; Wang, S.; Palkovits, R. Innovative Electrochemical Strategies for Hydrogen Production: From Electricity Input to Electricity Output. Angew. Chem. Int. Ed. 2023, 62, e202214333. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A Comprehensive Review on PEM Water Electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Cui, N.; Li, J.; Xu, M.; Pan, G.; Jiang, Z.; Cui, X.; Niu, X.; Li, J. Recent Advance of Atomically Dispersed Dual-Metal Sites Carbocatalysts: Properties, Synthetic Materials, Catalytic Mechanisms, and Applications in Persulfate-Based Advanced Oxidation Process. Adv. Funct. Mater. 2023, 33, 2301229. [Google Scholar] [CrossRef]
- Ren, W.; Cheng, C.; Shao, P.; Luo, X.; Zhang, H.; Wang, S.; Duan, X. Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. Environ. Sci. Technol. 2022, 56, 78–97. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, X.; Gao, B.; Wang, S.; Duan, X. Single-Atom Catalysis in Advanced Oxidation Processes for Environmental Remediation. Chem. Soc. Rev. 2021, 50, 5281–5322. [Google Scholar] [CrossRef]
- Yin, K.; Peng, L.; Chen, D.; Liu, S.; Zhang, Y.; Gao, B.; Fu, K.; Shang, Y.; Xu, X. High-Loading of Well Dispersed Single-Atom Catalysts Derived from Fe-Rich Marine Algae for Boosting Fenton-like Reaction: Role Identification of Iron Center and Catalytic Mechanisms. Appl. Catal. B Environ. 2023, 336, 122951. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Ren, N.; Duan, X. Single-Atom Catalysts Derived from Biomass: Low-Cost and High-Performance Persulfate Activators for Water Decontamination. Curr. Opin. Chem. Eng. 2023, 41, 100942. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Singh, A.N.; Sultan, S.; Kim, K.S. Recent Advancement of P-and d-Block Elements, Single Atoms, and Graphene-Based Photoelectrochemical Electrodes for Water Splitting. Adv. Energy Mater. 2020, 10, 2000280. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, Y.; Zhang, G. Advances in Single-Atom Catalysts: Design, Synthesis and Environmental Applications. J. Hazard. Mater. 2022, 429, 128285. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Ge, R.; Zhang, J.; Cairney, J.M.; Li, Y.; Zhu, M.; Li, S.; Li, W. The Effect of Coordination Environment on the Activity and Selectivity of Single-Atom Catalysts. Coord. Chem. Rev. 2022, 461, 214493. [Google Scholar] [CrossRef]
- Li, L.; Chang, X.; Lin, X.; Zhao, Z.-J.; Gong, J. Theoretical Insights into Single-Atom Catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Zhao, K.; Shi, S.; Shao, Q.; Zhang, L.; Sun, X.; Zhao, Y.; Zhang, J. Atomically Dispersed Metal Catalysts for the Oxygen Reduction Reaction: Synthesis, Characterization, Reaction Mechanisms, and Electrochemical Energy Applications. Energy Environ. Sci. 2019, 12, 2890–2923. [Google Scholar] [CrossRef]
- Sarma, B.B.; Maurer, F.; Doronkin, D.E.; Grunwaldt, J.-D. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-Ray Spectroscopic Tools. Chem. Rev. 2023, 123, 379–444. [Google Scholar] [CrossRef]
- Qin, R.; Liu, K.; Wu, Q.; Zheng, N. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem. Rev. 2020, 120, 11810–11899. [Google Scholar] [CrossRef]
- Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C.; Li, J.; Wei, S.; Lu, J. Single-Atom Pd1/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1, 3-Butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487. [Google Scholar] [CrossRef]
