On the Use of Orthoformates as an Efficient Approach to Enhance the Enzymatic Enantioselective Synthesis of (S)-Ibuprofen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cosolvent Screening
2.2. Effect of the DCM Percentage on the Conversion of Ibuprofen
2.3. Effect of the Nature of the Alkyl Orthoformates in the KR of rac-Ibuprofen
2.4. Effect of the Ibuprofen Concentration
2.5. Effect of the Enzymatic Loading
3. Materials and Methods
3.1. Materials
3.2. Analytical Methods
3.3. General Procedures for Optimization
3.3.1. Screening of the Best Cosolvent
3.3.2. Screening of the Best Percentage of Dichloromethane
3.3.3. Comparative Kinetics with Different Types of Orthoesters
3.3.4. Influence of the Substrate Concentration
3.3.5. Influence of the Enzyme Loading
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sobey, C.M. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). In Hospitalized Chronic Pain Patient: A Multidisciplinary Treatment Guide; Edwards, D.A., Gulur, P., Sobey, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 159–163. [Google Scholar] [CrossRef]
- Brune, K.; Patrignani, P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J. Pain Res. 2015, 8, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Perico, N.; Cortinovis, M.; Suter, F.; Remuzzi, G. Home as the new frontier for the treatment of COVID-19: The case for anti-inflammatory agents. Lancet Infect. Dis. 2022, 23, e22–e33. [Google Scholar] [CrossRef]
- Wojcieszyńska, D.; Guzik, H.; Guzik, U. Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment. Sci. Total Environ. 2022, 834, 155317. [Google Scholar] [CrossRef]
- Evans, A.M. Pharmacodynamics and pharmacokinetics of the profens: Enantioselectivity, clinical implications, and special reference to S(+)-ibuprofen. J. Clin. Pharmacol. 1996, 36, 7S–15S. [Google Scholar]
- Evans, A.M. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur. J. Clin. Pharmacol. 1992, 42, 237–256. [Google Scholar] [CrossRef]
- Davies, N.M.; Anderson, K.E. Clinical Pharmacokinetics of Naproxen. Clin. Pharmacokinet. 1997, 32, 268–293. [Google Scholar] [CrossRef]
- Hao, H.; Wang, G.; Sun, J. Enantioselective pharmacokinetics of ibuprofen and involved mechanisms. Drug Metab. Rev. 2005, 37, 215–234. [Google Scholar] [CrossRef]
- Hutt, A.J.; Caldwell, J. The metabolic chiral inversion of 2-arylpropionic acids—A novel route with pharmacological consequences. J. Pharm. Pharmacol. 1983, 35, 693–704. [Google Scholar] [CrossRef]
- Caldwell, J.; Hutt, A.J.; Fournel-Gigleux, S. The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem. Pharmacol. 1988, 37, 105–114. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- Hancu, G.; Modroiu, A. Chiral Switch: Between Therapeutical Benefit and Marketing Strategy. Pharmaceuticals 2022, 15, 240. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska, A.; Sánchez-López, E. Dexibuprofen Therapeutic Advances: Prodrugs and Nanotechnological Formulations. Pharmaceutics 2021, 13, 414. [Google Scholar] [CrossRef]
- Sinisterra, J.-V.; Sánchez-Montero, J.-M.; Alcántara, A.-R.; Patel, R. Chemoenzymatic Preparation of Enantiomerically Pure S(+)-2-Arylpropionic Acids with Anti-inflammatory Activity. In Stereoselective Biocatalysis; CRC Press: Boca Raton, FL, USA, 2000; pp. 659–702. [Google Scholar] [CrossRef]
- Kourist, R.; de María, P.D.; Miyamoto, K. Biocatalytic strategies for the asymmetric synthesis of profens—Recent trends and developments. Green Chem. 2011, 13, 2607–2618. [Google Scholar] [CrossRef]
