Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol
Abstract
:1. Introduction
2. Lignocellulosic Biofuel
2.1. Bioethanol
2.2. Biobutanol
2.3. Biodiesel
2.4. Biohydrogen
2.5. Biogas
3. Nanoparticle Application in Biofuel Generation
3.1. Bioethanol
3.2. Biohydrogen
3.3. Biobutanol
3.4. Biogas
3.5. Biodiesel
4. Nanobiotechnology in Lignocellulosic Ethanol Production
4.1. Nanoparticles and Technology Involved in Biomass Pretreatment
4.2. Biomass Hydrolysis through Nanobiotechnology
4.3. Application of Nanotechnology in the Fermentation Process
5. The Mechanism Underlying the Interaction of Nanoparticles
5.1. Interactions of Nanoparticles during Pretreatment of Biomass
5.1.1. Nanozymes/Nanocatalysts in Biomass Pretreatment
Non-Acid-Functionalized Nanocatalysts in Pretreatment
Acid-Functionalized Nanocatalysts in Pretreatment
5.1.2. Nanobiocatalyst in Biomass Pretreatment
Non-Acid-Functionalized Nanobiocatalysts in Pretreatment
Acid-Functionalized Nanobiocatalysts in Pretreatment
5.1.3. The Nanoscale Shear Hybrid Alkaline (NSHA) Method
5.2. Interactions of Nanoparticles during the Hydrolysis of Lignocellulosic Biomass
5.2.1. Nanocatalysts in Biomass Hydrolysis
5.2.2. Nanobiocatalysts in Biomass Hydrolysis
5.3. Interactions of Nanoparticles during the Fermentation Process of Biomass
6. Factors Affecting NPs Synthesis and Its Performance in Bioethanol Production
6.1. Factors Affecting NP Synthesis
6.1.1. Effect of Temperature on NP Synthesis
6.1.2. Effect of pH on NP Synthesis
6.1.3. Effect of Pressure on NP Synthesis
6.1.4. Other Characteristics
Factors | Size | Stability | Shape | Rate of Reaction | References |
---|---|---|---|---|---|
Temperature | Size of NPs decreases as the calcination temperature increases | Nanobiocatalyst stability increases at high temperature | - | - | [161,162,163] |
pH | Size of NPs is greater in acidic fluids compared to basic media for selected nanomaterials | Stability of NPs synthesized in solutions with low pH levels (2, 4, and 6) began to deteriorate after 10 days of experimentation | At low pH levels, the particles exhibit a rod-like shape, whereas at higher pH levels, they assume a spherical shape | - | [165,166,167,168] |
Pressure | Higher pressure conditions can result in an enhancement of NP size | Higher pressure conditions can result in an enhanced stability of NPs | - | Control the rates of rapid reaction and reduction | [171,178] |
6.2. Factors Affecting NP Performance in Bioethanol Production
6.2.1. Effect of Temperature and pH on the Bioethanol Production Process
6.2.2. Effect of Size and Concentration of NPs on the Bioethanol Production Process
Factors | Preferable Conditions | Examples | References |
---|---|---|---|
Temperature | Moderate | Optimal temperature for the hydrolysis of Sesbania aculeate biomass was determined to be 30 °C on utilization of cellulase bound magnetic NPs The highest hydrolysis efficiency of lignocellulosic biomass was observed at a pH of 5 and a temperature of 50 °C. | [181,182] |
pH | Acidic | Optimal pH for lignocellulosic bioethanol production using Saccharomyces cerevisiae was 3.7. The highest hydrolysis efficiency of lignocellulosic biomass was observed at a pH of 5 and a temperature of 50 °C. | [183] |
Size of NPs | 5 to 100 nm enhance yield and reduce reaction time of biofuel | - | [171] |
Efficiency of a catalyst increases as the particle size decreases (~50 nm) | Conversion efficiency of sunflower oil into biofuel utilizing NP catalyst was determined to be 99.05% | [185] | |
Concentrations of NPs | Efficiency of a process increases with smaller amounts of NPs | Concentration of 0.01 wt% of Fe3O4 NPs had the greatest effect on ethanol production | [119] |
7. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Bauen, A. Future energy sources and systems—Acting on climate change and energy security. J. Power Sources 2006, 157, 893–901. [Google Scholar] [CrossRef]
- Sriariyanun, M.; Gundupalli, M.P.; Phakeenuya, V.; Phusamtisampan, T.; Cheng, Y.S.; Venkatachalam, P. Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms. J. Appl. Sci. Eng. 2023, 27, 1985–2005. [Google Scholar]
- Jose, D.; Kitiborwornkul, N.; Sriariyanun, M.; Keerthi, K. A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress. Appl. Sci. Eng. Prog. 2022, 15, 6210. [Google Scholar] [CrossRef]
- Bioethanol Market Share, Size, Trends, Industry Analysis Report, By Feedstock (Cereals & Starch, Wheat, Maize, Beet, Sugarcane, Others); By Industry; By Region; Segment Forecast, 2022–2030. Available online: https://www.polarismarketresearch.com/industry-analysis/bioethanol-market (accessed on 30 October 2023).
- Vaishnavi, S.; Ghosh, S.; Singh, R.; Irshath, A.; Rajan, A.P. BIOELAION-Biofuel-Based Business Model Plan. Int. J. Humanit. Soc. Sci. Manag. (IJHSSM) 2023, 3, 194–207. [Google Scholar]
- Bioethanol Market Size Global Report, 2022–2030. Available online: https://www.polarismarketresearch.com/industry-analysis/bioethanol-market (accessed on 30 October 2023).