- Wei, Z.; Sun, J.; Li, Y.; Datye, A.K.; Wang, Y. Bimetallic Catalysts for Hydrogen Generation. Chem. Soc. Rev. 2012, 41, 7994–8008. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Amiinu, I.S.; Cheng, R.; Wang, P.; Zhang, C.; Mu, S.; Zhao, W.; Su, F.; Zhang, G.; Liao, S. Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Lett. 2020, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, J.; Dagle, V.L.; Halevi, B.; Datye, A.K.; Wang, Y. Influence of ZnO Facets on Pd/ZnO Catalysts for Methanol Steam Reforming. ACS Catal. 2014, 4, 2379–2386. [Google Scholar] [CrossRef]
- Davidson, S.D.; Zhang, H.; Sun, J.; Wang, Y. Supported Metal Catalysts for Alcohol/Sugar Alcohol Steam Reforming. Dalton Trans. 2014, 43, 11782–11802. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging Homogeneous and Heterogeneous Catalysis by Heterogeneous Single-Metal-Site Catalysts. Nat. Catal. 2018, 1, 385–397. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Catalysts for Electrochemical Water Splitting: Current State and Prospects. J. Mater. Chem. A 2016, 4, 11973–12000. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Y. Designing Transition-Metal-Boride-Based Electrocatalysts for Applications in Electrochemical Water Splitting. Nanoscale 2020, 12, 9327–9351. [Google Scholar] [CrossRef]
- Chen, Z.; Qing, H.; Zhou, K.; Sun, D.; Wu, R. Metal-Organic Framework-Derived Nanocomposites for Electrocatalytic Hydrogen Evolution Reaction. Prog. Mater. Sci. 2020, 108, 100618. [Google Scholar] [CrossRef]
- Khalafallah, D.; Zhi, M.; Hong, Z. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis. Top. Curr. Chem. 2019, 377, 29. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, C.; Huang, Z.; Fu, J.; Lin, Z.; Zhang, X.; Ma, J.; Shen, J. Highly Efficient and Robust Catalysts for the Hydrogen Evolution Reaction by Surface Nano Engineering of Metallic Glass. J. Mater. Chem. A 2021, 9, 5415–5424. [Google Scholar] [CrossRef]
- Liu, R.; Fei, H.-L.; Ye, G.-L. Recent Advances in Single Metal Atom-Doped MoS2 as Catalysts for Hydrogen Evolution Reaction. Tungsten 2020, 2, 147–161. [Google Scholar] [CrossRef]
- Yang, K.; Chen, J.; Mi, J.; Yin, R.; Yuan, J.; Shi, J.; Wang, G.; Li, J. More than Just a Reactant: H2O Promotes Carbonyl Sulfide Hydrolysis Activity over Ni-MgAl-LDO by Inhibiting H2S Poisoning. Fuel 2023, 333, 126503. [Google Scholar] [CrossRef]
- Wu, P.; Ding, S.; Shen, K.; Yang, H.; Wang, S.; Zhang, S.; Zhang, Y. Enhanced Performance and DFT Study of Sulfur Poisoning Mechanism of Modified Al2O3 Catalyst in COS Hydrolysis. Fuel 2023, 337, 127163. [Google Scholar] [CrossRef]
- Xie, Y.; Bao, J.; Song, X.; Sun, X.; Ning, P.; Wang, C.; Wang, F.; Ma, Y.; Fan, M.; Li, K. Catalysts for Gaseous Organic Sulfur Removal. J. Hazard. Mater. 2023, 442, 130029. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.F.S.R.; da Silva, M.A.R.; Rogolino, A.; Diab, G.A.A.; Noleto, L.F.G.; Antonietti, M.; Teixeira, I.F. Carbon Nitride Based Materials: More than Just a Support for Single-Atom Catalysis. Chem. Soc. Rev. 2023, 52, 4878–4932. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Vorobyeva, E.; Mitchell, S.; Fako, E.; López, N.; Collins, S.M.; Leary, R.K.; Midgley, P.A.; Hauert, R.; Pérez-Ramírez, J. Single-Atom Heterogeneous Catalysts Based on Distinct Carbon Nitride Scaffolds. Natl. Sci. Rev. 2018, 5, 642–652. [Google Scholar] [CrossRef]
