Phenomenal Insight into Electrochemically Induced Photocatalytic Degradation of Nitrobenzene on Variant Au-Modified TiO2 Nanotubes
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Procedures
3.1. Chemicals and Instruments
3.2. Preparation of Photocatalyst
3.3. Experiment Ways
3.4. Characterization of Catalyst
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di, G.; Shixu, Z.; Tingting, J.; Hong, J.; Xirui, W.; Baohui, W. Positive P/g-C3N4 thermo-coupled photocatalytic oxidation of refractory organics in wastewater for total utilization of solar Vis-IR region. Mater. Chem. Phys. 2020, 253, 123307. [Google Scholar] [CrossRef]
- Jo, W.-K.; Natarajan, T.S. Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem. Eng. J. 2015, 281, 549–565. [Google Scholar] [CrossRef]
- Eid, K.; Sliem, M.H.; Abdullah, A.M. Tailoring the defects of sub-100 nm multipodal titanium nitride/oxynitride nanotubes for efficient water splitting performance. Nanoscale Adv. 2021, 3, 5016–5026. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Sun, L.; Wang, C.; Lai, Y.; Wang, M.; Chen, H.; Lin, C. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 2010, 55, 7211–7218. [Google Scholar] [CrossRef]
- Chong, X.; Zhao, B.; Li, R.; Ruan, W.; Yang, X. Photocatalytic degradation of rhodamine 6G on Ag modified TiO2 nanotubes: Surface-enhanced Raman scattering study on catalytic kinetics and substrate recyclability. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 7–12. [Google Scholar] [CrossRef]
- Xing, L.; Jia, J.; Wang, Y.; Zhang, B.; Dong, S. Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation. Int. J. Hydrogen Energy 2010, 35, 12169–12173. [Google Scholar] [CrossRef]
- Shang-Hau, C.; Hsin-Chia, H.; Han-Ting, L.; Feng-Yu, T.; Chun-Wen, T.; Yung-Jung, H.; Chun-Hway, H. Plasmonic gold nanoplates-decorated ZnO branched nanorods@TiO2 nanorods heterostructure photoanode for efficient photoelectrochemical water splitting. J. Photochem. Photobiol. A Chem. 2023, 443, 114816. [Google Scholar] [CrossRef]
- Tran, T.T.H.; Tran, T.K.C.; Le, T.Q.X. Engineering the surface structure of brookite-TiO2 nanocrystals with Au nanoparticles by cold-plasma technique and its photocatalytic and self-cleaning property. J. Nanopart Res. 2023, 25, 203. [Google Scholar] [CrossRef]
- Crişan, D.; Drăgan, N.; Răileanu, M.; Crişan, M.; Ianculescu, A.; Luca, D.; Năstuţă, A.; Mardare, D. Structural study of sol–gel Au/TiO2 films from nanopowders. Appl. Surf. Sci. 2011, 257, 4227–4231. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Zhang, C.; Fu, L.; Li, G.; Shao, Z.; Yi, B. Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods. Int. J. Hydrogen Energy 2013, 38, 13023–13030. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Xu, M.; Zhu, C.; Fang, W.; Wei, Y. Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes prepared by pulse electrodeposition. J. Electroanal. Chem. 2015, 759, 158–166. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, H.; Cui, D.; Lu, K.; Kong, X.; Cai, J.; Yu, S.; Zhang, X. Selectivity Regulation of Au/Titanate by Biochar Modification for Selective Oxidation of Benzyl Alcohol. Catalysts 2023, 13, 864. [Google Scholar] [CrossRef]
