Synthesis of Hollow Leaf-Shaped Iron-Doped Nickel–Cobalt Layered Double Hydroxides Using Two-Dimensional (2D) Zeolitic Imidazolate Framework Catalyzing Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Procedure
3.1. Catalyst Preparation
3.2. Structure Characterization
3.3. Electrochemical Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.J.; Wang, Z.L. Electrocatalytic Oxygen Evolution Reaction for Energy Conversion and Storage: A Comprehensive Review. Nano Energy 2017, 37, 136–157. [Google Scholar] [CrossRef]
- Kalyanasundaram, K.; Grätzel, M. Themed Issue: Nanomaterials for Energy Conversion and Storage. J. Mater. Chem. 2012, 22, 24190–24194. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Gowda, S.R.; Shaijumon, M.M.; Ajayan, P.M. Hybrid Nanostructures for Energy Storage Applications. Adv. Mater. 2012, 24, 5045–5064. [Google Scholar] [CrossRef]
- Qu, K.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene Oxide-Polydopamine Derived N, S-Codoped Carbon Nanosheets as Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. Nano Energy 2016, 19, 373–381. [Google Scholar] [CrossRef]
- Ren, S.; Duan, X.; Liang, S.; Zhang, M.; Zheng, H. Bifunctional Electrocatalysts for Zn-Air Batteries: Recent Developments and Future Perspectives. J. Mater. Chem. A 2020, 8, 6144–6182. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Gong, J. Recent Progress Made in the Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Y.; Liu, J.; Liu, B.; Chen, X.; Ding, J.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Utilizing Solar Energy to Improve the Oxygen Evolution Reaction Kinetics in Zinc–Air Battery. Nat. Commun. 2019, 10, 4767. [Google Scholar] [CrossRef]
- Bao, W.; Yang, C.; Ai, T.; Zhang, J.; Zhou, L.; Li, Y.; Wei, X.; Zou, X.; Wang, Y. Modulating Interfacial Charge Distribution of NiSe Nanoarrays with NiFe-LDH Nanosheets for Boosting Oxygen Evolution Reaction. Fuel 2023, 332, 126227. [Google Scholar] [CrossRef]
- Simböck, J.; Ghiasi, M.; Schönebaum, S.; Simon, U.; de Groot, F.M.F.; Palkovits, R. Electronic Parameters in Cobalt-Based Perovskite-Type Oxides as Descriptors for Chemocatalytic Reactions. Nat. Commun. 2020, 11, 652. [Google Scholar] [CrossRef]
- Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B.J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L.; et al. Dynamic Surface Self-Reconstruction Is the Key of Highly Active Perovskite Nano-Electrocatalysts for Water Splitting. Nat. Mater. 2017, 16, 925–931. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, H.; Li, J.; Shi, Z.; Fan, M.; Bian, H.; Wang, T.; Gao, D. S-Doped CoMn2O4 with More High Valence Metallic Cations and Oxygen Defects for Zinc-Air Batteries. J. Power Source 2021, 491, 229584. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.; Wang, Z.; Sewell, C.D.; Li, Z.; Liang, S.; Zhang, M.; Li, J.; Hu, Y.; Lin, Z. Operando Unraveling Photothermal-Promoted Dynamic Active-Sites Generation in NiFe 2 O 4 for Markedly Enhanced Oxygen Evolution. Proc. Natl. Acad. Sci. USA 2021, 118, e2023421118. [Google Scholar] [CrossRef] [PubMed]
- Bothra, P.; Pati, S.K. Activity of Water Oxidation on Pure and (Fe, Ni, and Cu)-Substituted Co3O4. ACS Energy Lett. 2016, 1, 858–862. [Google Scholar] [CrossRef]
- Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M.B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.; et al. In-Situ Structure and Catalytic Mechanism of NiFe and CoFe Layered Double Hydroxides during Oxygen Evolution. Nat. Commun. 2020, 11, 2522. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hung, S.F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Bin Yang, H.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Adv. Mater. 2019, 31, e1903909. [Google Scholar] [CrossRef]
- Liu, G.; Ouyang, X.; Wei, X.L.; Bao, W.W.; Feng, X.H.; Zhang, J.J. Coupling Interface Construction of Ni(OH)2/MoS2 Composite Electrode for Efficient Alkaline Oxygen Evolution Reaction. Catalysts 2022, 12, 966. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, M.Y.; Li, X.; Bao, W.W.; Jin, C.Q.; Feng, X.H.; Liu, G.; Yang, C.M.; Zhang, N.N. Chromium-Modified Ultrathin CoFe LDH as High-Efficiency Electrode for Hydrogen Evolution Reaction. Nanomaterials 2022, 12, 1227. [Google Scholar] [CrossRef]
- Han, L.; Dong, S.; Wang, E. Transition-Metal Co Ni and Fe-Based Electrocatalysts for the Water Oxidation Reaction.Pdf. Adv. Mater. 2016, 28, 9266–9291. [Google Scholar] [CrossRef]
- Ma, Q.; Li, B.; Huang, F.; Pang, Q.; Chen, Y.; Zhang, J.Z. Incorporating Iron in Nickel Cobalt Layered Double Hydroxide Nanosheet Arrays as Efficient Oxygen Evolution Electrocatalyst. Electrochim. Acta 2019, 317, 684–693. [Google Scholar] [CrossRef]
- Li, N.; Bediako, D.K.; Hadt, R.G.; Hayes, D.; Kempa, T.J.; Von Cube, F.; Bell, D.C.; Chen, L.X.; Nocera, D.G. Influence of Iron Doping on Tetravalent Nickel Content in Catalytic Oxygen Evolving Films. Proc. Natl. Acad. Sci. USA 2017, 114, 1486–1491. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.Y.; Lopes, P.P.; Farinazzo Bergamo Dias Martins, P.; He, H.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y.; et al. Dynamic Stability of Active Sites in Hydr(Oxy)Oxides for the Oxygen Evolution Reaction. Nat. Energy 2020, 5, 220–230. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Im, K.; Kim, J. Synthesis of Hollow Fe, Co, and N-Doped Carbon Catalysts from Conducting Polymer-Metal-Organic-Frameworks Core-Shell Particles for Their Application in an Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2022, 47, 24169–24178. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, H.; Zhong, D.; Xu, Y.; Wang, Y.; Yuan, Q.; Liang, Z.; Wang, B.; Zhang, W.; Zheng, H.; et al. A Yolk-Shell Structured Metal-Organic Framework with Encapsulated Iron-Porphyrin and Its Derived Bimetallic Nitrogen-Doped Porous Carbon for an Efficient Oxygen Reduction Reaction. J. Mater. Chem. A 2020, 8, 9536–9544. [Google Scholar] [CrossRef]
- Wang, H.F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-Derived Electrocatalysts for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Cheng, N.; Lushington, A.; Sun, X. Recent Progress on MOF-Derived Nanomaterials as Advanced Electrocatalysts in Fuel Cells. Catalysts 2016, 6, 116. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, L. MOF-Derived Nanoarrays as Advanced Electrocatalysts for Water Splitting. Nanoscale 2022, 14, 12196–12218. [Google Scholar] [CrossRef]
- Duan, X.; Ren, S.; Pan, N.; Zhang, M.; Zheng, H. MOF-Derived Fe,Co@N-C Bifunctional Oxygen Electrocatalysts for Zn-Air Batteries. J. Mater. Chem. A 2020, 8, 9355–9363. [Google Scholar] [CrossRef]
