Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Properties of LCO and Catalyst Samples
2.2. Reactivity of S Compounds of LCO in HDS over CoMoS and NiMoS Catalyst
2.3. Reactivity of N Compounds of LCO in HDS over CoMoS and NiMoS Catalyst
2.4. HDS and HDN Reaction Mechanism of Model Feed over NiMoS Catalyst
- (1)
- HDN of CBZ
3. Experimental
3.1. Materials
3.2. Characterization of Catalyst
3.3. Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Hsu, C.; Mochida, I. Chemistry of Diesel Fuels; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Corma, A.; Alfarob, V.; Orchillés, A. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil. J. Catal. 2001, 200, 34–44. [Google Scholar] [CrossRef]
- Yun, G.-N.; Cho, K.-S.; Kim, Y.-S.; Lee, Y.-K. A New Approach to Deep Desulfurization of Light Cycle Oil over Ni2P Catalysts: Combined Selective Oxidation and Hydrotreating. Catalysts 2018, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.-S.; Lee, Y.-K. Effects of nitrogen compounds, aromatics, and aprotic solvents on the oxidative desulfurization (ODS) of light cycle oil over Ti-SBA-15 catalyst. Appl. Catal. B Environ. 2014, 147, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Laredo, G.; Pérez-Romo, P.; Escobar, J.; Garcia-Gutierrez, J.; Vega-Merino, P. Light Cycle Oil Upgrading to Benzene, Toluene, and Xylenes by Hydrocracking: Studies Using Model Mixtures. Ind. Eng. Chem. Res. 2017, 56, 10939–10948. [Google Scholar] [CrossRef]
- Laredo, G.; Merino, P.V.; Hernández, P. Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review. Ind. Eng. Chem. Res. 2018, 57, 7315–7321. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Cho, K.-S.; Lee, Y.-K. Morphology effect of β-zeolite supports for Ni2P catalysts on the hydrocracking of polycyclic aromatic hydrocarbons to benzene, toluene, and xylene. J. Catal. 2017, 351, 67–78. [Google Scholar] [CrossRef]
- Oh, Y.; Shin, J.; Noh, H.; Kim, C.; Kim, Y.-S.; Lee, Y.-K.; Lee, J.K. Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons. Appl. Catal. A Gen. 2019, 577, 86–98. [Google Scholar] [CrossRef]
- Tao, L.; Fairley, D.; Kleeman, M.J.; Harley, R.A. Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area. Environ. Sci. Technol. 2013, 47, 10171–10178. [Google Scholar] [CrossRef]
- Deniz, C.; Zincir, B. Environmental and economical assessment of alternative marine fuels. J. Clean. Prod. 2016, 113, 438–449. [Google Scholar] [CrossRef]
- Song, C.; Ma, X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl. Catal. B Environ. 2003, 41, 207–238. [Google Scholar] [CrossRef]
- Azizi, N.; Ali, S.; Alhooshani, K.; Kim, T.; Lee, Y.; Park, J.I.; Miyawaki, J.; Yoon, S.; Mochida, I. Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Process. Technol. 2013, 109, 172–178. [Google Scholar] [CrossRef]
- Yun, G.-N.; Lee, Y.-K. Dispersion effects of Ni2P catalysts on hydrotreating of light cycle oil. Appl. Catal. B Environ. 2014, 150–151, 647–655. [Google Scholar] [CrossRef]
- Oyama, S.T.; Lee, Y.-K. Mechanism of Hydrodenitrogenation on Phosphides and Sulfides. J. Phys. Chem. B 2005, 109, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Furimsky, E.; Massoth, F. Hydrodenitrogenation of Petroleum. Catal. Rev. 2005, 47, 297–489. [Google Scholar] [CrossRef]
- Laredo, G.; Altamirano, E.; De los Reyes, J. Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene. Appl. Catal. A Gen. 2003, 242, 311–320. [Google Scholar] [CrossRef]
- Fu, C.; Schaffer, A. Effect of nitrogen compounds on cracking catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1985, 24, 68–75. [Google Scholar] [CrossRef]
- Kwak, C.; Lee, J.; Bae, J.; Moon, S. Poisoning effect of nitrogen compounds on the performance of CoMoS/Al2O3 catalyst in the hydrodesulfurization of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene. Appl. Catal. B Environ. 2001, 35, 59–68. [Google Scholar] [CrossRef]
- Nylén, U.; Delgado, J.; Järås, S.; Boutonnet, M. Characterization of alkylated aromatic sulphur compounds in light cycle oil from hydrotreated vacuum gas oil using GC-SCD. Fuel Process. Technol. 2004, 86, 223–234. [Google Scholar] [CrossRef]