- Toor, M.; Kumar, S.S.; Malyan, S.K.; Bishnoi, N.R.; Mathimani, T.; Rajendran, K.; Pugazhendhi, A. An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere 2020, 242, 125080. [Google Scholar] [CrossRef] [PubMed]
- Kommoji, S.; Gopinath, M.; Sagar, P.S.; Yuvaraj, D.; Iyyappan, J.; Varsha, A.J.; Sunil, V. Lipid bioproduction from delignified native grass (Cyperus distans) hydrolysate by Yarrowia lipolytica. Bioresour. Technol. 2021, 324, 124659. [Google Scholar] [CrossRef]
- Singhvi, M.; Kim, B.S. Current developments in lignocellulosic biomass conversion into biofuels using nanobiotechology approach. Energies 2020, 13, 5300. [Google Scholar] [CrossRef]
- Alio, M.A.; Tugui, O.C.; Rusu, L.; Pons, A.; Vial, C. Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresour. Technol. 2020, 310, 123412. [Google Scholar]
- Li, J.; Tang, X.; Chen, S.; Zhao, J.; Shao, T. Ensiling pretreatment with two novel microbial consortia enhances bioethanol production in sterile rice straw. Bioresour. Technol. 2021, 339, 125507. [Google Scholar] [CrossRef]
- Sivarathnakumar, S.; Jayamuthunagai, J.; Baskar, G.; Praveenkumar, R.; Selvakumari, I.A.E.; Bharathiraja, B. Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresour. Technol. 2019, 293, 122060. [Google Scholar] [CrossRef]
- Saini, S.; Kumar, A.; Singhal, B.; Kuhad, R.C.; Sharma, K.K. Fungal oxidoreductases and CAZymes effectively degrade lignocellulosic component of switchgrass for bioethanol production. Fuel 2022, 328, 125341. [Google Scholar] [CrossRef]
- Sathendra, E.R.; Baskar, G.; Praveenkumar, R.; Gnansounou, E. Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresour. Technol. 2019, 271, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Elsa, C.; Kumar, M.D.; Baskar, G. Immobilization of cellulase onto manganese dioxide nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin. J. Catal. 2015, 36, 1223–1229. [Google Scholar]
- Gengiah, K.; Moses, G.L.P.; Baskar, G. Bioethanol production from Codium tomentosum residue. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Ranjithkumar, M.; Rajarathinam, R.; Kumar, P.S.; Rangasamy, G.; Gurunathan, B.; Ethiraj, B.; Thanabal, V. Insight into the effective utilization of cotton spinning wastes from textile mills for the production of bioethanol. Sustain. Energy Technol. Assess. 2022, 53, 102770. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, R.; Gupta, V.K. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour. Technol. 2020, 304, 123003. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, Z.F.; Zhang, C.C.; Nan, J.; Ren, N.Q.; Lee, D.J.; Chen, C. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresour. Technol. 2022, 343, 126123. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, F.; Zhang, Y.; Tu, Y.; Chen, P.; Peng, L. Ecologically adaptable Populus simonii is specific for recalcitrance-reduced lignocellulose and largely enhanced enzymatic saccharification among woody plants. GCB Bioenergy 2021, 13, 348–360. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef]
- Tabka, M.G.; Herpoël-Gimbert, I.; Monod, F.; Asther, M.; Sigoillot, J.C. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzym. Microb. Technol. 2006, 39, 897–902. [Google Scholar] [CrossRef]
- Ingle, A.P.; Chandel, A.K.; Antunes, F.A.F.; Rai, M.; da Silva, S.S. New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass. Biofuels Bioproduct. Biorefining 2019, 13, 776–788. [Google Scholar] [CrossRef]
- Wu, L.; Feng, S.; Deng, J.; Yu, B.; Wang, Y.; He, B.; Peng, H.; Li, Q.; Hu, R.; Peng, L. Altered carbon assimilation and cellulose accessibility to maximize bioethanol yield under low-cost biomass processing in corn brittle stalk. Green Chem. 2019, 21, 4388–4399. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, B.; Yang, R.; Liu, J. Filling in the gaps between nanozymes and enzymes: Challenges and opportunities. Bioconjug. Chem. 2017, 28, 2903–2909. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresour. Technol. 2016, 204, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, V.; Venkatkarthick, R.; Jayashree, S.; Chuetor, S.; Dharmaraj, S.; Kumar, G.; Chen, W.H.; Ngamcharussrivichai, C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresour. Technol. 2022, 344, 126195. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Ren, J.L.; Xu, F.; Bian, J.; Peng, P.; Sun, R.C. Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. J. Agric. Food Chem. 2010, 58, 1768–1776. [Google Scholar] [CrossRef]
- Woiciechowski, A.L.; Dalmas Neto, C.J.; Porto de Souza Vandenberghe, L.; de Carvalho Neto, D.P.; Novak Sydney, A.C.; Letti, L.A.J.; Karp, S.G.; Zevallos Torres, L.A.; Soccol, C.R. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance—Conventional processing and recent advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.; Liu, W.; Xu, H.; Cao, Y. Consolidated bioprocess for bioethanol production from lignocellulosic biomass using Clostridium thermocellum DSM 1237. BioResources 2020, 15, 8355. [Google Scholar] [CrossRef]
- Monir, M.U.; Abd Aziz, A.; Khatun, F.; Yousuf, A. Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum. Renew. Energy 2020, 157, 1116–1123. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Paniagua-García, A.I.; Díez-Antolínez, R. Biobutanol production from apple pomace: The importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl. Microbiol. Biotechnol. 2017, 101, 8041–8052. [Google Scholar] [CrossRef]
- Muharja, M.; Darmayanti, R.F.; Fachri, B.A.; Palupi, B.; Rahmawati, I.; Rizkiana, M.F.; Amini, H.W.; Putri, D.K.Y.; Setiawan, F.A.; Asrofi, M.; et al. Biobutanol production from cocoa pod husk through a sequential green method: Depectination, delignification, enzymatic hydrolysis, and extractive fermentation. Bioresour. Technol. Rep. 2023, 21, 101298. [Google Scholar] [CrossRef]
- Ananthi, V.; Prakash, G.S.; Chang, S.W.; Ravindran, B.; Nguyen, D.D.; Vo, D.V.N.; La, D.D.; Bach, Q.V.; Wong, J.W.C.; Gupta, S.K.; et al. Enhanced microbial biodiesel production from lignocellulosic hydrolysates using yeast isolates. Fuel 2019, 256, 115932. [Google Scholar] [CrossRef]
- Yook, S.D.; Kim, J.; Gong, G.; Ko, J.K.; Um, Y.; Han, S.O.; Lee, S.M. High-yield lipid production from lignocellulosic biomass using engineered xylose-utilizing Yarrowia lipolytica. GCB Bioenergy 2020, 12, 670–679. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Manmai, N.; Ponnambalam, S.; Unpaprom, Y.; Chaichompoo, C.; Ramaraj, R. Optimized model of fermentable sugar production from Napier grass for biohydrogen generation via dark fermentation. Int. J. Hydrogen Energy 2023, 48, 21152–21160. [Google Scholar] [CrossRef]