- Jiang, K.; Luo, M.; Peng, M.; Yu, Y.; Lu, Y.R.; Chan, T.S.; Liu, P.; de Groot, F.M.F.; Tan, Y. Dynamic Active-Site Generation of Atomic Iridium Stabilized on Nanoporous Metal Phosphides for Water Oxidation. Nat. Commun. 2020, 11, 2701. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Liu, Y.; Hou, L.; Yuan, C. Design and Construction of Bi-Metal MOF-Derived Yolk-Shell Ni2P/ZnP2 Hollow Microspheres for Efficient Electrocatalytic Oxygen Evolution. Mater. Chem. Front. 2020, 4, 1366–1374. [Google Scholar] [CrossRef]
- Chen, C.; Tuo, Y.; Lu, Q.; Lu, H.; Zhang, S.; Zhou, Y.; Zhang, J.; Liu, Z.; Kang, Z.; Feng, X.; et al. Hierarchical Trimetallic Co-Ni-Fe Oxides Derived from Core-Shell Structured Metal-Organic Frameworks for Highly Efficient Oxygen Evolution Reaction. Appl. Catal. B Environ. 2021, 287, 119953. [Google Scholar] [CrossRef]
- Zhang, P.; Li, L.; Nordlund, D.; Chen, H.; Fan, L.; Zhang, B.; Sheng, X.; Daniel, Q.; Sun, L. Dendritic Core-Shell Nickel-Iron-Copper Metal/Metal Oxide Electrode for Efficient Electrocatalytic Water Oxidation. Nat. Commun. 2018, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, L.; Chen, Y.; Lu, X.F.; Gao, S.; Lou, X.W. Designed Formation of Double-Shelled Ni–Fe Layered-Double-Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Adv. Mater. 2020, 32, 1906432. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Sun, H.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Li, Y.; Wang, C. Metal-Organic Framework-Derived Hierarchical (Co,Ni)Se2@NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Appl. Mater. Interfaces 2019, 11, 8106–8114. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, X.; Han, Y.; Wang, Q.; Fang, Y.; Dong, S. In Situ Synthesis of Ultrathin Metal-Organic Framework Nanosheets: A New Method for 2D Metal-Based Nanoporous Carbon Electrocatalysts. J. Mater. Chem. A 2017, 5, 18610–18617. [Google Scholar] [CrossRef]
- Duan, J.; Chen, S.; Zhao, C. Ultrathin Metal-Organic Framework Array for Efficient Electrocatalytic Water Splitting. Nat. Commun. 2017, 8, 15341. [Google Scholar] [CrossRef]
- Yilmaz, G.; Yam, K.M.; Zhang, C.; Fan, H.J.; Ho, G.W. In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance. Adv. Mater. 2017, 29, 1606814. [Google Scholar] [CrossRef]
- He, P.; Yu, X.Y.; Lou, X.W.D. Carbon-Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angew. Chem.-Int. Ed. 2017, 56, 3897–3900. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, S.; Yan, X.; Lyu, M.; Wang, L.; Bell, J.; Wang, H. 2-Methylimidazole-Derived Ni-Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 15510–15524. [Google Scholar] [CrossRef]
- Naseem, S.; Gevers, B.; Boldt, R.; Labuschagné, F.J.W.J.; Leuteritz, A. Comparison of Transition Metal (Fe, Co, Ni, Cu, and Zn) Containing Tri-Metal Layered Double Hydroxides (LDHs) Prepared by Urea Hydrolysis. RSC Adv. 2019, 9, 3030–3040. [Google Scholar] [CrossRef]
- Cheng, M.; Fan, H.; Song, Y.; Cui, Y.; Wang, R. Interconnected Hierarchical NiCo2O4 Microspheres as High-Performance Electrode Materials for Supercapacitors. Dalt. Trans. 2017, 46, 9201–9209. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Hsu, Y.Y.; Chen, R.; Chan, T.S.; Chen, H.M.; Liu, B. Ni3+-Induced Formation of Active NiOOH on the Spinel Ni-Co Oxide Surface for Efficient Oxygen Evolution Reaction. Adv. Energy Mater. 2015, 5, 1500091. [Google Scholar] [CrossRef]
