Photocatalytic Degradation of Psychiatric Pharmaceuticals in Hospital WWTP Secondary Effluents Using g-C3N4 and g-C3N4/MoS2 Catalysts in Laboratory-Scale Pilot
Abstract
:1. Introduction
2. Results and Discussion
2.1. Degradation of Psychiatric Drugs
2.2. Transformation Products
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Collection of Hospital Wastewater Treatment Plant Samples
3.3. Photocatalytic Materials
3.4. Photocatalytic Experiments
3.4.1. Solar Simulator
3.4.2. Laboratory-Scale Pilot Plant
3.5. Extraction of Wastewater Samples
3.6. LTQ-FT Orbitrap Instrument Operational Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deegan, A.M.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemöller, M.; Tobin, J.; Morrissey, A. Treatment Options for Wastewater Effluents from Pharmaceutical Companies. Int. J. Environ. Sci. Technol. 2011, 8, 649–666. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Shah, N.S.; Khan, Z.U.H.; Rizwan, M.; Murtaza, B.; Jamil, F.; Shah, A.; Ullah, A.; Nazzal, Y.; Howari, F. Visible Light Driven Doped CeO2 for the Treatment of Pharmaceuticals in Wastewater: A Review. J. Water Process. Eng. 2022, 49, 103130. [Google Scholar] [CrossRef]
- Tang, L.; Wang, J.; Jia, C.; Lv, G.; Xu, G.; Li, W.; Wang, L.; Zhang, J.; Wu, M. Simulated Solar Driven Catalytic Degradation of Psychiatric Drug Carbamazepine with Binary BiVO4 Heterostructures Sensitized by Graphene Quantum Dots. Appl. Catal. B Environ. 2017, 205, 587–596. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Titanium Dioxide Photocatalysis for Pharmaceutical Wastewater Treatment. Environ. Chem. Lett. 2014, 12, 27–47. [Google Scholar] [CrossRef]
- aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Rapti, I.; Kosma, C.; Albanis, T.; Konstantinou, I. Solar Photocatalytic Degradation of Inherent Pharmaceutical Residues in Real Hospital WWTP Effluents Using Titanium Dioxide on a CPC Pilot Scale Reactor. Catal. Today 2022, in press. [Google Scholar] [CrossRef]
- Jacob, L.; Bohlken, J.; Kostev, K. What Have We Learned in the Past Year? A Study on Pharmacy Purchases of Psychiatric Drugs from Wholesalers in the Days Prior to the First and Second COVID-19 Lockdowns in Germany. J. Psychiatr. Res. 2021, 140, 346–349. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Lopez-Gomez, M.I.; Warner, B.; Ruiter-Lopez, L. Psychotropic Medication in Children and Adolescents in the United States in the Year 2004 vs 2014. DARU J. Pharm. Sci. 2018, 26, 5–10. [Google Scholar] [CrossRef]
- Kosma, C.I.; Kapsi, M.G.; Konstas, P.S.G.; Trantopoulos, E.P.; Boti, V.I.; Konstantinou, I.K.; Albanis, T.A. Assessment of Multiclass Pharmaceutical Active Compounds (PhACs) in Hospital WWTP Influent and Effluent Samples by UHPLC-Orbitrap MS: Temporal Variation, Removals and Environmental Risk Assessment. Environ. Res. 2020, 191, 110152. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and Antidepressants Occurrence in Surface Waters and Sediments Collected in the North of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef]
