Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Photocatalytic Experiments and Optimization of Reaction Parameters
2.2.1. Effect of Variable XO Concentration
2.2.2. Effect of Variable Catalyst Dose
2.2.3. Effect of pH
2.3. Kinetics of Photodegradation
2.4. Scavenging Study and Mechanism of Photodegradation
2.5. Comparison with the Literature
2.6. Reusability Test
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of ZnWO4, CoWO4, and Zn0.5Co0.5WO4 Nanoparticles
3.3. Characterization Techniques
3.4. Photocatalysis Experiment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- You, J.; Wang, L.; Zhao, Y.; Bao, W. A Review of Amino-Functionalized Magnetic Nanoparticles for Water Treatment: Features and Prospects. J. Clean. Prod. 2021, 281, 124668. [Google Scholar] [CrossRef]
- Surendra, B.S.; Shashi Shekhar, T.R.; Veerabhadraswamy, M.; Nagaswarupa, H.P.; Prashantha, S.C.; Geethanjali, G.C.; Likitha, C. Probe Sonication Synthesis of ZnFe2O4 NPs for the Photocatalytic Degradation of Dyes and Effect of Treated Wastewater on Growth of Plants. Chem. Phys. Lett. 2020, 745, 137286. [Google Scholar] [CrossRef]
- Akbari, A.; Sabouri, Z.; Hosseini, H.A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of Nickel Oxide Nanoparticles as a Photocatalyst in Dyes Degradation and Evaluation of Effective Parameters in Their Removal from Aqueous Environments. Inorg. Chem. Commun. 2020, 115, 107867. [Google Scholar] [CrossRef]
- Sarkar, S.; Ponce, N.T.; Banerjee, A.; Bandopadhyay, R.; Rajendran, S.; Lichtfouse, E. Green Polymeric Nanomaterials for the Photocatalytic Degradation of Dyes: A Review. Environ. Chem. Lett. 2020, 18, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.P.; Zhang, L.; Jia, X.; Wang, X.; Cao, Y.; Zhang, Y. Visible-Light-Enhanced Photocatalytic Activities for Degradation of Organics by Chromium Acetylacetone Supported on UiO-66-NH2. ChemistrySelect 2020, 5, 14877–14883. [Google Scholar] [CrossRef]
- Garg, N.; Bera, S.; Rastogi, L.; Ballal, A.; Balaramakrishna, M.V. Synthesis and Characterization of L-Asparagine Stabilised Gold Nanoparticles: Catalyst for Degradation of Organic Dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 232, 118126. [Google Scholar] [CrossRef]
- Kumar, O.P.; Shahzad, K.; Nazir, M.A.; Farooq, N.; Malik, M.; Ahmad Shah, S.S.; ur Rehman, A. Photo-Fenton Activated C3N4x/[email protected] Dual s-Scheme Heterojunction towards Degradation of Organic Pollutants. Opt. Mater. 2022, 126, 112199. [Google Scholar] [CrossRef]
- Jamshaid, M.; Nazir, M.A.; Najam, T.; Shah, S.S.A.; Khan, H.M.; ur Rehman, A. Facile Synthesis of Yb3+-Zn2+ Substituted M Type Hexaferrites: Structural, Electric and Photocatalytic Properties under Visible Light for Methylene Blue Removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Shahzad, K.; Hussain, S.; Nazir, M.A.; Jamshaid, M.; ur Rehman, A.; Alkorbi, A.S.; Alsaiari, R.; Alhemiary, N.A. Versatile Ag2O and ZnO Nanomaterials Fabricated via Annealed Ag-PMOS and ZnO-PMOS: An Efficient Photocatalysis Tool for Azo Dyes. J. Mol. Liq. 2022, 356, 119036. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Xu, M.L.; Liu, B.; Wang, X.F.; Wang, S.H.; Sun, T. Preparation of Zinc Tungstate Nanomaterial and Its Sonocatalytic Degradation of Meloxicam as a Novel Sonocatalyst in Aqueous Solution. Ultrason. Sonochem. 2020, 61, 104815. [Google Scholar] [CrossRef]