- Zhao, Y.; Hoivik, N.; Akram, M.N.; Wang, K. Study of plasmonics induced optical absorption enhancement of Au embedded in titanium dioxide nanohole arrays. Opt. Mater. Express 2017, 7, 2871–2879. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Photocatalytic reduction of acetophenone in membrane reactors under UV and visible light using TiO2 and Pd/TiO2 catalysts. Chem. Eng. J. 2015, 274, 307–316. [Google Scholar] [CrossRef]
- Liao, W.; Yang, J.; Zhou, H.; Murugananthan, M.; Zhang, Y. Electrochemically Self-Doped TiO2 Nanotube Arrays for Efficient Visible Light Photoelectrocatalytic Degradation of Contaminants. Electrochim. Acta 2014, 136, 310–317. [Google Scholar] [CrossRef]
- Xiao, F.X.; Miao, J.; Tao, H.B.; Hung, S.F.; Wang, H.Y.; Yang, H.B.; Chen, J.; Chen, R.; Liu, B. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 2015, 11, 2115–2131. [Google Scholar] [CrossRef]
- Thabit, M.; Liu, H.; Zhang, J.; Wang, B. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light. J. Environ. Sci. 2017, 60, 53–60. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, X.; Liu, M.; Luo, S.; Luo, Y.; Li, G. Fast photoelectro-reduction of Cr(VI) over MoS2@TiO2 nanotubes on Ti wire. J. Hazard. Mater. 2017, 329, 230–240. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Liang, Z.; Wu, Z.; Wang, W.; Han, D.; Niu, L. CdS/TiO2 Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef]
- Gong, J.; Pu, W.; Yang, C.; Zhang, J. A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property. Electrochim. Acta 2012, 68, 178–183. [Google Scholar] [CrossRef]
- Jing, L.; Tan, H.L.; Amal, R.; Ng, Y.H.; Sun, K.-N. Polyurethane sponge facilitating highly dispersed TiO2 nanoparticles on reduced graphene oxide sheets for enhanced photoelectro-oxidation of ethanol. J. Mater. Chem. A 2015, 3, 15675–15682. [Google Scholar] [CrossRef]
- Kejia, W.; Minglong, C.; Qiang, Z.; Xuehui, L. Radical and (photo)electron transfer induced mechanisms for lignin photo-and electro-catalytic depolymerization. Green Energy Environ. 2023, 8, 383–405. [Google Scholar] [CrossRef]
- Mohamed, M.M. Gold loaded titanium dioxide–carbon nanotube composites as active photocatalysts for cyclohexane oxidation at ambient conditions. RSC Adv. 2015, 5, 46405–46414. [Google Scholar] [CrossRef]
- Wang, H.; Qin, P.; Yi, G.; Zu, X.; Zhang, L.; Hong, W.; Chen, X. A high-sensitive ultraviolet photodetector composed of double-layered TiO2 nanostructure and Au nanoparticles film based on Schottky junction. Mater. Chem. Phys. 2017, 194, 42–48. [Google Scholar] [CrossRef]
- Ghorbani, V.; Dorranian, D. Properties of TiO2/Au nanocomposite produced by pulsed laser irradiation of mixture of individual colloids. Appl. Phys. A 2016, 122, 1019. [Google Scholar] [CrossRef]
- Moazeni, M.; Hajipour, H.; Askari, M.; Nusheh, M. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Mater. Res. Bull. 2015, 61, 70–75. [Google Scholar] [CrossRef]
- Yun, J.-W.; Nguyen, T.K.; Lee, S.; Kim, S.; Kim, Y.S.; Nguyen, T.K.; Nguyen, C.K.; Ha, Y. Enhanced Plasmonic Electron Transfer from Gold Nanoparticles to TiO2 Nanorods via Electrochemical Surface Reduction. J. Korean Phys. Soc. 2020, 77, 853–860. [Google Scholar] [CrossRef]