- Lo, Y.C.; Su, Y.C.; Cheng, C.L.; Chang, J.S. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis. Int. J. Hydrogen Energy 2011, 36, 13955–13963. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, Z.; Cai, Y.; Zhao, Y.; Zhang, Y.; Gao, Y.; Cui, Z.; Wang, X. Accelerated biomethane production from lignocellulosic biomass: Pretreated by mixed enzymes secreted by Trichoderma viride and Aspergillus sp. Bioresour. Technol. 2020, 309, 123378. [Google Scholar] [CrossRef]
- Akyol, Ç.; Ince, O.; Bozan, M.; Ozbayram, E.G.; Ince, B. Biological pretreatment with Trametes versicolor to enhance methane production from lignocellulosic biomass: A metagenomic approach. Ind. Crops Prod. 2019, 140, 111659. [Google Scholar] [CrossRef]
- López-Linares, J.C.; Romero, I.; Cara, C.; Ruiz, E.; Moya, M.; Castro, E. Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 2014, 122, 112–118. [Google Scholar] [CrossRef]
- Kootstra, A.M.J.; Mosier, N.S.; Scott, E.L.; Beeftink, H.H.; Sanders, J.P. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem. Eng. J. 2009, 43, 92–97. [Google Scholar] [CrossRef]
- Liu, K.; Atiyeh, H.K.; Stevenson, B.S.; Tanner, R.S.; Wilkins, M.R.; Huhnke, R.L. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. Bioresour. Technol. 2014, 151, 69–77. [Google Scholar] [CrossRef]
- Algayyim, S.J.M.; Wandel, A.P.; Yusaf, T.; Hamawand, I. The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine. Energy 2017, 140, 1074–1086. [Google Scholar] [CrossRef]
- Huang, H.; Singh, V.; Qureshi, N. Butanol production from food waste: A novel process for producing sustainable energy and reducing environmental pollution. Biotechnol. Biofuels 2015, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, Y.; Ramya, G.; Mohan Singh, S.; Thuy Lan Chi, N.; Pugazhendhi, A.; Xia, C.; Mathimani, T. A review on the promising fuel of the future—Biobutanol; the hindrances and future perspectives. Fuel 2022, 327, 125166. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumar Sharma, P.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2020, 262, 116553. [Google Scholar] [CrossRef]
- Mathew, G.M.; Raina, D.; Narisetty, V.; Kumar, V.; Saran, S.; Pugazhendi, A.; Sindhu, R.; Pandey, A.; Binod, P. Recent advances in biodiesel production: Challenges and solutions. Sci. Total Environ. 2021, 794, 148751. [Google Scholar] [CrossRef]
- Bashir, M.A.; Wu, S.; Zhu, J.; Krosuri, A.; Khan, M.U.; Ndeddy Aka, R.J. Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Process. Technol. 2022, 227, 107120. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Keerthana Devi, M.; Senthil Kumar, P. Biohydrogen production: An outlook on methods, constraints, economic analysis and future prospect. Int. J. Hydrogen Energy 2022, 47, 41488–41506. [Google Scholar] [CrossRef]
- Patel, A.K.; Debroy, A.; Sharma, S.; Saini, R.; Mathur, A.; Gupta, R.; Tuli, D.K. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour. Technol. 2015, 175, 291–297. [Google Scholar] [CrossRef]
- Ananthi, V.; Ramesh, U.; Balaji, P.; Kumar, P.; Govarthanan, M.; Arun, A. A review on the impact of various factors on biohydrogen production. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: A review. Biotechnol. Biofuels 2021, 14, 159. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Techno-economic evaluation and sensitivity analysis of a conceptual design for supercritical water gasification of soybean straw to produce hydrogen. Bioresour. Technol. 2021, 331, 125005. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Pattharaprachayakul, N.; Kesonlam, N.; Duangjumpa, P.; Rungsardthong, V.; Suvajittanont, W.; Lamsal, B. Optimization of hydraulic retention time and organic loading rate in anaerobic digestion of squeezed pineapple liquid wastes for biogas production. Appl. Sci. Eng. Prog. 2021, 14, 468–476. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Gupta, P.K.; Kim, B.S. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Kim, M.; Singhvi, M.S.; Kim, B.S. Eco-friendly and rapid one-step fermentable sugar production from raw lignocellulosic biomass using enzyme mimicking nanomaterials: A novel cost-effective approach to biofuel production. Chem. Eng. J. 2023, 465, 142879. [Google Scholar] [CrossRef]
- Rekha, B.; Saravanathamizhan, R. Catalytic conversion of corncob biomass into bioethanol. Int. J. Energy Res. 2021, 45, 4508–4518. [Google Scholar] [CrossRef]
- Hughes, J.P.; Rowley-Neale, S.; Banks, C. Enhancing the efficiency of the hydrogen evolution reaction utilising Fe3P bulk modified screen-printed electrodes via the application of a magnetic field. RSC Adv. 2021, 11, 8073–8079. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Malhotra, B.D.; Gupta, V.K.; Ramteke, P.W.; Silva, R.N.; Shukla, P.; Dubey, K.K.; Mishra, P.K. Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnol. Adv. 2019, 37, 107384. [Google Scholar] [CrossRef]
- Chandel, H.; Kumar, P.; Chandel, A.K.; Verma, M.L. Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Convers. Biorefinery 2022, 4, 1–23. [Google Scholar] [CrossRef]
- Jafari, O.; Zilouei, H. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment. Bioresour. Technol. 2016, 214, 670–678. [Google Scholar] [CrossRef]
- Mohanraj, S.; Anbalagan, K.; Kodhaiyolii, S.; Pugalenthi, V. Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: Effect of Pd (II) ion and phytogenic palladium nanoparticles. J. Biotechnol. 2014, 192, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Saka, A.; Jule, L.T.; Gudata, L.; Shuma, S.; Nagaprasad, N.; Subramanian, K.; Afessa, G.; Ramaswamy, K. Preparation of biobutanol via coffee bean harsh extracts by zinc oxide nanoparticle as catalyst. Biomass Convers. Biorefinery 2022, 1–10. [Google Scholar] [CrossRef]
- Gandarias, I.; Nowicka, E.; May, B.J.; Alghareed, S.; Armstrong, R.D.; Miedziak, P.J.; Taylor, S.H. The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: An efficient route for upgrading aqueous biobutanol. Catal. Sci. Technol. 2016, 6, 4201–4209. [Google Scholar] [CrossRef]
- Sakarya, K.; Akyol, Ç.; Demirel, B. The effect of short-term exposure of engineered nanoparticles on methane production during mesophilic anaerobic digestion of primary sludge. Water Air Soil Pollut. 2015, 226, 100. [Google Scholar] [CrossRef]
- Kundu, D.; Banerjee, S.; Karmakar, S.; Banerjee, R. A new insight on improved biomethanation using graphene oxide from fermented Assam lemon waste. Fuel 2022, 309, 122195. [Google Scholar] [CrossRef]
- Adachi, D.; Hama, S.; Nakashima, K.; Bogaki, T.; Ogino, C.; Kondo, A. Production of biodiesel from plant oil hydrolysates using an Aspergillus oryzae whole-cell biocatalyst highly expressing Candida antarctica lipase B. Bioresour. Technol. 2013, 135, 410–416. [Google Scholar] [CrossRef]
- Husin, H.; Asnawi, T.M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F. Solid catalyst nanoparticles derived from oil-palm empty fruit bunches (OP-EFB) as a renewable catalyst for biodiesel production. IOP Conf. Ser. Mater. Sci. Eng. 2018, 358, 012008. [Google Scholar] [CrossRef]