- Taneja, P.; Sharma, S.; Umar, A.; Mehta, S.K.; Ibhadon, A.O.; Kansal, S.K. Visible-Light Driven Photocatalytic Degradation of Brilliant Green Dye Based on Cobalt Tungstate (CoWO4) Nanoparticles. Mater. Chem. Phys. 2018, 211, 335–342. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent Advances in Semiconductor Metal Oxides with Enhanced Methods for Solar Photocatalytic Applications. J. Alloys Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Chawla, H.; Chandra, A.; Ingole, P.P.; Garg, S. Recent Advancements in Enhancement of Photocatalytic Activity Using Bismuth-Based Metal Oxides Bi2MO6 (M = W, Mo, Cr) for Environmental Remediation and Clean Energy Production. J. Ind. Eng. Chem. 2021, 95, 1–15. [Google Scholar] [CrossRef]
- Ikram, M.; Rashid, M.; Haider, A.; Naz, S.; Haider, J.; Raza, A.; Ansar, M.T.; Uddin, M.K.; Ali, N.M.; Ahmed, S.S.; et al. A Review of Photocatalytic Characterization, and Environmental Cleaning, of Metal Oxide Nanostructured Materials. Sustain. Mater. Technol. 2021, 30, e00343. [Google Scholar] [CrossRef]
- Lin, J.; Lin, J.; Zhu, Y. Controlled Synthesis of the ZnWO4 Nanostructure and Effects on the Photocatalytic Performance. Inorg. Chem. 2007, 46, 8372–8378. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Wang, L.; Zhu, Y. Visible Photocatalytic Activity Enhancement of ZnWO4 by Graphene Hybridization. ACS Catal. 2012, 2, 2769–2778. [Google Scholar] [CrossRef]
- Ke, J.; Niu, C.; Zhang, J.; Zeng, G. Significantly Enhanced Visible Light Photocatalytic Activity and Surface Plasmon Resonance Mechanism of Ag/AgCl/ZnWO4 Composite. J. Mol. Catal. A Chem. 2014, 395, 276–282. [Google Scholar] [CrossRef]
- Dong, T.; Li, Z.; Ding, Z.; Wu, L.; Wang, X.; Fu, X. Characterizations and Properties of Eu3+-Doped ZnWO4 Prepared via a Facile Self-Propagating Combustion Method. Mater. Res. Bull. 2008, 43, 1694–1701. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Wang, X.; Xiao, X.; Dai, Z.; Wu, W.; Zheng, J.; Ren, F.; Jiang, C. Preparation of M@BiFeO3 Nanocomposites (M = Ag, Au) Bowl Arrays with Enhanced Visible Light Photocatalytic Activity. J. Am. Ceram. Soc. 2015, 98, 2255–2263. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.; Gu, S.; Li, H.; Liu, X.; Wang, M. Fabrication of FeWO4@ZnWO4/ZnO Heterojunction Photocatalyst: Synergistic Effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO Heterojunction Structure on the Enhancement of Visible-Light Photocatalytic Activity. ACS Sustain. Chem. Eng. 2016, 4, 6288–6298. [Google Scholar] [CrossRef]
- Li, P.; Zhao, X.; Jia, C.J.; Sun, H.; Sun, L.; Cheng, X.; Liu, L.; Fan, W. ZnWO4/BiOI Heterostructures with Highly Efficient Visible Light Photocatalytic Activity: The Case of Interface Lattice and Energy Level Match. J. Mater. Chem. A Mater. 2013, 1, 3421–3429. [Google Scholar] [CrossRef]
