A Novel Strategy for the Preparation of Supported Pd as an Efficient Catalyst for the Hydrogenation of Nitrobenzene in Mild Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural Properties of the Pd/Y, Pd/ZSM-5, and Pd/MOR
2.2. Catalytic Tests
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Catalysts
3.3. Catalyst Characterization
3.4. Hydrogenation of Nitrobenzene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sheldon, R.A. Recent advances in green catalytic oxidations of alcohols in aqueous media. Catal. Today 2015, 247, 4–13. [Google Scholar] [CrossRef]
- Christoffel, F.; Ward, T.R. Palladium-Catalyzed Heck Cross-Coupling Reactions in Water: A Comprehensive Review. Catal. Lett. 2017, 148, 489–511. [Google Scholar] [CrossRef]
- Yao, P.; Huang, Y.; Jiao, Y.; Xu, H.; Wang, J.; Chen, Y. Soot oxidation over Pt-loaded CeO2-ZrO2 catalysts under gasoline exhaust conditions: Soot-catalyst contact efficiency and Pt chemical state. Fuel 2023, 334, 126782. [Google Scholar]
- Chen, Z.; Luo, D.; Zhang, H.; Zhang, N.; Li, J.; Gao, B.; Qiu, R.; Li, Y.; Yang, Z. Reaction pathway of nitric oxide oxidation on nano-sized Pt/SiO2 catalysts for diesel exhaust purification. Mol. Catal. 2021, 516, 111991. [Google Scholar] [CrossRef]
- Tan, W.; Xie, S.; Wang, X.; Wang, C.; Li, Y.; Shaw, T.E.; Ma, L.; Ehrlich, S.N.; Liu, A.; Ji, J.; et al. Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chem. Eng. J. 2021, 426, 131855. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, W.; Tan, Y.; Li, F.; Tian, M. Preparation of M/Ce1-xTixO2 (M=Pt, Rh, Ru) from sol-gel method and their catalytic oxidation activity for diesel soot. J. Rare Earths 2022, 40, 1849–1859. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, X.; Rao, C.; Xu, X.; Xu, J.; Fang, X.; Li, Y.; Wang, X. Engineering low Pd content catalysts for soot combustion through tuning the Pd-SnO2 interface interaction: Disclosing the critical role of dual Pd valence states for the activity. Appl. Catal. A Gen. 2022, 647, 118906. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, M.J.; Lee, E.J.; Lee, D.W.; Kim, C.H.; Lee, K.Y. Promoting effect of Rh-impregnation on Ag/CeO2 catalyst for soot oxidation. Appl. Surf. Sci. 2022, 572, 151504. [Google Scholar] [CrossRef]
- Hu, C.G.; Dai, L.M. Multifunctional Carbon-Based Metal-Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Adv. Mater. 2017, 29, 1604942. [Google Scholar] [CrossRef]
- Motokura, K.; Ding, S.; Usui, K.; Kong, Y. Enhanced Catalysis Based on the Surface Environment of the Silica-Supported Metal Complex. ACS Catal. 2021, 11, 11985–12018. [Google Scholar] [CrossRef]
- Morawski, A.W.; Gano, M.; Ćmielewska, K.; Kusiak-Nejman, E.; Pełech, I.; Staciwa, P.; Ekiert, E.; Narkiewicz, U. Photocatalytic Reduction Efficiency of CO2 Depending on ZnO Particle Size. Catalysts 2023, 13, 1270. [Google Scholar] [CrossRef]
- Ma, M.; Yang, R.; He, C.; Jiang, Z.; Shi, J.W.; Albilali, R.; Fayaz, K.; Liu, B. Pd-based catalysts promoted by hierarchical porous Al2O3 and ZnO microsphere supports/coatings for ethyl acetate highly active and stable destruction. J. Hazard. Mater. 2021, 401, 123281. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Liu, F.; He, H. Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene. Appl. Catal. B Environ. 2013, 142, 72–79. [Google Scholar] [CrossRef]