- Ngoie, W.I.; Oyekola, O.O.; Ikhu-Omoregbe, D.; Welz, P.J. Valorisation of edible oil wastewater sludge: Bioethanol and biodiesel production. Waste Biomass Valorization 2020, 11, 2431–2440. [Google Scholar] [CrossRef]
- Sanusi, I.A.; Suinyuy, T.N.; Lateef, A.; Kana, G.E. Effect of nickel oxide nanoparticles on bioethanol production: Process optimization, kinetic and metabolic studies. Process Biochem. 2020, 92, 386–400. [Google Scholar] [CrossRef]
- Varaprasad, D.; Raghavendra, P.; Sudha, N.R.; Sarma, L.S.; Parveen, S.N.; Chandana, P.S.; Chandra, M.S.; Chandrasekhar, T. Bioethanol production from green alga Chlorococcum minutum through reduced graphene oxide-supported platinum-ruthenium (Pt-Ru/RGO) nanoparticles. BioEnergy Res. 2021, 15, 280–288. [Google Scholar] [CrossRef]
- Sanusi, I.A.; Suinyuy, T.N.; Kana, G.E. Impact of nanoparticle inclusion on bioethanol production process kinetic and inhibitor profile. Biotechnol. Rep. 2021, 29, e00585. [Google Scholar] [CrossRef] [PubMed]
- Iyyappan, J.; Pravin, R.; Al-Ghanim, K.A.; Govindarajan, M.; Nicoletti, M.; Baskar, G. Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production. Bioresour. Technol. 2023, 374, 128804. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.M.M. ZnO Nanorods as Catalyts for Biodiesel Production from Olive Oil. Doctoral Dissertation, University of Louisville, Louisville, KY, USA, 2013. [Google Scholar]
- Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 2010, 89, 2267–2271. [Google Scholar] [CrossRef]
- Dantas, J.; Leal, E.; Mapossa, A.B.; Cornejo, D.R.; Costa, A.C.F.M. Magnetic nanocatalysts of NiO 5ZnO. 5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel 2017, 191, 463–471. [Google Scholar] [CrossRef]
- Gurunathan, B.; Ravi, A. Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresour. Technol. 2015, 190, 424–428. [Google Scholar] [CrossRef]
- Baskar, G.; Gurugulladevi, A.; Nishanthini, T.; Aiswarya, R.; Tamilarasan, K.J.R.E. Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renew. Energy 2017, 103, 641–646. [Google Scholar] [CrossRef]
- Banerjee, S.; Singh, H.; Das, D.; Atta, A. Process optimization for enhanced biodiesel production by Neochloris oleoabundans UTEX 1185 with concomitant CO2 sequestration. Ind. Eng. Chem. Res. 2019, 58, 15760–15771. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, J.; Zhang, H.; Yang, M.; Zang, L. Comparison of mesophilic and thermophilic biohydrogen production amended by nickel-doped magnetic carbon. J. Clean. Prod. 2020, 270, 122730. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Q.; Ding, P.; You, S.; Zhang, Q.; Jiang, H. Effects of Fe0 and Ni0 nanoparticles on hydrogen production from cotton stalk hydrolysate using Klebsiella sp. WL1316: Evaluation of size and concentration of the nanoparticles. Int. J. Hydrogen Energy 2020, 45, 6243–6253. [Google Scholar] [CrossRef]
- Shanmugam, S.; Krishnaswamy, S.; Chandrababu, R.; Veerabagu, U.; Pugazhendhi, A.; Mathimani, T. Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@ SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass. Fuel 2020, 273, 117777. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, C.; Zhang, H.; Wang, Z.; Zhang, J.; Song, M. Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose. Int. J. Hydrogen Energy 2018, 43, 8729–8738. [Google Scholar] [CrossRef]
- Brindha, K.; Mohanraj, S.; Rajaguru, P.; Pugalenthi, V. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment. Sci. Total Environ. 2023, 859, 160002. [Google Scholar] [CrossRef] [PubMed]
- Beckers, L.; Hiligsmann, S.; Lambert, S.D.; Heinrichs, B.; Thonart, P. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour. Technol. 2013, 133, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Abel, S.; Tesfaye, J.; Gudata, L.; Nagaprasad, N.; Subramanian, K.; Mani, M.; Shanmugam, R.; Dwarampudi, L.P.; Roy, A.; Stalin, B.; et al. Biobutanol preparation through sugar-rich biomass by Clostridium saccharoperbutylacetonicum conversion using ZnO nanoparticle catalyst. Biomass Convers. Biorefinery 2022, 1–11. [Google Scholar] [CrossRef]
- Ali, S.; Shafique, O.; Mahmood, S.; Mahmood, T.; Khan, B.A.; Ahmad, I. Biofuels production from weed biomass using nanocatalyst technology. Biomass Bioenergy 2020, 139, 105595. [Google Scholar] [CrossRef]
- Tahir, N.; Tahir, M.N.; Alam, M.; Yi, W.; Zhang, Q. Exploring the prospective of weeds (Cannabis sativa L., Parthenium hysterophorus L.) for biofuel production through nanocatalytic (Co, Ni) gasification. Biotechnol. Biofuels 2020, 13, 148. [Google Scholar] [CrossRef]
- Sankaran, R.; Markandan, K.; Khoo, K.S.; Cheng, C.K.; Ashokkumar, V.; Deepanraj, B.; Show, P.L. The Expansion of Lignocellulose Biomass Conversion into Bioenergy via Nanobiotechnology. Front. Nanotechnol. 2021, 3, 96. [Google Scholar] [CrossRef]
- Huang, D.; Li, T.; Xu, P.; Zeng, G.; Chen, M.; Lai, C.; Cheng, M.; Guo, X.; Chen, S.; Li, Z. Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: Enzyme secretion, straw humification and structural alteration. Bioresour. Technol. 2019, 276, 335–342. [Google Scholar] [CrossRef]
- Rajak, R.C.; Saha, P.; Singhvi, M.; Kwak, D.; Kim, D.; Lee, H.; Deshmukh, A.R.; Bu, Y.; Kim, B.S. An eco-friendly biomass pretreatment strategy utilizing reusable enzyme mimicking nanoparticles for lignin depolymerization and biofuel production. Green Chem. 2021, 23, 5584–5599. [Google Scholar] [CrossRef]
- Su, T.C.; Fang, Z.; Zhang, F.; Luo, J.; Li, X.K. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave. Sci. Rep. 2015, 5, 17538. [Google Scholar] [CrossRef]
- Qi, W.; He, C.; Wang, Q.; Liu, S.; Yu, Q.; Wang, W.; Leksawasdi, N.; Wang, C.; Yuan, Z. Carbon-Based Solid Acid Pretreatment in Corncob Saccharification: Specific Xylose Production and Efficient Enzymatic Hydrolysis. ACS Sustain. Chem. Eng. 2018, 6, 3640–3648. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, J.; Martínez-Hernández, J.L.; Segura-Ceniceros, P.; López, G.; Saade, H.; Medina-Morales, M.A.; Ramos-González, R.; Aguilar, C.N.; Ilyina, A. Cellulases immobilization on chitosan-coated magnetic nanoparticles: Application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst. Eng. 2017, 40, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Peña, L.; Xu, F.; Hohn, K.L.; Li, J.; Wang, D. Propyl-Sulfonic Acid Functionalized Nanoparticles as Catalyst for Pretreatment of Corn Stover. J. Biomater. Nanotechnol. 2014, 5, 8–16. [Google Scholar] [CrossRef]
- Wang, D.; Ikenberry, M.; Peña, L.; Hohn, K.L. Acid-Functionalized Nanoparticles for Pretreatment of Wheat Straw. J. Biomater. Nanobiotechnol. 2012, 3, 342–352. [Google Scholar] [CrossRef]