- Li, M.; Larter, S.; Stoddart, D.; Bjoroey, M. Liquid chromatographic separation schemes for pyrrole and pyridine nitrogen aromatic heterocycle fractions from crude oils suitable for rapid characterization of geochemical samples. Anal. Chem. 1992, 64, 1337–1344. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Zuo, C.; Zheng, S.; Xu, F.; Sun, Y.; Zhang, Q. The Gas-Phase Formation Mechanism of Dibenzofuran (DBF), Dibenzothiophene (DBT), and Carbazole (CA) from Benzofuran (BF), Benzothiophene (BT), and Indole (IN) with Cyclopentadienyl Radical. Int. J. Mol. Sci. 2019, 20, 5420. [Google Scholar] [CrossRef]
- Dorbon, M.; Ignatiadis, I.; Schmitter, J.-M.; Arpino, P.; Guiochon, G.; Toulhoat, H.; Huc, A. Identification of carbazoles and benzocarbazoles in a coker gas oil and influence of catalytic hydrotreatment on their distribution. Fuel 1984, 63, 565–570. [Google Scholar] [CrossRef]
- Ma, X.; Sakanishi, K.; Mochida, I. Hydrodesulfurization Reactivities of Various Sulfur Compounds in Diesel Fuel. Ind. Eng. Chem. Res. 1994, 33, 218–222. [Google Scholar] [CrossRef]
- Kilanowski, D.; Teeuwen, H.; de Beer, V.; Gates, B.; Schuit, G.; Kwart, H. Hydrodesulfurization of thiophene, benzothiophene, dibenzothiophene, and related compounds catalyzed by sulfided CoOMoO3γ-Al2O3: Low-pressure reactivity studies. J. Catal. 1978, 55, 129–137. [Google Scholar] [CrossRef]
- Pérot, G. Hydrotreating catalysts containing zeolites and related materials—Mechanistic aspects related to deep desulfurization. Catal. Today 2003, 86, 111–128. [Google Scholar] [CrossRef]
- Breysse, M.; Djega-Mariadassou, G.; Pessayre, S.; Geantet, C.; Vrinat, M.; Pérot, G.; Lemaire, M. Deep desulfurization: Reactions, catalysts and technological challenges. Catal. Today 2003, 84, 129–138. [Google Scholar] [CrossRef]
- Song, C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 2003, 86, 211–263. [Google Scholar] [CrossRef]
- Laredo, G.; Montesinos, A.; De Los Reyes, J. Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. Appl. Catal. A Gen. 2004, 265, 171–183. [Google Scholar] [CrossRef]
- García-Martínez, J.; Castillo-Araiza, C.; De los Reyes Heredia, J.; Trejo, E.; Montesinos, A. Kinetics of HDS and of the inhibitory effect of quinoline on HDS of 4,6-DMDBT over a Ni-Mo-P/Al 2O 3 catalyst: Part I. Chem. Eng. J. 2012, 210, 53–62. [Google Scholar] [CrossRef]
- Finiels, A.; Geneste, P.; Moulinas, C.; Olive, J. Hydroprocessing of secondary amines over NiW-Al2O3 Catalyst. Appl. Catal. 1986, 22, 257–262. [Google Scholar] [CrossRef]
- Szymańska, A.; Lewandowski, M.; Sayag, C.; Djéga-Mariadassou, G. Kinetic study of the hydrodenitrogenation of carbazole over bulk molybdenum carbide. J. Catal. 2003, 218, 24–31. [Google Scholar] [CrossRef]
- Nagai, M.; Goto, Y.; Irisawa, A.; Omi, S. Catalytic Activity and Surface Properties of Nitrided Molybdena–Alumina for Carbazole Hydrodenitrogenation. J. Catal. 2000, 191, 128–137. [Google Scholar] [CrossRef]
- Zepeda, T.; Pawelec, B.; Obeso-Estrella, R.; de León, J.D.; Fuentes, S.; Alonso-Núñez, G.; Fierro, J. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Appl. Catal. B Environ. 2016, 180, 569–579. [Google Scholar] [CrossRef]
- Kagami, N.; Vogelaar, B.; van Langeveld, A.; Moulijn, J. Reaction pathways on NiMo/Al2O3 catalysts for hydrodesulfurization of diesel fuel. Appl. Catal. A Gen. 2005, 293, 11–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, Y.-K. Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts. Catalysts 2023, 13, 277. https://doi.org/10.3390/catal13020277
Kim J, Lee Y-K. Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts. Catalysts. 2023; 13(2):277. https://doi.org/10.3390/catal13020277
Chicago/Turabian StyleKim, Jihyun, and Yong-Kul Lee. 2023. "Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts" Catalysts 13, no. 2: 277. https://doi.org/10.3390/catal13020277
APA StyleKim, J., & Lee, Y. -K. (2023). Reactivity of Sulfur and Nitrogen Compounds of FCC Light Cycle Oil in Hydrotreating over CoMoS and NiMoS Catalysts. Catalysts, 13(2), 277. https://doi.org/10.3390/catal13020277