- José, C.; Toledo, M.V.; Briand, L.E. Enzymatic kinetic resolution of racemic ibuprofen: Past, present and future. Crit. Rev. Biotechnol. 2016, 36, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Zdun, B.; Cieśla, P.; Kutner, J.; Borowiecki, P. Expanding Access to Optically Active Non-Steroidal Anti-Inflammatory Drugs via Lipase-Catalyzed KR of Racemic Acids Using Trialkyl Orthoesters as Irreversible Alkoxy Group Donors. Catalysts 2022, 12, 546. [Google Scholar] [CrossRef]
- Ghanem, A. Direct enantioselective HPLC monitoring of lipase-catalyzed kinetic resolution of flurbiprofen. Chirality 2010, 22, 597–603. [Google Scholar] [CrossRef]
- Ghanem, A.; Aboul-Enein, M.N.; El-Azzouny, A.; El-Behairy, M.F. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. J. Chromatogr. A 2010, 1217, 1063–1074. [Google Scholar] [CrossRef]
- Mohammadi, M.; Gandomkar, S.; Habibi, Z.; Yousefi, M. One pot three-component reaction for covalent immobilization of enzymes: Application of immobilized lipases for kinetic resolution of rac-ibuprofen. RSC Adv. 2016, 6, 52838–52849. [Google Scholar] [CrossRef]
- Shang, W.; Zhang, X.; Yang, X.; Zhang, S. High pressure CO2-controlled reactors: Enzymatic chiral resolution in emulsions. RSC Adv. 2014, 4, 24083–24088. [Google Scholar] [CrossRef]
- Toledo, M.V.; José, C.; Suster, C.R.L.; Collins, S.E.; Portela, R.; Bañares, M.A.; Briand, L.E. Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol. Mol. Catal. 2021, 513, 111811. [Google Scholar] [CrossRef]
- Arroyo, M.; Sinisterra, J.V. High Enantioselective Esterification of 2-Arylpropionic Acids Catalyzed by Immobilized Lipase from Candida antarctica: A Mechanistic Approach. J. Org. Chem. 1994, 59, 4410–4417. [Google Scholar] [CrossRef]
- Estrada-Valenzuela, D.; Ramos-Sánchez, V.H.; Zaragoza-Galán, G.; Espinoza-Hicks, J.C.; Bugarin, A.; Chávez-Flores, D. Lipase assisted (S)-ketoprofen resolution from commercially available racemic mixture. Pharmaceuticals 2021, 14, 996. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ramazani, A.; Garmroodi, M.; Yousefi, M.; Yazdi, A.; Esfahani, K. Resolution of ibuprofen enantiomers by Rhizomucor miehei Lipase (RML) immobilized via physical and covalent attachment. Modares J. Biotechnol. 2019, 10, 351–361. [Google Scholar]
- López-Belmonte, M.T.; Alcántara, A.R.; Sinisterra, J.V. Enantioselective Esterification of 2-Arylpropionic Acids Catalyzed by Immobilized Rhizomucor miehei Lipase. J. Org. Chem. 1997, 62, 1831–1840. [Google Scholar] [CrossRef]
- Alcántara, A.R.; E de Fuentes, I.; Sinisterra, J.V. Rhizomucor miehei lipase as the catalyst in the resolution of chiral compounds: An overview. Chem. Phys. Lipids 1998, 93, 169–184. [Google Scholar] [CrossRef]
- Cernia, E.; Delfini, M.; Di Cocco, E.; Palocci, C.; Soro, S. Investigation of lipase-catalysed hydrolysis of naproxen methyl ester: Use of NMR spectroscopy methods to study substrate–enzyme interaction. Bioorg. Chem. 2002, 30, 276–284. [Google Scholar] [CrossRef]
- Gilani, S.L.; Najafpour, G.D.; Heydarzadeh, H.D.; Moghadamnia, A. Enantioselective synthesis of (S)-naproxen using immobilized lipase on chitosan beads. Chirality 2017, 29, 304–314. [Google Scholar] [CrossRef]
- Giorno, L.; D’Amore, E.; Drioli, E.; Cassano, R.; Picci, N. Influence of -OR ester group length on the catalytic activity and enantioselectivity of free lipase and immobilized in membrane used for the kinetic resolution of naproxen esters. J. Catal. 2007, 247, 194–200. [Google Scholar] [CrossRef]