- Ingle, A.P.; Philippini, R.R.; Silvério da Silva, S. Pretreatment of sugarcane bagasse using two different acid-functionalized magnetic nanoparticles: A novel approach for high sugar recovery. Renew. Energy 2020, 150, 957–964. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Wang, L.; Wang, Z.; Liu, P.; Gao, J.; Jiang, Y. Incorporation of Metals and Enzymes with Porous Imine Molecule Cages for Highly Efficient Semiheterogeneous Chemoenzymatic Catalysis. ACS Catal. 2021, 11, 5544–5553. [Google Scholar] [CrossRef]
- Gou, Z.; Ma, N.L.; Zhang, W.; Lei, Z.; Su, Y.; Sun, C.; Wang, G.; Chen, H.; Zhang, S.; Chen, G.; et al. Innovative hydrolysis of corn stover biowaste by modified magnetite laccase immobilized nanoparticles. Environ. Res. 2020, 188, 109829. [Google Scholar] [CrossRef]
- Amin, R.; Khorshidi, A.; Shojaei, A.F.; Rezaei, S.; Faramarzi, M.A. Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int. J. Biol. Macromol. 2018, 114, 106–113. [Google Scholar] [CrossRef]
- Muthuvelu, K.S.; Rajarathinam, R.; Selvaraj, R.N.; Rajendren, V.B. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation. Int. J. Biol. Macromol. 2020, 152, 1098–1107. [Google Scholar] [CrossRef]
- Wang, W.; Ji, S.; Lee, I. Fast and efficient nanoshear hybrid alkaline pretreatment of corn stover for biofuel and materials production. Biomass Bioenergy 2013, 51, 35–42. [Google Scholar] [CrossRef]
- Ji, S.; Lee, I. Impact of cationic polyelectrolyte on the nanoshear hybrid alkaline pretreatment of corn stover: Morphology and saccharification study. Bioresour. Technol. 2013, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, R.; Borthakur, A.; Srivastava, P.; Srivastava, N.; Tiwary, D.; Mishra, P.K. Effect of nanoscale TiO2-activated carbon composite on Solanum lycopersicum (L.) and Vigna radiata (L.) seeds germination. Energy Ecol. Environ. 2016, 1, 131–140. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Han, Y.; Dodd, D.; Schroeder, C.M.; Mackie, R.I.; Cann, I.K. Thermostable enzymes as biocatalysts in the biofuel industry. Adv. Appl. Microbiol. 2010, 70, 1–55. [Google Scholar]
- Dutta, N.; Mukhopadhyay, A.; Dasgupta, A.K.; Chakrabarti, K. Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles. Bioresour. Technol. 2014, 153, 269–277. [Google Scholar] [CrossRef]
- Goh, W.J.; Makam, V.S.; Hu, J.; Kang, L.; Zheng, M.; Yoong, S.L.; Udalagama, C.N.B.; Pastorin, G. Iron Oxide Filled Magnetic Carbon Nanotube–Enzyme Conjugates for Recycling of Amyloglucosidase: Toward Useful Applications in Biofuel Production Process. Langmuir 2012, 28, 16864–16873. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Singh, J.; Ramteke, P.W.; Mishra, P.K.; Srivastava, M. Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresour. Technol. 2015, 183, 262–266. [Google Scholar] [CrossRef]
- Verma, M.L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C.J.; Puri, M. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis. Bioresour. Technol. 2013, 135, 2–6. [Google Scholar] [CrossRef]
- Kaur, P.; Taggar, M.S.; Kalia, A. Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw. Biomass Convers. Biorefinery 2021, 11, 955–969. [Google Scholar] [CrossRef]
- Manasa, P.; Saroj, P.; Korrapati, N. Immobilization of Cellulase Enzyme on Zinc Ferrite Nanoparticles in Increasing Enzymatic Hydrolysis on Ultrasound-Assisted Alkaline Pretreated Crotalaria juncea Biomass. Indian J. Sci. Technol. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Tiwari, R.; Goel, R.; Nain, L. Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw. Int. J. Biol. Macromol. 2017, 96, 538–549. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.; Govindarajan, M.; Al-Mulahim, N.; Ahmed, Z.; Mahboob, S. Cellulase immobilized magnetic nanoparticles for green energy production from Allamanda schottii L.: Sustainability research in waste recycling. Saudi J. Biol. Sci. 2021, 28, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Zanuso, E.; Ruiz, H.A.; Domingues, L.; Teixeira, J.A. Magnetic Nanoparticles as Support for Cellulase Immobilization Strategy for Enzymatic Hydrolysis Using Hydrothermally Pretreated Corn Cob Biomass. BioEnergy Res. 2022, 15, 1946–1957. [Google Scholar] [CrossRef]
- Javid, A.; Amiri, H.; Kafrani, A.T.; Rismani-Yazdi, H. Post-hydrolysis of cellulose oligomers by cellulase immobilized on chitosan-grafted magnetic nanoparticles: A key stage of butanol production from waste textile. Int. J. Biol. Macromol. 2022, 207, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Zarafeta, D.; Galanopoulou, A.P.; Stamatis, H. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles. Protein J. 2019, 38, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Ariaeenejad, S.; Motamedi, E.; Salekdeh, G.H. Immobilization of enzyme cocktails on dopamine functionalized magnetic cellulose nanocrystals to enhance sugar bioconversion: A biomass reusing loop. Carbohydr. Polym. 2021, 256, 117511. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, I.A.; Faloye, F.D.; Gueguim Kana, E.B. Impact of Various Metallic Oxide Nanoparticles on Ethanol Production by Saccharomyces cerevisiae BY4743: Screening, Kinetic Study and Validation on Potato Waste. Catal. Lett. 2019, 149, 2015–2031. [Google Scholar] [CrossRef]
- Saeed, S.; Samer, M.; Mohamed, M.S.M.; Abdelsalam, E.; Mohamed, Y.M.A.; Abdel Hafez, S.H.; Attia, Y.A. Implementation of graphitic carbon nitride nanomaterials and laser irradiation for increasing bioethanol production from potato processing wastes. Environ. Sci. Pollut. Res. 2022, 29, 34887–34897. [Google Scholar] [CrossRef]
- Gupta, K.; Chundawat, T.S. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass Bioenergy 2020, 143, 105840. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, S.E.; Lee, H.; Yun, J.Y. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour. Technol. 2014, 159, 446–450. [Google Scholar] [CrossRef]
- Lin, L.; Liu, T.; Zhang, Y.; Liang, X.; Sun, R.; Zeng, W.; Wang, Z. Enhancing ethanol detection by heterostructural silver nanoparticles decorated polycrystalline zinc oxide nanosheets. Ceram. Int. 2016, 42, 3138–3144. [Google Scholar] [CrossRef]
- Arora, A.; Nandal, P.; Singh, J.; Verma, M.L. Nanobiotechnological advancements in lignocellulosic biomass pretreatment. Mater. Sci. Energy Technol. 2020, 3, 308–318. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, J.; Tu, M.; Cheng, Y.S. Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. Adv. Bioenergy 2017, 2, 1–68. [Google Scholar]