- Mgidlana, S.; Nyokong, T. Asymmetrical Zinc(II) Phthalocyanines Cobalt Tungstate Nanomaterial Conjugates for Photodegradation of Methylene Blue. J. Photochem. Photobiol. A Chem. 2021, 418, 113421. [Google Scholar] [CrossRef]
- Siriwong, P.; Thongtem, T.; Phuruangrat, A.; Thongtem, S. Hydrothermal Synthesis, Characterization, and Optical Properties of Wolframite ZnWO4 Nanorods. Crystengcomm 2011, 13, 1564–1569. [Google Scholar] [CrossRef]
- Pavithra, N.S.; Nagaraju, G.; Patil, S.B. Ionic Liquid-Assisted Hydrothermal Synthesis of ZnWO4 Nanoparticles Used for Photocatalytic Applications. Ionics 2021, 27, 3533–3541. [Google Scholar] [CrossRef]
- Han, S.; Xiao, K.; Liu, L.; Huang, H. Zn1−xCoxWO4 (0 ≤ x ≤ 1) Full Range Solid Solution: Structure, Optical Properties, and Magnetism. Mater. Res. Bull. 2016, 74, 436–440. [Google Scholar] [CrossRef]
- Rahmani, M.; Sedaghat, T. Nitrogen-Doped ZnWO4 Nanophotocatalyst: Synthesis, Characterization and Photodegradation of Methylene Blue under Visible Light. Res. Chem. Intermed. 2019, 45, 5111–5124. [Google Scholar] [CrossRef]
- Rahmani, M.; Sedaghat, T. A Facile Sol–Gel Process for Synthesis of ZnWO4 Nanopartices with Enhanced Band Gap and Study of Its Photocatalytic Activity for Degradation of Methylene Blue. J. Inorg. Organomet. Polym. Mater. 2019, 29, 220–228. [Google Scholar] [CrossRef]
- Scherrer, P. Estimation of the Size and Internal Structure of Colloidal Particles by Means of Rontgen Rays. Nachr. Ges. Wiss. Göttingen 1918, 26, 98–100. [Google Scholar]
- Tauc, J. Optical Properties of Solids; Abelès, F., Ed.; Elsevier: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Sadeghfar, F.; Zalipour, Z.; Taghizadeh, M.; Taghizadeh, A.; Ghaedi, M. Photodegradation Processes. Interface Sci. Technol. 2021, 32, 55–124. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering Heterogeneous Semiconductors for Solar Water Splitting. J. Mater. Chem. A Mater. 2015, 3, 2485–2534. [Google Scholar] [CrossRef]
- Fujito, H.; Kunioku, H.; Kato, D.; Suzuki, H.; Higashi, M.; Kageyama, H.; Abe, R. Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. J. Am. Chem. Soc. 2016, 138, 2082–2085. [Google Scholar] [CrossRef]
- Li, Y.; Hua, S.; Zhou, Y.; Dang, Y.; Cui, R.; Fu, Y. Activating ZnWO4 Nanorods for Efficient Electroanalysis of Bisphenol A via the Strategy of In Doping Induced Band Gap Change. J. Electroanal. Chem. 2020, 856, 113613. [Google Scholar] [CrossRef]
- Yu, X.; Williams, C.T. Recent Advances in the Applications of Mesoporous Silica in Heterogeneous Catalysis. Catal. Sci. Technol. 2022, 12, 5765–5794. [Google Scholar] [CrossRef]
- Malik, J.; Kumar, S.; Srivastava, P.; Bag, M.; Mandal, T.K. Cation Disorder and Octahedral Distortion Control of Internal Electric Field, Band Bending and Carrier Lifetime in Aurivillius Perovskite Solid Solutions for Enhanced Photocatalytic Activity. Mater. Adv. 2021, 2, 4832–4842. [Google Scholar] [CrossRef]
- Kirankumar, V.S.; Sumathi, S. Copper and Cerium Co-Doped Cobalt Ferrite Nanoparticles: Structural, Morphological, Optical, Magnetic, and Photocatalytic Properties. Environ. Sci. Pollut. Res. 2019, 26, 19189–19206. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.M.; Zhang, W.; Hu, Z.F.; Feng, Z.Y.; Ma, L.; Xiong, D.P.; Hu, P.J.; Wang, Y.H.; Wu, H.Y.; Luo, L. Synthesis of Ti4+-Doped ZnWO4 Phosphors for Enhancing Photocatalytic Activity. J. Lumin. 2019, 206, 267–272. [Google Scholar] [CrossRef]