- Vasskog, T.; Anderssen, T.; Pedersen-Bjergaard, S.; Kallenborn, R.; Jensen, E. Occurrence of Selective Serotonin Reuptake Inhibitors in Sewage and Receiving Waters at Spitsbergen and in Norway. J. Chromatogr. A 2008, 1185, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Telles-Correia, D.; Barbosa, A.; Cortez-Pinto, H.; Campos, C.; Rocha, N.B.F.; Machado, S. Psychotropic Drugs and Liver Disease: A Critical Review of Pharmacokinetics and Liver Toxicity. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Minguez, L.; Bureau, R.; Halm-Lemeille, M.P. Joint Effects of Nine Antidepressants on Raphidocelis Subcapitata and Skeletonema Marinoi: A Matter of Amine Functional Groups. Aquat. Toxicol. 2018, 196, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzesiuk, M.; Spijkerman, E.; Lachmann, S.C.; Wacker, A. Environmental Concentrations of Pharmaceuticals Directly Affect Phytoplankton and Effects Propagate through Trophic Interactions. Ecotoxicol. Environ. Saf. 2018, 156, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Best, C.; Melnyk-Lamont, N.; Gesto, M.; Vijayan, M.M. Environmental Levels of the Antidepressant Venlafaxine Impact the Metabolic Capacity of Rainbow Trout. Aquat. Toxicol. 2014, 155, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.; Bijlsma, L.; Pitarch, E.; López, F.J.; Hernández, F. Occurrence of Pharmaceutical Metabolites and Transformation Products in the Aquatic Environment of the Mediterranean Area. Trends Environ. Anal. Chem. 2021, 29, e00118. [Google Scholar] [CrossRef]
- Sousa, M.A.; Gonçalves, C.; Vilar, V.J.P.; Boaventura, R.A.R.; Alpendurada, M.F. Suspended TiO2-Assisted Photocatalytic Degradation of Emerging Contaminants in a Municipal WWTP Effluent Using a Solar Pilot Plant with CPCs. Chem. Eng. J. 2012, 198–199, 301–309. [Google Scholar] [CrossRef]
- Johnson, G.J.; Bullen, L.A.; Akil, M. Review of emerging pollutants and advanced oxidation processes. Int. J. Adv. Res. 2017, 5, 2315–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapti, I.; Bairamis, F.; Konstantinou, I. g-C3N4/MoS2 Heterojunction for Photocatalytic Removal of Phenol and Cr(VI). Photochem 2021, 1, 358–370. [Google Scholar] [CrossRef]
- Bairamis, F.; Konstantinou, I. WO3 Fibers/ g-C3N4 z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr(VI) in Aquatic Media. Catalysts 2021, 11, 792. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Niu, S.; Zheng, J.; Guo, C. Enhanced Photo-Catalytic Performance by Effective Electron-Hole Separation for MoS2 Inlaying in g-C3N4 Hetero-Junction. Appl. Surf. Sci. 2019, 475, 355–362. [Google Scholar] [CrossRef]
- Kane, A.; Chafiq, L.; Dalhatou, S.; Bonnet, P.; Nasr, M.; Gaillard, N.; Dikdim, J.M.D.; Monier, G.; Assadie, A.A.; Zeghioud, H. g-C3N4/TiO2 S-Scheme Heterojunction Photocatalyst with Enhanced Photocatalytic Carbamazepine Degradation and Mineralization. J. Photochem. Photobiol. A Chem. 2022, 430, 113971. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Sampaio, M.J.; Ribeiro, A.R.; Silva, C.G.; Faria, J.L.; Silva, A.M.T. Metal-Free g-C3N4 Photocatalysis of Organic Micropollutants in Urban Wastewater under Visible Light. Appl. Catal. B Environ. 2019, 248, 184–192. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination-A Review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef] [PubMed]