- Razack, S.A.; Duraiarasan, S.; Mani, V. Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnol. Rep. 2016, 11, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Ingle, A.P.; Gaikwad, S.; Dussán, K.J.; da Silva, S.S. Role of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Ethanol. In Nanotechnology for Bioenergy and Biofuel Production; Green Chemistry and Sustainable Technology; Rai, M., da Silva, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 153–171. [Google Scholar]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Guo, Y.; Wang, X.; Xiao, L.P.; Zhou, J. Biodegradation of Lignin into Low-Molecular-Weight Oligomers by Multicopper Laccase-Mimicking Nanozymes of the Cu/GMP Complex at Room Temperature. ACS Sustain. Chem. Eng. 2022, 10, 5489–5499. [Google Scholar] [CrossRef]
- Haghighi, M.; Rahmani, F.; Kariminejad, F.; Akbari Sene, R. Photodegradation of lignin from pulp and paper mill effluent using TiO2/PS composite under UV-LED radiation: Optimization, toxicity assessment and reusability study. Process Saf. Environ. Prot. 2019, 122, 48–57. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Lu, S.Y. Selective and efficient cleavage of lignin model compound into value-added aromatic chemicals with CuFe2O4 nanoparticles decorated on partially reduced graphene oxides via sunlight-assisted heterogeneous Fenton processes. J. Taiwan Inst. Chem. Eng. 2019, 97, 264–271. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Ortega, G.A.; Kumar, S.; Srinivasan, S.; Rajabzadeh, A.R. Strong nanozymatic activity of thiocyanate capped gold nanoparticles: An enzyme-nanozyme cascade reaction based dual mode ethanol detection in saliva. New J. Chem. 2022, 46, 1194–1202. [Google Scholar] [CrossRef]
- El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. [Google Scholar] [CrossRef]
- Mahajan, R.; Chandel, S.; Puniya, A.K.; Goel, G. Effect of pretreatments on cellulosic composition and morphology of pine needle for possible utilization as substrate for anaerobic digestion. Biomass Bioenergy 2020, 141, 105705. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kim, B.S. Bacterial cellulose production from biodiesel–derived crude glycerol, magnetic functionalization, and its application as carrier for lipase immobilization. Int. J. Biol. Macromol. 2020, 153, 902–911. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Singh, R.; Srivastava, M.; Mohammad, A.; Harakeh, S.; Pratap Singh, R.; Pal, D.B.; Haque, S.; Tayeb, H.H.; Moulay, M.; et al. Impact of nanomaterials on sustainable pretreatment of lignocellulosic biomass for biofuels production: An advanced approach. Bioresour. Technol. 2023, 369, 128471. [Google Scholar] [CrossRef] [PubMed]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int. J. Hydrogen Energy 2007, 32, 17–23. [Google Scholar] [CrossRef]
- Mena, P.C. Mass Transfer and Hydrodynamics in Multiphase Systems; Universidade do Porto: Porto, Portugal, 2005. [Google Scholar] [CrossRef]
- Husain, Q.; Ansari, S.A.; Alam, F.; Azam, A. Immobilization of Aspergillus oryzae β galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int. J. Biol. Macromol. 2011, 49, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ingle, A.P.; Rathod, J.; Pandit, R.; da Silva, S.S.; Rai, M. Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose 2017, 24, 5529–5540. [Google Scholar] [CrossRef]
- Basso, A.; Braiuca, P.; Cantone, S.; Ebert, C.; Linda, P.; Spizzo, P.; Caimi, P.; Hanefeld, U.; Degrassi, G.; Gardossi, L. In Silico analysis of enzyme surface and glycosylation effect as a tool for efficient covalent immobilisation of CalB and PGA on sepabeads. Adv. Synth. Catal. 2007, 349, 877–886. [Google Scholar] [CrossRef]
- Ali, S.; Shafique, O.; Mahmood, T.; Hanif, M.A.; Ahmed, I.; Khan, B.A. A Review about Perspectives of Nanotechnology in Agriculture. Pak. J. Agric. Res. 2018, 31, 116–121. [Google Scholar] [CrossRef]
- Ahmad, M.; Gani, A.; Masoodi, F.A.; Rizvi, S.H. Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties. Int. J. Biol. Macromol. 2020, 151, 85–91. [Google Scholar] [CrossRef]
- Onda, A.; Ochi, T.; Yanagisawa, K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 2008, 10, 1033–1037. [Google Scholar] [CrossRef]
- Guo, F.; Fang, Z.; Xu, C.C.; Smith, R.L. Solid acid mediated hydrolysis of biomass for producing biofuels. Prog. Energy Combust. Sci. 2012, 38, 672–690. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Peña, L.; Ikenberry, M.; Ware, B.; Hohn, K.L.; Boyle, D.; Sun, X.S.; Wang, D. Cellobiose hydrolysis using acid-functionalized nanoparticles. Biotechnol. Bioprocess Eng. 2011, 16, 1214–1222. [Google Scholar] [CrossRef]
- Bosu, S.; Pooja, R.P.; Rajasimman, M. Role of nanomaterials in enhanced ethanol production through biological methods—Review on operating factors and machine learning applications. Fuel 2022, 320, 123905. [Google Scholar] [CrossRef]
- Gaikwad, S.; Ingle, A.P.; da Silva, S.S.; Rai, M. Immobilized Nanoparticles-Mediated Enzymatic Hydrolysis of Cellulose for Clean Sugar Production: A Novel Approach. Curr. Nanosci. 2018, 15, 296–303. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Biswas, J.K.; da Silva, S.S. Emerging role of nanobiocatalysts in hydrolysis of lignocellulosic biomass leading to sustainable bioethanol production. Catal. Rev. Sci. Eng. 2019, 61, 1–26. [Google Scholar] [CrossRef]
- Abraham, R.E.; Verma, M.L.; Barrow, C.J.; Puri, M. Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol. Biofuels 2014, 7, 90. [Google Scholar] [CrossRef]
- Ahmad, R.; Sardar, M. Immobilization of cellulase on TiO2 nanoparticles by physical and covalent methods: A comparative study. Indian J. Biochem. Biophys. 2014, 51, 314–320. [Google Scholar]
- Huang, P.J.; Chang, K.L.; Hsieh, J.F.; Chen, S.T. Catalysis of rice straw hydrolysis by the combination of immobilized cellulase from Aspergillus niger on β-Cyclodextrin-Fenanoparticles and ionic liquid. BioMed Res. Int. 2015, 2015, 409103. [Google Scholar]
- Zhang, W.; Qiu, J.; Feng, H.; Zang, L.; Sakai, E. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J. Magn. Magn. Mater. 2015, 375, 117–123. [Google Scholar] [CrossRef]
- Alftrén, J.; Hobley, T.J. Covalent immobilization of β-Glucosidase on Magnetic particles for Lignocellulose Hydrolysis. Appl. Biochem. Biotechnol. 2013, 169, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zhang, W.; Yang, Z.; Yang, X.; Wang, N.; Yu, X. Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 2017, 22, 269. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Bao, H.; Huang, W. Size-Dependent Redispersion or Agglomeration of Ag Clusters on CeO2. J. Phys. Chem. C 2022, 126, 11537–11543. [Google Scholar] [CrossRef]
- Li, S.; Niu, Z.; Jiao, Y.; Jin, P.; Yang, D.; Bai, C.; Liu, J.; Li, G.; Luo, Y. Preparation of different morphology Cu/GO nanocomposites and their catalytic performance for thermal decomposition of ammonium perchlorate. RSC Adv. 2022, 12, 22806–22814. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Niu, B.; Chen, X.; Lin, X.; Chen, Z.; Guo, H. One-step simple calcination of Ni@C(N) core-shell microspheres: Catalytic reduction of 4-nitrophenol, supercapacitor and electrocatalytic hydrogen production. J. Alloys Compd. 2023, 937, 168467. [Google Scholar] [CrossRef]