- Otrokov, M.M.; Klimovskikh, I.I.; Calleja, F.; Shikin, A.M.; Vilkov, O.; Rybkin, A.G.; Estyunin, D.; Muff, S.; Dil, J.H.; Vázquez De Parga, A.L.; et al. Evidence of Large Spin-Orbit Coupling Effects in Quasi-Free-Standing Graphene on Pb/Ir(1 1 1). 2d Mater 2018, 5, 035029. [Google Scholar] [CrossRef]
- Magdalane, C.M.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyaraj, B.; Kennedy, J.; Maaza, M. Evaluation on the Heterostructured CeO2/Y2O3 Binary Metal Oxide Nanocomposites for UV/Vis Light Induced Photocatalytic Degradation of Rhodamine–B Dye for Textile Engineering Application. J. Alloys Compd. 2017, 727, 1324–1337. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, J.; Shen, J.; Liang, J.; Che, J.; Tang, B.; He, G.; Chen, H. A Carnation-like RGO/Bi2O2CO3/BiOCl Composite: Efficient Photocatalyst for the Degradation of Ciprofloxacin. J. Mater. Sci. Mater. Electron. 2019, 30, 5986–5994. [Google Scholar] [CrossRef]
- Balu, S.; Velmurugan, S.; Palanisamy, S.; Chen, S.W.; Velusamy, V.; Yang, T.C.K.; El-Shafey, E.S.I. Synthesis of α-Fe2O3 Decorated g-C3N4/ZnO Ternary Z-Scheme Photocatalyst for Degradation of Tartrazine Dye in Aqueous Media. J. Taiwan Inst. Chem. Eng. 2019, 99, 258–267. [Google Scholar] [CrossRef]
- Naresh, G.; Malik, J.; Meena, V.; Mandal, T.K. PH-Mediated Collective and Selective Solar Photocatalysis by a Series of Layered Aurivillius Perovskites. ACS Omega 2018, 3, 11104–11116. [Google Scholar] [CrossRef] [PubMed]
- Saher, R.; Hanif, M.A.; Mansha, A.; Javed, H.M.A.; Zahid, M.; Nadeem, N.; Mustafa, G.; Shaheen, A.; Riaz, O. Sunlight-Driven Photocatalytic Degradation of Rhodamine B Dye by Ag/FeWO4/g-C3N4 Composites. Int. J. Environ. Sci. Technol. 2021, 18, 927–938. [Google Scholar] [CrossRef]
- Zhang, P.; Liang, H.; Liu, H.; Bai, J.; Li, C. A Novel Z-Scheme BiOI/BiOCl Nanofibers Photocatalyst Prepared by One-Pot Solvothermal with Efficient Visible-Light-Driven Photocatalytic Activity. Mater. Chem. Phys. 2021, 272, 125031. [Google Scholar] [CrossRef]
- Santana, R.W.R.; Lima, A.E.B.; de Souza, L.K.C.; Santos, E.C.S.; Santos, C.C.; de Menezes, A.S.; Sharma, S.K.; Cavalcante, L.S.; Maia da Costa, M.E.H.; Sales, T.O.; et al. BiOBr/ZnWO4 Heterostructures: An Important Key Player for Enhanced Photocatalytic Degradation of Rhodamine B Dye and Antibiotic Ciprofloxacin. J. Phys. Chem. Solids 2023, 173, 111093. [Google Scholar] [CrossRef]
- Geetha, G.V.; Sivakumar, R.; Slimani, Y.; Sanjeeviraja, C.; Kannapiran, E. Rare Earth (RE: La and Ce) Elements Doped ZnWO4 Nanoparticles for Enhanced Photocatalytic Removal of Methylene Blue Dye from Aquatic Environment. Phys. B Condens. Matter 2022, 639, 414028. [Google Scholar] [CrossRef]
- Liu, X.; Shu, J.; Wang, H.; Jiang, Z.; Xu, L.; Liu, C. One-Pot Preparation of a Novel CoWO4/ZnWO4 p-n Heterojunction Photocatalyst for Enhanced Photocatalytic Activity under Visible Light Irradiation. J. Phys. Chem. Solids 2023, 172, 111061. [Google Scholar] [CrossRef]