- Guo, F.; Li, S.; Hou, Y.; Xu, J.; Lin, S.; Wang, X. Metalated Carbon Nitrides as Base Catalysts for Efficient Catalytic Hydrolysis of Carbonyl Sulfide. Chem. Commun. 2019, 55, 11259–11262. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Li, Y. Single-Atom Catalysis for Carbon Neutrality. Carbon Energy 2022, 4, 1021–1079. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, L.; Li, J.; Doyle-Davis, K.; Li, R.; Wang, Z.; Sun, X. Advanced Support Materials and Interactions for Atomically Dispersed Noble-Metal Catalysts: From Support Effects to Design Strategies. Adv. Energy Mater. 2022, 12, 2102556. [Google Scholar] [CrossRef]
- Loy, A.C.M.; Teng, S.Y.; How, B.S.; Zhang, X.; Cheah, K.W.; Butera, V.; Leong, W.D.; Chin, B.L.F.; Yiin, C.L.; Taylor, M.J. Elucidation of Single Atom Catalysts for Energy and Sustainable Chemical Production: Synthesis, Characterization and Frontier Science. Prog. Energy Combust. Sci. 2023, 96, 101074. [Google Scholar] [CrossRef]
- Giulimondi, V.; Ruiz–Ferrando, A.; Clark, A.H.; Kaiser, S.K.; Krumeich, F.; Martín, A.J.; López, N.; Pérez–Ramírez, J. Catalytic Synergies in Bimetallic Ru–Pt Single-Atom Catalysts via Speciation Control. Adv. Funct. Mater. 2022, 32, 2206513. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, K.; Zhang, R.; Cui, H.; Yu, Y.; Cui, P.; Song, W.; Cao, C. Regulating the Electronic Structure through Charge Redistribution in Dense Single-Atom Catalysts for Enhanced Alkene Epoxidation. Nat. Commun. 2023, 14, 2494. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Yang, B.; Wu, R. Understanding the Activity of Single-Atom Catalysis from Frontier Orbitals. Phys. Rev. Lett. 2020, 125, 156001. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jiang, Y.F.; Xiao, H.; Li, J. Bimetallic Single-Cluster Catalysts Anchored on Graphdiyne for Alkaline Hydrogen Evolution Reaction. Chin. J. Catal. 2023, 50, 306–313. [Google Scholar] [CrossRef]
- Wang, W.; Song, Q.; Luo, Q.; Li, L.; Huo, X.; Chen, S.; Li, J.; Li, Y.; Shi, S.; Yuan, Y.; et al. Photothermal-Enabled Single-Atom Catalysts for High-Efficiency Hydrogen Peroxide Photosynthesis from Natural Seawater. Nat. Commun. 2023, 14, 2493. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Zhao, E.; Yang, W.; Lin, J.; Zhong, Q.; Qi, H.; Deng, A.; Yang, S.; Zhang, H. Atomically Dispersed Silver-Cobalt Dual-Metal Sites Synergistically Promoting Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2023, 33, 2301840. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, Y.; Li, H.; Zhang, Z.; Mu, Y.; Do, D.; Zhou, B.; Dong, J.; Yan, W.; Qin, Y. O-Coordinated W-Mo Dual-Atom Catalyst for pH-Universal Electrocatalytic Hydrogen Evolution. Sci. Adv. 2020, 6, eaba6586. [Google Scholar] [CrossRef]
- Zhang, H.; Chhowalla, M.; Liu, Z. 2D Nanomaterials: Graphene and Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47, 3015–3017. [Google Scholar] [CrossRef]
- Gmitra, M.; Fabian, J. Graphene on Transition-Metal Dichalcogenides: A Platform for Proximity Spin-Orbit Physics and Optospintronics. Phys. Rev. B 2015, 92, 155403. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, K.; Low, J.; Liu, H.; Bo, Y.; Ma, J.; Liu, Q.; Jiang, Y.; Yang, J.; Pan, Y.; et al. Working-in-Tandem Mechanism of Multi-Dopants in Enhancing Electrocatalytic Nitrogen Reduction Reaction Performance of Carbon-Based Materials. Nano Res. 2021, 14, 3234–3239. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, C.H.; Jang, J.-H.; Kang, M.S.; Jin, H.; Lee, K.-S.; Lee, S.U.; Yoo, S.J.; Yoo, W.C. Single-Atom Oxygen Reduction Reaction Electrocatalysts of Fe, Si, and N Co-Doped Carbon with 3D Interconnected Mesoporosity. J. Mater. Chem. A 2021, 9, 4297–4309. [Google Scholar] [CrossRef]