- Gharibshahi, L.; Saion, E.; Gharibshahi, E.; Shaari, A.H.; Matori, K.A. Structural and optical properties of ag nanoparticles synthesized by thermal treatment method. Materials 2017, 10, 402. [Google Scholar] [CrossRef]
- Kozhushner, M.A.; Trakhtenberg, L.I.; Bodneva, V.L.; Belisheva, T.V.; Landerville, A.C.; Oleynik, I.I. Effect of temperature and nanoparticle size on sensor properties of nanostructured tin dioxide films. J. Phys. Chem. C 2014, 118, 11440–11444. [Google Scholar] [CrossRef]
- Perwez, M.; Ahmad, R.; Sardar, M. A reusable multipurpose magnetic nanobiocatalyst for industrial applications. Int. J. Biol. Macromol. 2017, 103, 16–24. [Google Scholar] [CrossRef]
- Soni, M.; Prakash, N. Factors Affecting the Geometry of Silver Nanoparticles Synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am. J. Nanotechnol. 2011, 2, 112–121. [Google Scholar]
- Marciniak, L.; Nowak, M.; Trojanowska, A.; Tylkowski, B.; Jastrzab, R. The effect of pH on the size of silver nanoparticles obtained in the reduction reaction with citric and malic acids. Materials 2020, 13, 5444. [Google Scholar] [CrossRef]
- Armendariz, V.; Herrera, I.; Peralta-Videa, J.R.; Jose-Yacaman, M.; Troiani, H.; Santiago, P.; Gardea-Torresdey, J.L. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. J. Nanopart. Res. 2004, 6, 377–382. [Google Scholar] [CrossRef]
- Chithra, M.J.; Sathya, M.; Pushpanathan, K. Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin.–Engl. 2015, 28, 394–404. [Google Scholar] [CrossRef]
- Velgosová, O.; Mražíková, A.; Marcinčáková, R. Influence of pH on green synthesis of Ag nanoparticles. Mater. Lett. 2016, 180, 336–339. [Google Scholar] [CrossRef]
- Okitsu, K.; Sharyo, K.; Nishimura, R. One-pot synthesis of gold nanorods by ultrasonic irradiation: The effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 2009, 25, 7786–7790. [Google Scholar] [CrossRef]
- Assad, H.; Kaya, S.; Senthil Kumar, P.; Vo, D.V.N.; Sharma, A.; Kumar, A. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel 2022, 323, 124277. [Google Scholar] [CrossRef]
- Sekoai, P.T.; Ouma, C.N.M.; du Preez, S.P.; Modisha, P.; Engelbrecht, N.; Bessarabov, D.G.; Ghimire, A. Application of nanoparticles in biofuels: An overview. Fuel 2019, 237, 380–397. [Google Scholar] [CrossRef]
- Baalousha, M. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, 2093–2101. [Google Scholar] [CrossRef]
- Abhilash; Pandey, B.D. Synthesis of zinc-based nanomaterials: A biological perspective. IET Nanotechnol. 2012, 6, 144–148. [Google Scholar] [CrossRef]
- Yazdani, F.; Edrissi, M. Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2010, 171, 86–89. [Google Scholar] [CrossRef]
- Gunnarsson, R.; Pilch, I.; Boyd, R.D.; Brenning, N.; Helmersson, U. The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering. J. Appl. Phys. 2016, 120, 044308. [Google Scholar] [CrossRef]
- Patra, J.K.; Baek, K.H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 417305. [Google Scholar] [CrossRef]
- Dirba, I.; Schwöbel, C.A.; Zintler, A.; Komissinskiy, P.; Molina-Luna, L.; Gutfleisch, O. Production of Fe nanoparticles from γ-Fe2O3 by high-pressure hydrogen reduction. Nanoscale Adv. 2020, 2, 4777–4784. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Li, X.; Xu, C.; Sadeghzadeh, S.M. Green synthesis of Dy2Ce2O7 Nanoparticles Immobilized on Fibrous Nano-silica for Synthesis of 3-Aryl-2-oxazolidinones from Alkenes, Amines, and Carbon Dioxide. Catal. Lett. 2020, 150, 1729–1740. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Debnath, J.C.; Mehejabin, F.; Islam, N.; Tripura, R.; Mofijur, M.; Hoang, A.T.; Rasul, M.G.; Vo, D.V.N. Utilization of nanomaterials in accelerating the production process of sustainable biofuels. Sustain. Energy Technol. Assess. 2023, 55, 102894. [Google Scholar] [CrossRef]
- Lee, C.H.; Lin, T.S.; Mou, C.Y. Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4, 165–179. [Google Scholar] [CrossRef]
- Baskar, G.; Naveen Kumar, R.; Heronimus Melvin, X.; Aiswarya, R.; Soumya, S. Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew. Energy 2016, 98, 23–28. [Google Scholar] [CrossRef]
- Zang, L.; Qiu, J.; Wu, X.; Zhang, W.; Sakai, E.; Wei, Y. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind. Eng. Chem. Res. 2014, 53, 3448–3454. [Google Scholar] [CrossRef]
- Narayanan, V.; Sànchez i Nogué, V.; van Niel, E.W.J.; Gorwa-Grauslund, M.F. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express 2016, 6, 59. [Google Scholar] [CrossRef]
- Mumtaz, M.; Baqar, Z.; Hussain, N.; Afifa; Bilal, M.; Azam, H.M.H.; Baqir, Q.-U.; Iqbal, H.M.N. Application of nanomaterials for enhanced production of biodiesel, biooil, biogas, bioethanol, and biohydrogen via lignocellulosic biomass transformation. Fuel 2022, 315, 122840. [Google Scholar] [CrossRef]
- Rubio-Arroyo, M.F.; Ayona-Argueta, M.A.; Poisot, M.; Ramírez-Galicia, G. Biofuel obtained from transesterification by combined catalysis. Energy Fuel. 2009, 23, 2840–2842. [Google Scholar] [CrossRef]
- Mullai, P.; Yogeswari, M.K.; Sridevi, K. Optimisation and enhancement of biohydrogen production using nickel nanoparticles—A novel approach. Bioresour. Technol. 2013, 141, 212–219. [Google Scholar] [CrossRef] [PubMed]
Biofuel | Treatment Conditions | Yield | References |
---|---|---|---|
Bioethanol | Alkali-pretreated sugarcane bagasse fermented with Clostridium thermocellum DSM 1237 | Ethanol: 0.86 g/L (83.3% of theoretical yield) | [30] |
Lignocellulosic biomass-based syngas by freshly cultured Clostridium butyricum | Yield of bioethanol: 29.94 mmol/L of syngas | [31] | |
Biobutanol | Surfactant pretreatment PEG6000 of apple pomace (100 °C, 5 min), enzymatic hydrolysis followed by fermentation by Clostridium beijerinckii CECT 508 in 96 h. | 42 g/L sugars, 3.55 g/L acetone, 9.11 g/L butanol, 0.26 g/L ethanol, 0.276 gB/gS yield; 91% sugar consumption | [32] |
Microwave-assisted alkali pretreated cocoa pod husk, hydrolyzed enzymatically fermentation by Clostridium saccharoperbutylacetonicum N1–4. | Maximum butanol of 54.4 g/L | [33] | |
Biodiesel | Hydrolysates from steam pretreated sugarcane bagasse and rice husk, used Meyerozyma guilliermondii and Pichia kudriavzevii, respectively. | Maximum lipid concentration: 37.99 +/− 0.003% from Meyerozyma guilliermondii lipid accumulation of 2.39 +/− 0.003 g/L in Pichia kudriavzevii | [34] |
Culturing of Yarrowia lipolytica on hydrolysate of lignocellulosic biomass | 12.01 g/L lipids with a maximum yield of 0.16 g/g | [35] | |
Biohydrogen | Napier grass alkaline hydrolysate at pH 5.5; dark fermentation for 48 h at mesophilic temperature | Maximum amount of hydrogen −763.34 mL | [36] |