- Eri, F.; Yusuke, K.; Ryuto, O.; Atsuhiro, T.; Hiroshi, K. One-pot synthesis of secondary amines from aldehydes and primary amines over trifunctional Au-TiO2 as a water adsorbent, acid catalyst and photocatalyst without the use of hydrogen gas. Appl. Catal. A Gen. 2023, 657, 119156. [Google Scholar] [CrossRef]
- Van Viet, P.; Trung, N.C.; Nhut, P.M.; Van Hieu, L.; Thi, C.M. The fabrication of the antibacterial paste based on TiO2 nanotubes and Ag nanoparticles-loaded TiO2 nanotubes powders. J. Exp. Nanosci. 2017, 12, 220–231. [Google Scholar] [CrossRef]
- Fu, F.; Zhang, Y.; Zhang, Z.; Zhang, X.; Chen, Y.; Zhang, Y. The preparation and performance of Au loads TiO2 nanomaterials. Mater. Res. Express 2019, 6, 095041. [Google Scholar] [CrossRef]
- Jansanthea, P.; Chomkitichai, W.; Ketwaraporn, J.; Pookmanee, P.; Phanichphant, S. Flame spray pyrolysis synthesized gold-loaded titanium dioxide photocatalyst for degradation of Rhodamine B. J. Aust. Ceram. Soc. 2018, 55, 719–727. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Y.; Yin, M.; Zhang, H.; Cheng, C.; Lu, L.; Xue, X.; Fan, H.J.; Chen, X.; Li, D. Understanding the Enhancement Mechanisms of Surface Plasmon-Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO2 Nanotubes. Adv. Mater. Interfaces 2015, 2, 1500169. [Google Scholar] [CrossRef]
- Venkata Seshaiah, K.; Vishnuvardhan Reddy, C.; Sai Santosh Kumar, R. Plasmonic Au NPs embedded Ytterbium-doped TiO2 nanocomposites photoanodes for efficient indoor photovoltaic devices. Appl. Surf. Sci. 2023, 611, 155728. [Google Scholar] [CrossRef]
- João, L.; Eva, D.; Pawel, M.; Magdalena, M.; Tomasz, K.; Adriana, Z.; Rui, C.M.; João, G. The role of noble metals in TiO2 nanotubes for the abatement of parabens by photocatalysis, catalytic and photocatalytic ozonation. Sep. Purif. Technol. 2023, 326, 124747. [Google Scholar] [CrossRef]
- Di, G.; Shixu, Z.; Tingting, J.; Hong, J.; Baohui, W.; Xirui, W. E-carbon antenna-assembled TiO2 nanotubes for sensitization of photocatalytic reaction exemplified by enhanced oxidation of nitrobenzene. Chem. Eng. J. 2019, 375, 121992. [Google Scholar] [CrossRef]
Samples | Ti | O | Au |
---|---|---|---|
0.4 g/L Au/TiO2 NTs | 99.72 | 0.2832 | 0.0071 |
0.6 g/L Au/TiO2 NTs | 99.56 | 0.3424 | 0.0137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, C.; Wang, Y.; Gu, D.; Wang, B. Phenomenal Insight into Electrochemically Induced Photocatalytic Degradation of Nitrobenzene on Variant Au-Modified TiO2 Nanotubes. Catalysts 2023, 13, 1445. https://doi.org/10.3390/catal13111445
Wang M, Li C, Wang Y, Gu D, Wang B. Phenomenal Insight into Electrochemically Induced Photocatalytic Degradation of Nitrobenzene on Variant Au-Modified TiO2 Nanotubes. Catalysts. 2023; 13(11):1445. https://doi.org/10.3390/catal13111445
Chicago/Turabian StyleWang, Meng, Chaoying Li, Yingdong Wang, Di Gu, and Baohui Wang. 2023. "Phenomenal Insight into Electrochemically Induced Photocatalytic Degradation of Nitrobenzene on Variant Au-Modified TiO2 Nanotubes" Catalysts 13, no. 11: 1445. https://doi.org/10.3390/catal13111445
APA StyleWang, M., Li, C., Wang, Y., Gu, D., & Wang, B. (2023). Phenomenal Insight into Electrochemically Induced Photocatalytic Degradation of Nitrobenzene on Variant Au-Modified TiO2 Nanotubes. Catalysts, 13(11), 1445. https://doi.org/10.3390/catal13111445