- Tian, S.; Tang, Q. Activating Transition Metal Dichalcogenide Monolayers as Efficient Electrocatalysts for the Oxygen Reduction Reaction via Single Atom Doping. J. Mater. Chem. C 2021, 9, 6040–6050. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, D.; Qin, Y.; Dou, T.; Jiang, M.; Zhang, F.; Lei, X. Dual-Metallic Single Ru and Ni Atoms Decoration of MoS2 for High-Efficiency Hydrogen Production. Appl. Catal. B Environ. 2021, 298, 120557. [Google Scholar] [CrossRef]
- Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N. Scalable Water Splitting on Particulate Photocatalyst Sheets with a Solar-to-Hydrogen Energy Conversion Efficiency Exceeding 1%. Nat. Mater. 2016, 15, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Han, X.; Kong, W.; Tong, Y.; Ding, Y.; Wang, J.; Li, B.; Liu, Y.; Xu, J.; Xing, W. Graphene Supported Single Metal Atom Catalysts for the Efficient Hydrogen Oxidation Reaction in Alkaline Media. Catal. Sci. Technol. 2022, 12, 530–541. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, G.; Zheng, X.; Jiang, P.; Yi, J.; Zhou, H.; Gao, X.; Yu, Z.; Wu, Y. A Double Atomic-Tuned RuBi SAA/Bi@OG Nanostructure with Optimum Charge Redistribution for Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, 62, e202300879. [Google Scholar] [CrossRef]
- Xue, Z.-H.; Luan, D.; Zhang, H.; Lou, X.W.D. Single-Atom Catalysts for Photocatalytic Energy Conversion. Joule 2022, 6, 92–133. [Google Scholar] [CrossRef]
- Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem. Rev. 2020, 120, 12175–12216. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Powar, N.S.; Lee, J.; In, S. Single-Atom Catalysts (SACs) for Photocatalytic CO2 Reduction with H2O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small 2022, 18, 2201428. [Google Scholar] [CrossRef]
- Niu, Y.; Yue, C.; Li, S.; Che, G.; Su, N.; Dong, H.; Li, C. Recent Advance of Single Atom-Based Photocatalysts for Energy Conversion and Environmental Purification. Carbon Lett. 2023, 33, 957–972. [Google Scholar] [CrossRef]
- Zheng, T.; Han, X.; Wang, J.; Xia, Z. Role of Heteroatom-Doping in Enhancing Catalytic Activities and the Stability of Single-Atom Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. Nanoscale 2022, 14, 16286–16294. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-K.; Pan, Y.-W.; Xu, M.-Q.; Sun, L.; Zhang, S.; Deng, W.-Q.; Zhai, D. Heteroatom Doping Regulates the Catalytic Performance of Single-Atom Catalyst Supported on Graphene for ORR. Nano Res. 2023. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Liu, L.; Jiao, J. Sulfur Vacancy Induced High Performance for Photocatalytic H2 Production over 1T@2H Phase MoS2 Nanolayers. Catal. Sci. Technol. 2017, 7, 56355643. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chang, Y.-P.; Chen, K.-W.; Lee, T.-T.; Hsiao, B.-J.; Tsai, T.-H.; Yang, Y.-C.; Lin, K.-I.; Suenaga, K.; Chen, C.-H.; et al. Patterning and Doping of Transition Metals in Tungsten Dichalcogenides. Nanoscale 2022, 14, 16968–16977. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhou, W.; Hu, C.; Luo, X.; Zeng, W.; Gong, X.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. Interlayer-Confined NiFe Dual Atoms within MoS2 Electrocatalyst for Ultra-Efficient Acidic Overall Water Splitting. Adv. Mater. 2023, 35, 2300505. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, P.; Dou, S.; Sun, W.; Pan, H.; Wang, D.; Li, Y. Non-Carbon-Supported Single-Atom Site Catalysts for Electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858. [Google Scholar] [CrossRef]