- Long, W.S.; Kamaruddin, A.; Bhatia, S. Chiral resolution of racemic ibuprofen ester in an enzymatic membrane reactor. J. Membr. Sci. 2005, 247, 185–200. [Google Scholar] [CrossRef]
- Gérard, D.; Guéroult, M.; Casas-Godoy, L.; Condoret, J.-S.; André, I.; Marty, A.; Duquesne, S. Efficient resolution of profen ethyl ester racemates by engineered Yarrowia lipolytica Lip2p lipase. Tetrahedron Asymmetry 2017, 28, 433–441. [Google Scholar] [CrossRef]
- Degórska, O.; Szada, D.; Zdarta, A.; Smułek, W.; Jesionowski, T.; Zdarta, J. Immobilized Lipase in Resolution of Ketoprofen Enantiomers: Examination of Biocatalysts Properties and Process Characterization. Pharmaceutics 2022, 14, 1443. [Google Scholar] [CrossRef]
- Graebin, N.G.; Martins, A.B.; Lorenzoni, A.S.G.; Garcia-Galan, C.; Fernandez-Lafuente, R.; Ayub, M.A.Z.; Rodrigues, R.C. Immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads improves butyl acetate synthesis. Biotechnol. Prog. 2012, 28, 406–412. [Google Scholar] [CrossRef]
- Friedrich, J.L.R.; Peña, F.P.; Garcia-Galan, C.; Fernandez-Lafuente, R.; Ayub, M.A.Z.; Rodrigues, R.C. Effect of immobilization protocol on optimal conditions of ethyl butyrate synthesis catalyzed by lipase B from Candida antarctica. J. Chem. Technol. Biotechnol. 2013, 88, 1089–1095. [Google Scholar] [CrossRef]
- Martins, A.B.; Friedrich, J.L.; Cavalheiro, J.C.; Garcia-Galan, C.; Barbosa, O.; Ayub, M.A.; Fernandez-Lafuente, R.; Rodrigues, R.C. Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene-divinylbenzene beads. Bioresour. Technol. 2013, 134, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Tacias-Pascacio, V.G.; Peirce, S.; Torrestiana-Sanchez, B.; Yates, M.; Rosales-Quintero, A.; Virgen-Ortíz, J.J.; Fernandez-Lafuente, R. Evaluation of different commercial hydrophobic supports for the immobilization of lipases: Tuning their stability, activity and specificity. RSC Adv. 2016, 6, 100281–100294. [Google Scholar] [CrossRef]
- Virgen-Ortíz, J.J.; Tacias-Pascacio, V.G.; Hirata, D.B.; Torrestiana-Sanchez, B.; Rosales-Quintero, A.; Fernandez-Lafuente, R. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Enzym. Microb. Technol. 2017, 96, 30–35. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortííz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [Green Version]
- Arana-Peña, S.; Rios, N.S.; Carballares, D.; Gonçalves, L.R.; Fernandez-Lafuente, R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal. Today 2021, 362, 130–140. [Google Scholar] [CrossRef]
- Martins, A.B.; Schein, M.F.; Friedrich, J.L.; Fernandez-Lafuente, R.; Ayub, M.A.; Rodrigues, R.C. Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: Enhanced activity and operational stability. Ultrason. Sonochem. 2013, 20, 1155–1160. [Google Scholar] [CrossRef]
- Sose, M.T.; Rathod, V.K. Ultrasound assisted enzyme catalysed synthesis of butyl caprylate in solvent free system. Indian Chem. Eng. 2021, 63, 402–413. [Google Scholar] [CrossRef]
- Jaiswal, K.; Saraiya, S.; Rathod, V.K. Intensification of Enzymatic Synthesis of Decyl Oleate Using Ultrasound in Solvent Free System: Kinetic, Thermodynamic and Physicochemical Study. J. Oleo Sci. 2021, 70, 559–570. [Google Scholar] [CrossRef]