Chemically pretreated sugarcane bagasse subjected to bacterial hydrolysis followed by dark fermentation with Clostridium butyricum CGS5 | Maximum hydrogen yield: 6.01 mmol H2/g reducing sugar for bagasse | [37] | |
Biogas | Enzymatic pretreatment by mixed enzymes secreted by Trichoderma viride and Aspergillus sp. in 2:3 ratio | Methane yield: 512.64 mL/g TS added; 31.74% higher than the control | [38] |
Fungal pretreatment of cereal crop materials (rye, wheat, barley, triticale) | Increase in methane yield: 10–18%; 80% cellulose degradation | [39] |
Biofuel Type | Nanoparticles | Raw Materials | Yield/Concentration of Biofuel (Specified Units) | Reference |
---|---|---|---|---|
Bioethanol | Novel nano-magnetic catalyst prepared from carbonaceous tailings (dolomite) from cupriferous mineral processing | Edible oil wastewater sludge | 3.54 g/L | [70] |
Nickel oxide nanocatalyst of 29 nm size | lignocellulosic weeds | Bioethanol yield of 0.26 g/g, enhanced to >65% | [71] | |
Reduced graphene oxide supported Platinum ruthenium used on derived bioethanol | Chlorococcum minutum alga | Bioethanol yield of 32.6g/L | [72] | |
Fe3O4 and NiO NPs | Potato peel | Bioethanol yield of 50% with NiO and 93% with Fe3O4 | [73] | |
NiO NP for delignification | Elephant grass | Bioethanol production using Kluyveromyces marxianus with 14.65 ± 1.75 g/L yield | [74] | |
Biodiesel | ZnO nanorods for biodiesel | Olive oil | 94.8% conversions at 150 °C, 8 h | [75] |
Dolomite NP | Oil wastewater sludge | Maximum biodiesel yield of 94% at oil to ethanol ratio of 1:9 | [70] | |
KF–CaO solid base nanocatalyst | Chinese tallow seed oil | Biodiesel yield was 96.8% | [76] | |
Magnetic nanocatalysts of NiO.5ZnO.5Fe2O4 doped with Cu | Soybean oil | Increase in biodiesel yield by 5.5–85% | [77] | |
CZO nanocatalyst—copper-doped zinc oxide nanocatalyst for biodiesel production | Neem oil | Biodiesel yield of 97.18% | [78] | |
Zinc oxide with manganese | Mahua oil | Biodiesel yield 97% | [79] | |
Fe2O3 NPs | Algae Neochloris oleoabundans UTEX 1185 | Biodiesel yield of 81% | [80] | |
Biohydrogen | Anaerobic sludge as the inoculum for a nickel-doped magnetic carbon material | Glucose as the substrate | Yielded 260 mL/g glucose of hydrogen | [81] |
Fe0 and Ni0 NPs | Cotton stalk | 90 mL/g substrate yield, hydrogen is produced by Klebsiella sp. WL1316 | [82] | |
Fe3O4@SiO2-chitosan | Sweet sorghum stover | 2.8 mol H2/mol reducing sugar | [83] | |
Ferric oxide/carbon NPs | Sewage sludge | 218.63 mL/g glucose of hydrogen | [84] | |
CoNPs-assisted Clostridial fermentation | Glucose | 2.89 mol H2/mol glucose was produced, a 1.6-fold increase | [85] | |
Porous silica (SiO2)-entrapped FeO NP | Glucose | 2.2 mol H2/mol glucose of hydrogen | [86] | |
Biobutanol | ZnO NP in Sugarcane molasses using Clostridium saccharoperbutylacetonicum | Sugarcane molasses | Biobutanol yield of 0.39 g/L with 0.12 g/Lh productivity | [87] |
ZnO NP in Sugarcane using Clostridium saccharoperbutylacetonicum | Sugarcane extract | Biobutanol yield of 0.39 g/L with 0.07 g/L.h productivity | [87] | |
ZnO NP in Sweet sorghum using Clostridium saccharoperbutylacetonicum | Sugary sorghum extract | Biobutanol yield of 0.2 g/L with 0.02 g/Lh productivity | [87] | |
CoNPs-assisted Clostridial fermentation | Glucose | Biobutanol yield of 975 ± 2.5 mg/L (1.27 fold higher production) | [85] | |
Biogas | Nickel and Cobalt NPs | Carthamous oxyacantha, Chenopodium album and Asphodelus tenuifolius | 23.75% of biogas | [88] |
Nickel and Cobalt NPs in | Parthenium hysterophorus L. and Cannabis sativa L. | Biogas yield of 17.66% (P. hysterophorus) and 12% (C. sativa) | [89] |
Pre-Treated Lignocellulosic Biomass | Nanoparticle | Enzyme | Result | References |
---|---|---|---|---|
Acid autoclave + alkali pre-treated rice straw | Glutaraldehyde crosslinking on magnetic iron oxide nanoparticles | Cellulase produced from Aspergillus fumigatus | Enhanced saccharification efficiency; 50.34% activity retention after 4 saccharification cycles | [111] |
Agave atrovirens leaves | Chitosan-coated magnetic NPs | Trichoderma reesei cellulase using glutaraldehyde as a coupling agent | Reused for four cycles with 50% of activity | [95] |
Ultrasound-assisted alkaline-pretreated Crotalaria juncea | Zinc ferrite NPs | Cellulase enzyme immobilized using glutaraldehyde as the cross-linker | Improved thermal stability at a temperature of 60 °C compared to free enzyme; tetained activity for three cycles | [112] |
Alkali-pretreated paddy straw | Iron oxide (Fe2O3) NPs | Holocellulase from Aspergillus niger | Holocellulase from Aspergillus niger | [113] |
Allamanda schottii L. | Iron oxide (Fe2O3) NPs | Cellulase | Retained 60% activity after 5 cycles | [114] |
Hydrothermally pretreated corn cob | Chitosan coated magnetic NPs | Cellulase | Reused up to 13 cycles with 44.8% of its initial activity and produced 8.2-fold glucose compared to free enzyme | [115] |
Waste textile | Chitosan-coated Fe3O4 NPs | Cellulase | Glucose yield of 51.5 g/L and cellulase retained 51.5% of its initial activity after three times reuses | [116] |
Avicel PH101 | Magnetic hierarchical porous carbon (MHPC) nanomaterials | Cellulase from Trichoderma reesei | Thermal, storage, and operational stability of the immobilized cellulase improved compared to the free enzyme; enzyme activity: 1.35 U mg−1 | [117] |
Rice straw and sugar beet pulp | Carbon Nano-Carriers functionalized with magnetite nanoparticles and dopamine (DA/Fe3O4NPs@CNC) | Enzyme cocktails including 3 cellulases, 2 hemicellulases, and their combinations | Increase in 20–76% of fermentable sugars in contrast to free enzyme cocktails. Recovery/reuse of the nano-biocatalyst up to 10 cycles, with >50% of initial activity | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, S.; Saravanabhupathy, S.; Anusha; Rajak, R.C.; Banerjee, R.; Dikshit, P.K.; Padigala, C.T.; Das, A.K.; Kim, B.S. Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol. Catalysts 2023, 13, 1439. https://doi.org/10.3390/catal13111439
Dutta S, Saravanabhupathy S, Anusha, Rajak RC, Banerjee R, Dikshit PK, Padigala CT, Das AK, Kim BS. Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol. Catalysts. 2023; 13(11):1439. https://doi.org/10.3390/catal13111439
Chicago/Turabian StyleDutta, Swagata, Sarveshwaran Saravanabhupathy, Anusha, Rajiv Chandra Rajak, Rintu Banerjee, Pritam Kumar Dikshit, Chandra Tejaswi Padigala, Amit K. Das, and Beom Soo Kim. 2023. "Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol" Catalysts 13, no. 11: 1439. https://doi.org/10.3390/catal13111439
APA StyleDutta, S., Saravanabhupathy, S., Anusha, Rajak, R. C., Banerjee, R., Dikshit, P. K., Padigala, C. T., Das, A. K., & Kim, B. S. (2023). Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol. Catalysts, 13(11), 1439. https://doi.org/10.3390/catal13111439