- Li, W.; Guo, Z.; Yang, J.; Li, Y.; Sun, X.; He, H.; Li, S.; Zhang, J. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem. Energy Rev. 2022, 5, 9. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-Metal Single-Atoms in Thermocatalysis, Electrocatalysis, and Photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009. [Google Scholar] [CrossRef]
- Cheng, N.; Zhang, L.; Doyle-Davis, K.; Sun, X. Single-Atom Catalysts: From Design to Application. Electrochem. Energy Rev. 2019, 2, 539–573. [Google Scholar] [CrossRef]
- Fu, J.; Wang, S.; Wang, Z.; Liu, K.; Li, H.; Liu, H.; Hu, J.; Xu, X.; Li, H.; Liu, M. Graphitic Carbon Nitride Based Single-Atom Photocatalysts. Front. Phys. 2020, 15, 33201. [Google Scholar] [CrossRef]
- Tang, J.; Xu, S.; Sun, K.; Gao, X.; Chen, A.; Tian, S.; Zhou, D.; Sun, X. Recycling Synthesis of Single-Atom Zn-Nitrogen-Carbon Catalyst for Electrocatalytic Reduction of O2 to H2O2. Sci. China Mater. 2022, 65, 3490–3496. [Google Scholar] [CrossRef]
- Luo, H.; Liu, Y.; Dimitrov, S.D.; Steier, L.; Guo, S.; Li, X.; Feng, J.; Xie, F.; Fang, Y.; Sapelkin, A.; et al. Pt Single-Atoms Supported on Nitrogen-Doped Carbon Dots for Highly Efficient Photocatalytic Hydrogen Generation. J. Mater. Chem. A 2020, 8, 14690–14696. [Google Scholar] [CrossRef]
- Mun, S.J.; Park, S.J. Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalyst 2019, 9, 805. [Google Scholar] [CrossRef]
- Yang, M.; Mei, J.; Ren, Y.; Cui, J.; Liang, S.; Sun, S. Long-Range Electron Synergy over Pt1-Co1/CN Bimetallic Single-Atom Catalyst in Enhancing Charge Separation for Photocatalytic Hydrogen Production. J. Energy Chem. 2023, 81, 502–509. [Google Scholar] [CrossRef]
Bimetallic Catalyst | Metal Loading Support | Electrolyte | Overpotential | Remarks |
---|---|---|---|---|
W1Mo1 | N-doped graphene | pH universality | 0.5 M H2SO4 24 mV 1.0 M KOH 67 mV | Excellent pH universality |
RuBi SAA Ru | Oxidized graphene | 1.0 M KOH | 150 mV (at 20 mA/cm2) | High activity |
Ru/Ni | MoS2 | alkaline | 32 mV | Stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xu, K.; Sun, N.; Zhuang, Y.; Wang, L.; Yan, D. Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production. Catalysts 2023, 13, 1409. https://doi.org/10.3390/catal13111409
Zhang M, Xu K, Sun N, Zhuang Y, Wang L, Yan D. Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production. Catalysts. 2023; 13(11):1409. https://doi.org/10.3390/catal13111409
Chicago/Turabian StyleZhang, Mengyang, Keyu Xu, Ning Sun, Yanling Zhuang, Longlu Wang, and Dafeng Yan. 2023. "Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production" Catalysts 13, no. 11: 1409. https://doi.org/10.3390/catal13111409
APA StyleZhang, M., Xu, K., Sun, N., Zhuang, Y., Wang, L., & Yan, D. (2023). Bimetallic Single-Atom Catalysts for Electrocatalytic and Photocatalytic Hydrogen Production. Catalysts, 13(11), 1409. https://doi.org/10.3390/catal13111409