- Faroppa, M.L.; Chiosso, M.E.; Musci, J.J.; Ocsachoque, M.A.; Merlo, A.B.; Casella, M.L. Oxidation of Glycerol in Base-Free Aqueous Solution Using Carbon-Supported Pt and PtSn Catalyst. Catalysts 2023, 13, 1071. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Zhang, L.; Pan, S.; Bian, C.; Zheng, X.; Meng, X.; Xiao, F.S. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chem. Commun. 2015, 51, 5936–5938. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Q.; Han, R.; Fu, K.; Su, Y.; Zheng, Y.; Wu, X.; Song, C.; Ji, N.; Lu, X.; et al. Confinement and synergy effect of bimetallic Pt-Mn nanoparticles encapsulated in ZSM-5 zeolite with superior performance for acetone catalytic oxidation. Appl. Catal. B Environ. 2022, 309, 121224. [Google Scholar] [CrossRef]
- Tao, J.; Liu, Y.; Deng, J.; Jing, L.; Hou, Z.; Wei, L.; Wang, Z.; Dai, H. Methane Combustion over Zeolite-Supported Palladium-Based Catalysts. Catalysts 2023, 13, 1251. [Google Scholar] [CrossRef]
- Gan, T.; Chu, X.; Qi, H.; Zhang, W.; Zou, Y.; Yan, W.; Liu, G. Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: Promotional synergistic effect of Pt nanoparticles and Al2O3 support. Appl. Catal. B Environ. 2019, 257, 117943. [Google Scholar] [CrossRef]
- Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B Environ. 2018, 220, 462–470. [Google Scholar] [CrossRef]
- Asal, Y.M.; Al-Akraa, I.M.; Mohammad, A.M.; El-Deab, M.S. A competent simultaneously co-electrodeposited Pt-MnOx nanocatalyst for enhanced formic acid electro-oxidation. J. Taiwan Inst. Chem. Eng. 2019, 96, 169–175. [Google Scholar] [CrossRef]
- Guo, P.; Zhan, Y.; Yang, Y.; Lu, T. Preparation of COFs Supported Pd as an Efficient Catalyst for the Hydrogenation of Aromatic Nitro. Catal. Lett. 2022, 152, 3725–3732. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhou, J.; Ma, Z.; Weng, X.; Cheng, L.; Tang, G. Preparation of a High-Silicon ZSM-5 Molecular Sieve Using Only Coal Gangue as the Silicon and Aluminum Sources. Materials 2023, 16, 4338. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Guo, D.; Jiang, W.; Tao, S.; Wang, X.; Yu, S.; Song, Z.; Liu, Y. Rapid synthesis of hierarchical silicoaluminophosphate molecular sieves using carbon-silicon composites from rice husk ash for deoxygenation of stearic acids. Fuel 2023, 335, 126956. [Google Scholar] [CrossRef]
- Ren, S.; Yang, F.; Tian, C.; Yue, Y.; Zou, W.; Hua, W.; Gao, Z. Selective Alkylation of Benzene with Methanol to Toluene and Xylene over H-ZSM-5 Zeolites: Impact of Framework Al Spatial Distribution. Catalysts 2023, 13, 1295. [Google Scholar] [CrossRef]
- Kalvachev, Y.; Todorova, T.; Kolev, H.; Merker, D.; Popov, C. Benzene Oxidation over Pt Loaded on Fly Ash Zeolite X. Catalysts 2023, 13, 1128. [Google Scholar] [CrossRef]
- Hanaoka, T.; Aoyagi, M.; Edashige, Y. Improvement of n-Butene Yield in Dimethyl Ether-to-Olefin Reaction Using Ferrierite Zeolite Catalysts. Catalysts 2023, 13, 1040. [Google Scholar] [CrossRef]
- Maharani, D.K.; Sanjaya, I.G.M.; Amaria, A.; Anggraeni, M.A.; Jannah, L.R. Molecular Docking Analysis Chitosan-Zeolite-ZnO Nanocomposite and Its Potency Against SARS-CoV-2. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1125, 012006. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Li, K.; Zhang, X.; Wang, L.; Zou, J.-J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B Environ. 2018, 227, 386–408. [Google Scholar] [CrossRef]
- Downing, R.S.; Kunkeler, P.J.; van Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136. [Google Scholar] [CrossRef]