- Ao, K.; Dong, J.; Fan, C.; Wang, D.; Cai, Y.; Li, D.; Huang, F.; Wei, Q. Formation of Yolk-Shelled Nickel-Cobalt Selenide Dodecahedral Nanocages from Metal-Organic Frameworks for Efficient Hydrogen and Oxygen Evolution. ACS Sustain. Chem. Eng. 2018, 6, 10952–10959. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Huang, R.; Zhou, Y.; Wu, Y.; Hu, Y.; Ostrikov, K.K. Ni-Co Hydroxide Nanosheets on Plasma-Reduced Co-Based Metal-Organic Nanocages for Electrocatalytic Water Oxidation. J. Mater. Chem. A 2019, 7, 4950–4959. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, Y.; Zhao, G.; Lin, Y.; Yu, Z.; Xu, X.; Wang, X.; Liu, H.K.; Sun, W.; Dou, S.X. Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catal. 2018, 8, 5382–5390. [Google Scholar] [CrossRef]
- Dutta, S.; Indra, A.; Feng, Y.; Song, T.; Paik, U. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity. ACS Appl. Mater. Interfaces 2017, 9, 33766–33774. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, P.; Liu, J.; Wu, S.; Ye, Y.; Tian, Z.; Liang, C. Strong Fe3+-O(H)-Pt Interfacial Interaction Induced Excellent Stability of Pt/NiFe-LDH/RGO Electrocatalysts. Sci. Rep. 2018, 8, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Lan, Y.; Xu, Z.X.; Wang, F. Construction of NiCo-Layered Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 6633–6643. [Google Scholar] [CrossRef]
- Guan, C.; Liu, X.; Ren, W.; Li, X.; Cheng, C.; Wang, J. Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391. [Google Scholar] [CrossRef]
- Zhou, D.; Li, P.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W.F.; Sun, X.; Duan, X. Layered Double Hydroxide-Based Electrocatalysts for the Oxygen Evolution Reaction: Identification and Tailoring of Active Sites, and Superaerophobic Nanoarray Electrode Assembly. Chem. Soc. Rev. 2021, 50, 8790–8817. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Kaneti, Y.V.; Guo, Y.; Yuliarto, B.; Jiang, X.; Ide, Y.; Nugraha, N.; Dipojono, H.K.; Yu, A.; Sugahara, Y.; et al. Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application. ChemSusChem 2020, 13, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wang, Y.; Xie, C.; Chen, C.; Liu, H.; Chen, R.; Huo, J.; Wang, S. Acid-Etched Layered Double Hydroxides with Rich Defects for Enhancing the Oxygen Evolution Reaction. Chem. Commun. 2017, 53, 11778–11781. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Xie, J.; Lei, F.; Wang, Z.; Liu, W.; Xu, L.; Guan, M.; Zhao, Y.; Li, H. Two-Dimensional Mn-Co LDH/Graphene Composite towards High-Performance Water Splitting. Catalysts 2018, 8, 350. [Google Scholar] [CrossRef]
- Wang, C.; Shang, H.; Li, J.; Wang, Y.; Xu, H.; Wang, C.; Guo, J.; Du, Y. Ultralow Ru Doping Induced Interface Engineering in MOF Derived Ruthenium-Cobalt Oxide Hollow Nanobox for Efficient Water Oxidation Electrocatalysis. Chem. Eng. J. 2021, 420, 129805. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, W.; Zhao, R.; Wang, H.; Ye, T.N.; Liu, Y.; Yan, D. MOF-Derived Hollow Spherical Co2P@C Composite with Micro-Nanostructure for Highly Efficient Oxygen Evolution Reaction in Alkaline Solution. J. Solid State Chem. 2020, 288, 121456. [Google Scholar] [CrossRef]
- Cheng, W.; Xi, S.; Wu, Z.P.; Luan, D.; Lou, X.W. In Situ Activation of Br-Confined Ni-Based Metal-Organic Framework Hollow Prisms toward Efficient Electrochemical Oxygen Evolution. Sci. Adv. 2021, 7, eabk0919. [Google Scholar] [CrossRef]