- Parikh, D.T.; Lanjekar, K.J.; Rathod, V.K. Ultrasound-assisted lipase catalyzed synthesis of propyl caprate: Process optimization, kinetic, and thermodynamic evaluation. Chem. Eng. Process. Process Intensif. 2021, 169, 108633. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Gogate, P.; Annapure, U. Process intensification of acidolysis reaction catalysed by enzymes for synthesis of designer lipids using sonication. Chem. Eng. J. 2022, 428, 131374. [Google Scholar] [CrossRef]
- Vartolomei, A.; Calinescu, I.; Vinatoru, M.; Gavrila, A.I. A parameter study of ultrasound assisted enzymatic esterification. Sci. Rep. 2022, 12, 1421. [Google Scholar] [CrossRef]
- Kwon, S.-J.; Song, K.M.; Hong, W.H.; Rhee, J.S. Removal of water produced from lipase-catalyzed esterification in organic solvent by pervaporation. Biotechnol. Bioeng. 1995, 46, 393–395. [Google Scholar] [CrossRef]
- Gubicza, L.; Nemestóthy, N.; Fráter, T.; Bélafi-Bakó, K. Enzymatic esterification in ionic liquids integrated with pervaporation for water removal. Green Chem. 2003, 5, 236–239. [Google Scholar] [CrossRef]
- Won, K.; Hong, J.-K.; Kim, K.-J.; Moon, S.-J. Lipase-catalyzed enantioselective esterification of racemic ibuprofen coupled with pervaporation. Process Biochem. 2006, 41, 264–269. [Google Scholar] [CrossRef]
- Findrik, Z.; Németh, G.; Vasić-Rački, D.; Bélafi-Bakó, K.; Csanádi, Z.; Gubicza, L. Pervaporation-aided enzymatic esterifications in non-conventional media. Process Biochem. 2012, 47, 1715–1722. [Google Scholar] [CrossRef]
- Zhang, W.; Qing, W.; Ren, Z.; Li, W.; Chen, J. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. Bioresour. Technol. 2014, 172, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Paludo, N.; Alves, J.S.; Altmann, C.; Ayub, M.A.; Fernandez-Lafuente, R.; Rodrigues, R.C. The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. Ultrason. Sonochem. 2015, 22, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Nott, K.; Brognaux, A.; Richard, G.; Laurent, P.; Favrelle, A.; Jérôme, C.; Blecker, C.; Wathelet, J.P.; Paquot, M.; Deleu, M. (Trans)esterification of mannose catalyzed by lipase B from Candida antarctica in an improved reaction medium using co-solvents and molecular sieve. Prep. Biochem. Biotechnol. 2012, 42, 348–363. [Google Scholar] [CrossRef] [PubMed]
- Fallavena, L.P.; Antunes, F.H.F.; Alves, J.S.; Paludo, N.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Rodrigues, R.C. Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Adv. 2014, 4, 8675–8681. [Google Scholar] [CrossRef] [Green Version]
- De La Casa, R.M.; Sánchez-Montero, J.M.; Sinisterra, J.V. Water adsorption isotherm as a tool to predict the preequilibrium water amount in preparative esterification. Biotechnol. Lett. 1996, 18, 13–18. [Google Scholar] [CrossRef]
- de Maria, P.D.; Alcantara, A.; Carballeira, J.; de la Casa, R.; Garcia-Burgos, C.; Hernaiz, M.; Sanchez-Montero, J.; Sinisterra, J. Candida rugosa Lipase: A Traditional and Complex Biocatalyst. Curr. Org. Chem. 2006, 10, 1053–1066. [Google Scholar] [CrossRef]
- Alcántara, A.R.; de María, P.D.; Fernández, M.; Hernáiz, M.J.; Sánchez-Montero, J.M.; Sinisterra, J.V. Resolution of racemic acids, esters and amines by Candida rugosa lipase in slightly hydrated organic media. Food Technol. Biotechnol. 2004, 42, 343–354. [Google Scholar]
- Morrone, R.; D’Antona, N.; Lambusta, D.; Nicolosi, G. Biocatalyzed irreversible esterification in the preparation of S-naproxen. J. Mol. Catal. B Enzym. 2010, 65, 49–51. [Google Scholar] [CrossRef]
- Khademi, Z.; Nikoofar, K. Applications of alkyl orthoesters as valuable substrates in organic transformations, focusing on reaction media. RSC Adv. 2020, 10, 30314–30397. [Google Scholar] [CrossRef]