- Liu, H.; Deng, Z.; Wang, B.; Ding, Z.; Li, Z. Efficient visible light-initiated hydrogenation of nitrobenzene for chemoselective production of aniline, azoxybenzene, azobenzene and hydrazobenzene over CQDs/CdS nanocomposites. Dalton Trans. 2023, 52, 13129–13136. [Google Scholar] [CrossRef]
- Tong, F.; Liang, X.; Ma, F.; Bao, X.; Wang, Z.; Liu, Y.; Wang, P.; Cheng, H.; Dai, Y.; Huang, B.; et al. Plasmon-Mediated Nitrobenzene Hydrogenation with Formate as the Hydrogen Donor Studied at a Single-Particle Level. Acs Catal. 2021, 11, 3801–3809. [Google Scholar] [CrossRef]
- Wang, L.; Yang, D.; Alhumade, H.; Yi, H.; Qi, X.; Lei, A. Revealing the Solution Structure of Pd(OAc)(2) with Halide Additives. Chin. J. Chem. 2022, 40, 895–901. [Google Scholar] [CrossRef]
- Zhao, S.; Li, H.; Zhang, W.; Wang, B.; Yang, X.; Peng, Y.; Zhang, Y.; Li, Z. Insight into Crystallization Features of MOR Zeolite Synthesized via Ice-Templating Method. Catalysts 2022, 12, 301. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Fu, Y.; Amoo, C.C.; Jiang, Y.; Yang, R.; Sun, X.; Xing, C.; Maturura, E. An ambient pressure method for synthesizing NaY zeolite. Microporous Mesoporous Mater. 2021, 320, 111073. [Google Scholar] [CrossRef]
- Santos, B.P.; Almeida, D.D.; Marques, M.D.F.V.; Henriques, C.A. Degradation of Polypropylene and Polyethylene Wastes Over HZSM-5 and USY Zeolites. Catal. Lett. 2019, 149, 798–812. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, C.; Deng, D.; Sui, D.; Gao, X.; Yang, Y. Hydrogenation of BHMF with controllable selectivity to tetrahydropyranone and 1-hydroxy-2,5-hexanedione under atmospheric H2 pressure. Green Chem. 2023, 25, 1823–1834. [Google Scholar] [CrossRef]
- Khder, A.S.; Altass, H.M.; Jassas, R.S.; Al-Rooqi, M.M.; Khder, M.A.; Morad, M.; Gebreil, A.; Moussa, Z.; Ahmed, S.A. Room-Temperature CO Oxidation over Au-Pd Monometallic and Bimetallic Nanoparticle-Supported MgO. Acs Appl. Nano Mater. 2023, 6, 4243–4252. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, J.; Li, W.; Fu, Y. Hyaluronic Acid-Guided Synthesis of Pd Nanocatalysts for Transfer Hydrogenation of 4-Nitrophenol. Catal. Lett. 2021, 151, 1902–1910. [Google Scholar] [CrossRef]
- Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Wu, C.; Yang, Y. Synthesis of Pd/SBA-15 catalyst employing surface-bonded vinyl as a reductant and its application in the hydrogenation of nitroarenes. RSC Adv. 2017, 7, 3443–3449. [Google Scholar] [CrossRef]
- Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Ma, L.F.; Yang, Y. Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca–Al catalysts via a two-step procedure. Green Chem. 2017, 19, 5103–5113. [Google Scholar] [CrossRef]
- Tang, Q.; Yuan, Z.; Jin, S.; Yao, K.; Yang, H.; Chi, Q.; Liu, B. Biomass-derived carbon-supported Ni catalyst: An effective heterogeneous non-noble metal catalyst for the hydrogenation of nitro compounds. React. Chem. Eng. 2020, 5, 58–65. [Google Scholar] [CrossRef]
- Fronczak, M.; Kasprzak, A.; Bystrzejewski, M. Carbon-encapsulated iron nanoparticles with deposited Pd: A high-performance catalyst for hydrogenation of nitro compounds. J. Environ. Chem. Eng. 2021, 9, 104673. [Google Scholar] [CrossRef]