- Colina-Márquez, J.; Machuca-Martínez, F.; Salas, W. Enhancement of the Potential Biodegradability and the Mineralization of a Pesticides Mixture after Being Treated by a Coupled Process of TiO2-Based Solar Photocatalysis with Constructed Wetlands. Ing. Compet. 2013, 15, 181–190. [Google Scholar]
- Amat, A.M.; Arques, A.; García-Ripoll, A.; Santos-Juanes, L.; Vicente, R.; Oller, I.; Maldonado, M.I.; Malato, S. A Reliable Monitoring of the Biocompatibility of an Effluent along an Oxidative Pre-Treatment by Sequential Bioassays and Chemical Analyses. Water Res. 2009, 43, 784–792. [Google Scholar] [CrossRef]
- Konstas, P.S.; Kosma, C.; Konstantinou, I.; Albanis, T. Photocatalytic Treatment of Pharmaceuticals in Real Hospital Wastewaters for Effluent Quality Amelioration. Water 2019, 11, 2165. [Google Scholar] [CrossRef] [Green Version]
- Lambropoulou, D.; Evgenidou, E.; Saliverou, V.; Kosma, C.; Konstantinou, I. Degradation of Venlafaxine Using TiO2/UV Process: Kinetic Studies, RSM Optimization, Identification of Transformation Products and Toxicity Evaluation. J. Hazard. Mater. 2017, 323, 513–526. [Google Scholar] [CrossRef]
- Skibiński, R. A Study of Photodegradation of Quetiapine by the Use of LC-MS/MS Method. Cent. Eur. J. Chem. 2012, 10, 232–240. [Google Scholar] [CrossRef]
- Moreira, A.J.; Campos, L.O.; Maldi, C.P.; Dias, J.A.; Paris, E.C.; Giraldi, T.R.; Freschi, G.P.G. Photocatalytic Degradation of Prozac® Mediated by TiO2 Nanoparticles Obtained via Three Synthesis Methods: Sonochemical, Microwave Hydrothermal, and Polymeric Precursor. Environ. Sci. Pollut. Res. 2020, 27, 27032–27047. [Google Scholar] [CrossRef]
- Zheng, Q.; Xu, E.; Park, E.; Chen, H.; Shuai, D. Looking at the overlooked hole oxidation: Photocatalytic transformation of organic contaminants on graphitic carbon nitride under visible light irradiation. Appl. Catal. B Environ. 2019, 240, 262–269. [Google Scholar] [CrossRef]
g-C3N4 | 1MSCN | |||||
---|---|---|---|---|---|---|
Pharmaceutical | k (min−1) | R2 | % Degradation (Time, min) | k (min−1) | R2 | % Degradation (Time, min) |
Amisulpride | 0.029 | 0.9944 | 100 (240) | 0.03 | 0.9901 | 100 (180) |
O-desmethyl-venlafaxine | 0.012 | 0.9394 | 98 (300) | 0.013 | 0.9728 | 99 (300) |
Venlafaxine | 0.015 | 0.9989 | 99 (300) | 0.015 | 0.9791 | 99 (300) |
Clozapine | 0.003 | 0.9814 | 60 (300) | 0.003 | 0.9699 | 66 (360) |
Citalopram | 0.002 | 0.9882 | 53 (300) | 0.003 | 0.9594 | 62 (300) |
Quetiapine | 0.015 | 0.99 | 99 (300) | 0.04 | 0.9926 | 99 (120) |
Carbamazepine | 0.009 | 0.9677 | 96 (300) | 0.012 | 0.9836 | 97 (300) |
Bupropion | 0.004 | 0.9772 | 76 (300) | 0.004 | 0.9476 | 79 (360) |
Fluoxetine | 0.017 | 0.9771 | 99 (300) | 0.02 | 0.9934 | 100 (300) |