- Kumar, G.M.; Lee, D.J.; Jeon, H.C.; Ilanchezhiyan, P.; Deuk Young, K.; Tae Won, K. One Dimensional ZnWO4 Nanorods Coupled with WO3 Nanoplates Heterojunction Composite for Efficient Photocatalytic and Photoelectrochemical Activity. Ceram. Int. 2022, 48, 4332–4340. [Google Scholar] [CrossRef]
- Jaramillo-Páez, C.; Navío, J.A.; Puga, F.; Hidalgo, M.C. Sol-Gel Synthesis of ZnWO4-(ZnO) Composite Materials. Characterization and Photocatalytic Properties. J. Photochem. Photobiol. A Chem. 2021, 404, 112962. [Google Scholar] [CrossRef]
- Jayamani, G.; Shanthi, M. An Efficient Nanocomposite CdS-ZnWO4 for the Degradation of Naphthol Green B Dye under UV-A Light Illumination. Nano-Struct. Nano-Objects 2020, 22, 100452. [Google Scholar] [CrossRef]
- Geetha, G.V.; Keerthana, S.P.; Madhuri, K.; Sivakumar, R. Effect of Solvent Volume on the Properties of ZnWO4 Nanoparticles and Their Photocatalytic Activity for the Degradation of Cationic Dye. Inorg. Chem. Commun. 2021, 132, 108810. [Google Scholar] [CrossRef]
Crystallinity (%) | Dislocation Density (δ) Lines (1014 × m2) | Crystallite Size (nm) at 2θ value | Interlayer Spacing (nm) at 2θ | FWHM (βhkl) | 2θ | Component |
---|---|---|---|---|---|---|
45.24 | 9.78 | 31.98 | 0.203 | 0.45 | 30.72 | ZnWO4 |
48.46 | 9.65 | 32.19 | 0.195 | 0.81 | 30.05 | CoWO4 |
42.18 | 17.02 | 24.24 | 0.198 | 0.76 | 30.33 | Zn0.5Co0. 5WO4 |
Material | k1 (min−1) | R2 | t1/2 (min) |
---|---|---|---|
ZnWO4 | 0.018 | 0.99 | 38.50 |
CoWO4 | 0.021 | 0.99 | 33.00 |
Zn0.5Co0.5WO4 | 0.025 | 0.99 | 27.72 |
Catalysts | Irradiation Time (min) | Light Source | Dye Used | % Degradation | References |
---|---|---|---|---|---|
BiOBr/ZnWO4 | 170 | UV-A light | RhB | 99.40 | [45] |
La: ZnWO4 | 90 | UV light | MB | 97.00 | [46] |
CoWO4/ZnWO4 p-n heterojunction | 40 | Xe lamp | RhB | 93% | [47] |
ZnWO4/WO3 heterojunction | 120 | Visible light | MB | 83.60 | [48] |
ZnWO4-(ZnO) | 120 | UV-illumination | MO | 99.00 | [49] |
CDs-ZnWO4 | 150 | UV-illumination | NGB | 93.00 | [50] |
Zn0.5Co0.5WO4 | 120 | Visible Solar Light | XO | 98.77 | Present Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.A.; Al-Nafaei, W.S.; Alshayiqi, A.A.; Alanazi, H.S.; Hasan, I. Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange. Catalysts 2023, 13, 404. https://doi.org/10.3390/catal13020404
Alharthi FA, Al-Nafaei WS, Alshayiqi AA, Alanazi HS, Hasan I. Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange. Catalysts. 2023; 13(2):404. https://doi.org/10.3390/catal13020404
Chicago/Turabian StyleAlharthi, Fahad A., Wedyan Saud Al-Nafaei, Alanoud Abdullah Alshayiqi, Hamdah S. Alanazi, and Imran Hasan. 2023. "Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange" Catalysts 13, no. 2: 404. https://doi.org/10.3390/catal13020404
APA StyleAlharthi, F. A., Al-Nafaei, W. S., Alshayiqi, A. A., Alanazi, H. S., & Hasan, I. (2023). Hydrothermal Synthesis of Bimetallic (Zn, Co) Co-Doped Tungstate Nanocomposite with Direct Z-Scheme for Enhanced Photodegradation of Xylenol Orange. Catalysts, 13(2), 404. https://doi.org/10.3390/catal13020404