- Panico, A.; Cardile, V.; Vittorio, F.; Ronsisvalle, G.; Scoto, G.; Parenti, C.; Gentile, B.; Morrone, R.; Nicolosi, G. Different in vitro activity of flurbiprofen and its enantiomers on human articular cartilage. Il Farm. 2003, 58, 1339–1344. [Google Scholar] [CrossRef]
- Morrone, R.; Piattelli, M.; Nicolosi, G. Resolution of Racemic Acids by Irreversible Lipase-Catalyzed Esterification in Organic Solvents. Eur. J. Org. Chem. 2001, 2001, 1441–1443. [Google Scholar] [CrossRef]
- Morrone, R.; Nicolosi, G.; Piattelli, M. The Use of Orthoesters for the Synthesis of Chiral Acids in Biocatalyzed Irreversible Esterification. Processes. Patent WO/02001/007564, 1 February 2001. [Google Scholar]
- Morrone, R.; D’Antona, N.; Nicolosi, G. Convenient preparation of (S)-fenoprofen by biocatalysed irreversible esterification. Rasayan J. Chem. 2008, 1, 732–737. [Google Scholar]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; Dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo, G.; Alcántara, A.R. Enzyme-Catalyzed Asymmetric Synthesis. In Catalytic Asymmetric Synthesis; John and Wiley and Sons: Hoboken, NJ, USA, 2022; pp. 531–558. [Google Scholar] [CrossRef]
- Gonawan, F.N.; Yon, L.S.; Kamaruddin, A.H.; Uzir, M.H. Effect of co-solvent addition on the reaction kinetics of the lipase-catalyzed resolution of ibuprofen ester. J. Chem. Technol. Biotechnol. 2013, 88, 672–679. [Google Scholar] [CrossRef]
- Ong, A.; Kamaruddin, A.; Bhatia, S.; Long, W.; Lim, S.; Kumari, R. Performance of free Candida antarctica lipase B in the enantioselective esterification of (R)-ketoprofen. Enzym. Microb. Technol. 2006, 39, 924–929. [Google Scholar] [CrossRef]
- Jose, C.; Toledo, V.M.; Grisales, O.J.; Briand, E.L. Effect of Co-solvents in the Enantioselective Esterification of (R/S)- ibuprofen with Ethanol. Curr. Catal. 2014, 3, 131–138. [Google Scholar] [CrossRef]
- José, C.; Briand, L.E. Deactivation of Novozym® 435 during the esterification of ibuprofen with ethanol: Evidences of the detrimental effect of the alcohol. React. Kinet. Catal. Lett. 2010, 99, 17–22. [Google Scholar] [CrossRef]
- Pizzilli, A.; Zoppi, R.; Hoyos, P.; Gómez, S.; Gatti, F.; Hernáiz, M.; Alcántara, A. First stereoselective acylation of a primary diol possessing a prochiral quaternary center mediated by lipase TL from Pseudomonas stutzeri. Tetrahedron 2015, 71, 9172–9176. [Google Scholar] [CrossRef]
- Rivera-Ramírez, J.D.; Escalante, J.; López-Munguía, A.; Marty, A.; Castillo, E. Thermodynamically controlled chemoselectivity in lipase-catalyzed aza-Michael additions. J. Mol. Catal. B Enzym. 2015, 112, 76–82. [Google Scholar] [CrossRef]
- Ortega-Rojas, M.A.; Rivera-Ramírez, J.D.; Ávila-Ortiz, C.G.; Juaristi, E.; González-Muñoz, F.; Castillo, E.; Escalante, J. One-Pot Lipase-Catalyzed Enantioselective Synthesis of (R)-(−)-N-Benzyl-3-(benzylamino)butanamide: The Effect of Solvent Polarity on Enantioselectivity. Molecules 2017, 22, 2189. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Martin, J.; Khiari, O.; Alcantara, A.R.; Sanchez-Montero, J.M. Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of both Enantiomers of Mandelic Acid by Transesterification Catalyzed by a Thermophilic Lipase in Ionic Liquids at 120 °C. Catalysts 2020, 10, 1055. [Google Scholar] [CrossRef]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Straathof, A.J.J.; Jongejan, J.A. The enantiomeric ratio: Origin, determination and prediction. Enzym. Microb. Technol. 1997, 21, 559–571. [Google Scholar] [CrossRef]