Amitriptyline | 0.001 | 0.9265 | 30 (300) | 0.002 | 0.9915 | 54 (300) |
g-C3N4 | 1MoS2/g-C3N4 | |||||
---|---|---|---|---|---|---|
Pharmaceutical | k (min−1) | R2 | % Degradation (Time, min) | k (min−1) | R2 | % Degradation (Time, min) |
Amisulpride | 0.017 | 0.9958 | 100 (360) | 0.018 | 0.9028 | 100 (360) |
O-desmethyl-venlafaxine | 0.009 | 0.9831 | 97 (360) | 0.009 | 0.9259 | 100 (360) |
Venlafaxine | 0.014 | 0.9837 | 100 (360) | 0.016 | 0.9956 | 100 (360) |
Clozapine | 0.01 | 0.9786 | 98 (360) | 0.011 | 0.9892 | 98 (360) |
Citalopram | 0.007 | 0.9371 | 93 (360) | 0.008 | 0.9669 | 97 (360) |
Quetiapine | 0.015 | 0.9915 | 99 (360) | 0.02 | 0.9953 | 99 (240) |
Carbamazepine | 0.013 | 0.9877 | 99 (360) | 0.015 | 0.9922 | 99 (360) |
Bupropion | 0.004 | 0.9751 | 78 (360) | 0.005 | 0.9772 | 91 (360) |
Fluoxetine | 0.011 | 0.9869 | 99 (360) | 0.011 | 0.9894 | 99 (360) |
Amitriptyline | 0.025 | 0.9945 | 99 (180) | 0.039 | 0.9961 | 99 (120) |
g-C3N4 | 1MoS2/g-C3N4 | |||
---|---|---|---|---|
Before Treatment (t = 0 min) | After Treatment (t = 360 min) | Before Treatment (t = 0 min) | After Treatment (t = 360 min) | |
BOD5 (mgL−1) | 15.5 | 14 | 4.3 | 1.4 |
COD (mgL−1) | 28 | 37 | 33 | 19 |
BOD5/COD | 0.55 | 0.38 | 0.13 | 0.07 |
Parent Compounds/TPs | Rt (min) | Elemental Formula [M + H]+ | Δ (ppm) | RDB | Chemical Structure |
---|---|---|---|---|---|
Venlafaxine | 3.60 | C17H28NO2 | 2.644 | 4.5 | |
VNX–TP1 | 3.47 | C16H24NO2 | 0.402 | 5.5 | |
VNX–TP2 | 3.30 | C15H24NO2 | 0.098 | 4.5 | |
O-desmethyl-venlafaxine | 3.35 | C16H26NO2 | 3.011 | 4.5 | |
ODV-TP1 | 3.05 | C16H24NO | 1.629 | 5.5 | |
Quetiapine | 3.75 | C21H25N3O2S | 1.391 | 10.5 | |
QTP-TP1 | 3.36 | C7H15O2N2 | 1.598 | 1.5 | |
Fluoxetine | 3.93 | C17H19NOF3 | 4.628 | 7.5 | |
FLX-TP1 | 3.50 | C10H16NO | 1.991 | 3.5 | |
FLX-TP2 | 3.75 | C10H13NO | 0.187 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapti, I.; Boti, V.; Albanis, T.; Konstantinou, I. Photocatalytic Degradation of Psychiatric Pharmaceuticals in Hospital WWTP Secondary Effluents Using g-C3N4 and g-C3N4/MoS2 Catalysts in Laboratory-Scale Pilot. Catalysts 2023, 13, 252. https://doi.org/10.3390/catal13020252
Rapti I, Boti V, Albanis T, Konstantinou I. Photocatalytic Degradation of Psychiatric Pharmaceuticals in Hospital WWTP Secondary Effluents Using g-C3N4 and g-C3N4/MoS2 Catalysts in Laboratory-Scale Pilot. Catalysts. 2023; 13(2):252. https://doi.org/10.3390/catal13020252
Chicago/Turabian StyleRapti, Ilaeira, Vasiliki Boti, Triantafyllos Albanis, and Ioannis Konstantinou. 2023. "Photocatalytic Degradation of Psychiatric Pharmaceuticals in Hospital WWTP Secondary Effluents Using g-C3N4 and g-C3N4/MoS2 Catalysts in Laboratory-Scale Pilot" Catalysts 13, no. 2: 252. https://doi.org/10.3390/catal13020252
APA StyleRapti, I., Boti, V., Albanis, T., & Konstantinou, I. (2023). Photocatalytic Degradation of Psychiatric Pharmaceuticals in Hospital WWTP Secondary Effluents Using g-C3N4 and g-C3N4/MoS2 Catalysts in Laboratory-Scale Pilot. Catalysts, 13(2), 252. https://doi.org/10.3390/catal13020252