- Rinawati, M.; Wang, Y.X.; Chen, K.Y.; Yeh, M.H. Designing a Spontaneously Deriving NiFe-LDH from Bimetallic MOF-74 as an Electrocatalyst for Oxygen Evolution Reaction in Alkaline Solution. Chem. Eng. J. 2021, 423, 130204. [Google Scholar] [CrossRef]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Lin, Y.; Tian, Z.; Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B.J.; Ge, R.; Chen, L. Chromium-Ruthenium Oxide Solid Solution Electrocatalyst for Highly Efficient Oxygen Evolution Reaction in Acidic Media. Nat. Commun. 2019, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Qu, C.; Zhou, W.; Zhao, R.; Zhang, H.; Zhu, B.; Guo, W.; Meng, W.; Wu, Y.; Aftab, W.; et al. Synergistic Effect of Co–Ni Hybrid Phosphide Nanocages for Ultrahigh Capacity Fast Energy Storage. Adv. Sci. 2019, 6, 1802005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; Lange, K.M.; Zhang, B. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.S.; Enman, L.J.; Batchellor, A.S.; Zou, S.; Boettcher, S.W. Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)Hydroxides: Activity Trends and Design Principles. Chem. Mater. 2015, 27, 7549–7558. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31, e1900617. [Google Scholar] [CrossRef] [PubMed]
- Im, K.; Nguyen, Q.H.; Lee, E.; Lee, D.W.; Kim, J.; Yoo, S.J. High-Dispersion Co-Fe-NC Electrocatalyst Based on Leaf-Shaped Zeolite Imidazole Framework for Oxygen–Reduction Reaction in Acidic Medium. Int. J. Energy Res. 2021, 45, 15534–15543. [Google Scholar] [CrossRef]
Sample | Surface Area (m2 g−1) | Pore Size (nm) | Total Pore Volume (cm3 g−1) |
---|---|---|---|
L-NiCo LDH | 78.66 | 6.41 | 0.13 |
L-Fe-NiCoLDH-1 | 140.23 | 5.67 | 0.21 |
L-Fe-NiCoLDH-2 | 159.85 | 5.29 | 0.22 |
L-Fe-NiCoLDH-3 | 137.53 | 5.68 | 0.21 |
Number | Catalyst | Overpotential (η10) [mV] | Tafel Slope [mV dec−1] | Ref |
---|---|---|---|---|
1 | L-FeNiCoLDH-2 | 243 | 63 | This work |
2 | etched-CoFe-LDH | 302 | 41 | [52] |
3 | MnCo-LDH/graphene | 330 | 48 | [53] |
4 | NiCo LDH@ZIF-67-VO/NF | 290 | 58 | [43] |
5 | (Co,Ni)Se2@NiFe LDH | 277 | 75 | [33] |
6 | (Ru-Co)Ox-350 | 265 | 60 | [54] |
7 | TCo2P@C | 328 | 57 | [55] |
8 | Br-Ni-MOF(A) | 306 | 79.1 | [56] |
9 | NiFe-25 | 299 | 48.7 | [57] |
10 | NiCo2O4@MoS2/TM | 313 | 66.8 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, Q.H.; Im, K.; Kim, J. Synthesis of Hollow Leaf-Shaped Iron-Doped Nickel–Cobalt Layered Double Hydroxides Using Two-Dimensional (2D) Zeolitic Imidazolate Framework Catalyzing Oxygen Evolution Reaction. Catalysts 2023, 13, 403. https://doi.org/10.3390/catal13020403
Nguyen QH, Im K, Kim J. Synthesis of Hollow Leaf-Shaped Iron-Doped Nickel–Cobalt Layered Double Hydroxides Using Two-Dimensional (2D) Zeolitic Imidazolate Framework Catalyzing Oxygen Evolution Reaction. Catalysts. 2023; 13(2):403. https://doi.org/10.3390/catal13020403
Chicago/Turabian StyleNguyen, Quoc Hao, Kyungmin Im, and Jinsoo Kim. 2023. "Synthesis of Hollow Leaf-Shaped Iron-Doped Nickel–Cobalt Layered Double Hydroxides Using Two-Dimensional (2D) Zeolitic Imidazolate Framework Catalyzing Oxygen Evolution Reaction" Catalysts 13, no. 2: 403. https://doi.org/10.3390/catal13020403
APA StyleNguyen, Q. H., Im, K., & Kim, J. (2023). Synthesis of Hollow Leaf-Shaped Iron-Doped Nickel–Cobalt Layered Double Hydroxides Using Two-Dimensional (2D) Zeolitic Imidazolate Framework Catalyzing Oxygen Evolution Reaction. Catalysts, 13(2), 403. https://doi.org/10.3390/catal13020403