- Faber, K. Biotransformations in Organic Chemistry—A Textbook, 7th ed.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 31–313. [Google Scholar] [CrossRef]
- Snyder, L.R. Classification of the solvent properties of common liquids. J. Chromatogr. A 1974, 92, 223–230. [Google Scholar] [CrossRef]
- Danelius, E.; Andersson, H.; Jarvoll, P.; Lood, K.; Gräfenstein, J.; Erdélyi, M. Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation. Biochemistry 2017, 56, 3265–3272. [Google Scholar] [CrossRef] [Green Version]
- Pizzi, A.; Pigliacelli, C.; Bergamaschi, G.; Gori, A.; Metrangolo, P. Biomimetic engineering of the molecular recognition and self-assembly of peptides and proteins via halogenation. Coord. Chem. Rev. 2020, 411, 213242. [Google Scholar] [CrossRef]
- Carlsson, A.-C.C.; Scholfield, M.R.; Rowe, R.K.; Ford, M.C.; Alexander, A.T.; Mehl, R.A.; Ho, P.S. Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds. Biochemistry 2018, 57, 4135–4147. [Google Scholar] [CrossRef] [Green Version]
- Dammann, M.; Stahlecker, J.; Zimmermann, M.O.; Klett, T.; Rotzinger, K.; Kramer, M.; Coles, M.; Stehle, T.; Boeckler, F.M. Screening of a Halogen-Enriched Fragment Library Leads to Unconventional Binding Modes. J. Med. Chem. 2022, 65, 14539–14552. [Google Scholar] [CrossRef] [PubMed]
- Mangiagalli, M.; Ami, D.; de Divitiis, M.; Brocca, S.; Catelani, T.; Natalello, A.; Lotti, M. Short-chain alcohols inactivate an immobilized industrial lipase through two different mechanisms. Biotechnol. J. 2022, 17, 2100712. [Google Scholar] [CrossRef]
- Kulschewski, T.; Sasso, F.; Secundo, F.; Lotti, M.; Pleiss, J. Molecular mechanism of deactivation of C. antarctica lipase B by methanol. J. Biotechnol. 2013, 168, 462–469. [Google Scholar] [CrossRef]
- Lotti, M.; Pleiss, J.; Valero, F.; Ferrer, P. Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnol. J. 2018, 13, e1700155. [Google Scholar] [CrossRef]
- Lotti, M.; Pleiss, J.; Valero, F.; Ferrer, P. Effects of methanol on lipases: Molecular, kinetic and process issues in the production of biodiesel. Biotechnol. J. 2015, 10, 22–30. [Google Scholar] [CrossRef]
- Carvalho, H.F.; Ferrario, V.; Pleiss, J. Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model. J. Chem. Theory Comput. 2021, 17, 6570–6582. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muñoz, G.K.; Ortega-Rojas, M.A.; Chavelas-Hernández, L.; Razo-Hernández, R.S.; Valdéz-Camacho, J.R.; Escalante, J. Solvent-Free Lipase-Catalyzed Transesterification of Alcohols with Methyl Esters Under Vacuum-Assisted Conditions. Chemistryselect 2022, 7, e202202643. [Google Scholar] [CrossRef]
- José, C.; Bonetto, R.D.; Gambaro, L.A.; Torres, M.D.P.G.; Foresti, M.L.; Ferreira, M.L.; Briand, L.E. Investigation of the causes of deactivation-degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol-aqueous media. J. Mol. Catal. B Enzym. 2011, 71, 95–107. [Google Scholar] [CrossRef]
- Toledo, M.V.; José, C.; Collins, S.E.; Bonetto, R.D.; Ferreira, M.L.; Briand, L.E. Esterification of R/S-ketoprofen with 2-propanol as reactant and solvent catalyzed by Novozym® 435 at selected conditions. J. Mol. Catal. B Enzym. 2012, 83, 108–119. [Google Scholar] [CrossRef]
- Bardsley, W.G. SIMFIT—A Computer Package for Simulation, Curve-Fitting and Statistical-Analysis Using Life-Science Models; Plenum Press Div. Plenum Publishing Corp.: New York, NY, USA, 1993; pp. 455–458. [Google Scholar]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef] [PubMed]