- Patra, A.K.; Vo, N.T.; Kim, D. Highly robust magnetically recoverable Ag/Fe2O3 nanocatalyst for chemoselective hydrogenation of nitroarenes in water. Appl. Catal. A Gen. 2017, 538, 148–156. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Liu, X.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z. Pd nanoparticles supported on a covalent triazine-based framework material: An efficient and highly chemoselective catalyst for the reduction of nitroarenes. New J. Chem. 2018, 42, 9684–9689. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Ma, L.; He, D. Synergistic effect between Pd and Re on Pd-Re/SBA-15 catalysts and their catalytic behavior in glycerol hydrogenolysis. Rsc Adv. 2016, 6, 38680–38689. [Google Scholar] [CrossRef]
- Howeizi, J.; Taghvaei-Ganjali, S.; Malekzadeh, M.; Motiee, F.; Sahebdelfar, S. Effect of the distribution and dispersion of palladium nanoparticles on the reducibility and performance of Pd/Al2O3 catalyst in liquid-phase hydrogenation of olefins. React. Kinet. Mech. Catal. 2020, 130, 777–795. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, R.; Wang, H.; Bao, W.; Wei, Y. Encapsulating uniform Pd nanoparticles in TS-1 zeolite as efficient catalyst for catalytic abatement of indoor formaldehyde at room temperature. Appl. Catal. B Environ. 2020, 278, 119311. [Google Scholar] [CrossRef]
- Prekob, Á.; Muránszky, G.; Kocserha, I.; Fiser, B.; Kristály, F.; Halasi, G.; Kónya, Z.; Viskolcz, B.; Vanyorek, L. Sonochemical Deposition of Palladium Nanoparticles onto the Surface of N-Doped Carbon Nanotubes: A Simplified One-Step Catalyst Production Method. Catal. Lett. 2020, 150, 505–513. [Google Scholar] [CrossRef]
Samples | BET Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pd Content (wt%) | n(Si)/n(Al) |
---|---|---|---|---|
Y | 623 | 0.33 | - | 13.8 |
1.5 Pd/Y | 566 | 0.30 | 1.43 | 13.1 |
ZSM-5 | 390 | 0.22 | - | 28.3 |
1.5 Pd/ZSM-5 | 289 | 0.20 | 1.36 | 27.9 |
MOR | 457 | 0.20 | - | 13.0 |
1.5 Pd/MOR | 453 | 0.19 | 1.39 | 12.5 |
Entry | Catalyst | Temperature (°C) | Time (h) | TOF b (h−1) | References |
---|---|---|---|---|---|
1 | Ni/C | 40 | 4 | 1 | [41] |
2 | Pd/ox-CEINs a | 70 | 1 | 103 | [42] |
3 | Ag/α-Fe2O3 | 100 | 0.5 | 248 | [43] |
4 | Pd@CTF a | 25 | 0.2 | 495 | [44] |
5 | Pd/CTF a | 30 | 0.5 | 984 | [21] |
6 | 1.5 Pd/Y | 30 | 1 | 1094 | This work |
7 | 1.5 Pd/ZSM-5 | 30 | 1 | 1365 | This work |
8 | 1.5 Pd/MOR | 30 | 1 | 1548 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Cheng, Y.; Wu, M.; Duan, Y.; Yang, Y.; Lu, T. A Novel Strategy for the Preparation of Supported Pd as an Efficient Catalyst for the Hydrogenation of Nitrobenzene in Mild Conditions. Catalysts 2023, 13, 1438. https://doi.org/10.3390/catal13111438
Hu Z, Cheng Y, Wu M, Duan Y, Yang Y, Lu T. A Novel Strategy for the Preparation of Supported Pd as an Efficient Catalyst for the Hydrogenation of Nitrobenzene in Mild Conditions. Catalysts. 2023; 13(11):1438. https://doi.org/10.3390/catal13111438
Chicago/Turabian StyleHu, Zhi, Yiyi Cheng, Meng Wu, Ying Duan, Yanliang Yang, and Tianliang Lu. 2023. "A Novel Strategy for the Preparation of Supported Pd as an Efficient Catalyst for the Hydrogenation of Nitrobenzene in Mild Conditions" Catalysts 13, no. 11: 1438. https://doi.org/10.3390/catal13111438
APA StyleHu, Z., Cheng, Y., Wu, M., Duan, Y., Yang, Y., & Lu, T. (2023). A Novel Strategy for the Preparation of Supported Pd as an Efficient Catalyst for the Hydrogenation of Nitrobenzene in Mild Conditions. Catalysts, 13(11), 1438. https://doi.org/10.3390/catal13111438