- Boudrant, J.; Woodley, J.M.; Fernandez-Lafuente, R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Merabet-Khelassi, M.; Bouzemi, N.; Fiaud, J.C.; Riant, O.; Aribi-Zouioueche, L. Effect of the amount of lipase on enantioselectivity in the kinetic resolution by enzymatic acylation of arylalkylcarbinols. Comptes Rendus Chim. 2011, 14, 978–986. [Google Scholar] [CrossRef]
- Weinberger, S.; Pellis, A.; Comerford, J.W.; Farmer, T.J.; Guebitz, G.M. Efficient Physisorption of Candida antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis. Catalysts 2018, 8, 369. [Google Scholar] [CrossRef]
Entry | Solvent | Cosolvent (20% v/v) | Conversion (C), (%) | ees 1 (%) | E 2 | EF 3 |
---|---|---|---|---|---|---|
1 | isooctane | ---- | 97 | 75 | 1.7 | 0.02 |
2 | isooctane | CH2Cl2 | 44 | 69 | 31.8 | 0.87 |
3 | isooctane | CHCl3 | 47 | 70 | 17.6 | 0.79 |
4 | isooctane | MTBE | 82 | 47 | 1.8 | 0.10 |
5 | isooctane | 1,4-dioxane | 7.3 | 1.4 | 3.7 | 0.18 |
Entry | Solvent | DCM % (v/v) | Conversion (%) | ees (%) | E | EF |
---|---|---|---|---|---|---|
1 | isooctane | 0 1 | 97 | 75 | 1.7 | 0.02 |
2 | isooctane | 20 1 | 44 | 69 | 31.8 | 0.88 |
3 | isooctane | 20 2 | 57 | 95 | 21.8 | 0.72 |
4 | isooctane | 40 2 | 22 | 25 | 21.2 | 0.88 |
5 | isooctane | 60 2 | 11 | 11 | 25 | 0.89 |
Entry | Orthoformate | DCM % (v/v) | Initial Rate (mmol/h) | Conv(%)/ees (%) at 24 h | E | EF |
---|---|---|---|---|---|---|
1 | TMOF | 0 | 6.49 × 10−2 | 100/0 | 1 | ---- |
2 | TEOF | 0 | 3.61 × 10−2 | 97/75 | 1.7 | 0.02 |
3 | TPOF | 0 | 2.06 × 10−2 | 79/70 | 3 | 0.19 |
4 | TBOF | 0 | 1.42 × 10−2 | 74/64 | 2.7 | 0.22 |
5 | TMOF | 20 | 9.02 × 10−3 | 60/48 | 3 | 0.32 |
6 | TEOF | 20 | 5.73 × 10−3 | 44/69 | 31.8 | 0.88 |
7 | TPOF | 20 | 2.36 × 10−3 | 23/28 | 40 | 0.94 |
8 | TBOF | 20 | 3.03 × 10−3 | 24/25 | 11 | 0.76 |
Entry | Substrate Concentration (mg/mL) | Conversion at 24 h (%) | ees at 24 h | Initial Rate (mmol/h) | E | EF |
---|---|---|---|---|---|---|
1 | 5 | 58.3 | 66.7 | 4.92 × 10−3 | 5.5 | 0.48 |
2 | 10.31 1 | 44 | 69 | 5.73 × 10−3 | 31.8 | 0.88 |
3 | 15 | 32 | 38 | 6.89 × 10−3 | 13.6 | 0.81 |
Entry | Enzyme/Substrate | Reaction Time (h) | Conversion (%) | ees (%) | E | EF |
---|---|---|---|---|---|---|
1 | 1/1 | 52 | 59 | 95 | 17.3 | 0.66 |
2 | 1.5/1 | 48 | 65 | 98 | 13.5 | 0.53 |
3 | 2/1 | 24 | 61 | 83 | 8 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khiari, O.; Bouzemi, N.; Sánchez-Montero, J.M.; Alcántara, A.R. On the Use of Orthoformates as an Efficient Approach to Enhance the Enzymatic Enantioselective Synthesis of (S)-Ibuprofen. Catalysts 2023, 13, 251. https://doi.org/10.3390/catal13020251
Khiari O, Bouzemi N, Sánchez-Montero JM, Alcántara AR. On the Use of Orthoformates as an Efficient Approach to Enhance the Enzymatic Enantioselective Synthesis of (S)-Ibuprofen. Catalysts. 2023; 13(2):251. https://doi.org/10.3390/catal13020251
Chicago/Turabian StyleKhiari, Oussama, Nassima Bouzemi, José María Sánchez-Montero, and Andrés R. Alcántara. 2023. "On the Use of Orthoformates as an Efficient Approach to Enhance the Enzymatic Enantioselective Synthesis of (S)-Ibuprofen" Catalysts 13, no. 2: 251. https://doi.org/10.3390/catal13020251
APA StyleKhiari, O., Bouzemi, N., Sánchez-Montero, J. M., & Alcántara, A. R. (2023). On the Use of Orthoformates as an Efficient Approach to Enhance the Enzymatic Enantioselective Synthesis of (S)-Ibuprofen. Catalysts, 13(2), 251. https://doi.org/10.3390/catal13020251