G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants
Abstract
:1. Introduction
2. Results and Discussions
3. Experimental Part
3.1. Materials Section
3.2. Photocatalyst Synthesis
3.3. Characterization Techniques
3.4. Photodegradation Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramalingam, G.; Perumal, N.; Priya, A.; Rajendran, S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere 2022, 300, 134391. [Google Scholar] [CrossRef]
- Solangi, N.H.; Karri, R.R.; Mazari, S.A.; Mubarak, N.M.; Jatoi, A.S.; Malafaia, G.; Azad, A.K. MXene as emerging material for photocatalytic degradation of environmental pollutants. Coord. Chem. Rev. 2023, 477, 214965. [Google Scholar] [CrossRef]
- He, J.; Han, L.; Wang, F.; Ma, C.; Cai, Y.; Ma, W.; Xu, E.G.; Xing, B.; Yang, Z. Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks. Crit. Rev. Environ. Sci. Technol. 2022, 53, 504–526. [Google Scholar] [CrossRef]
- Brillas, E. A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. Chemosphere 2021, 286, 131849. [Google Scholar] [CrossRef] [PubMed]
- Ganiyu, S.O.; Sable, S.; El-Din, M.G. Advanced oxidation processes for the degradation of dissolved organics in produced water: A review of process performance, degradation kinetics and pathway. Chem. Eng. J. 2021, 429, 132492. [Google Scholar] [CrossRef]
- Ch-Th, T.; Manisekaran, R.; Santoyo-Salazar, J.; Schoefs, B.; Velumani, S.; Castaneda, H.; Jantrania, A. Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. J. Photochem. Photobiol. A Chem. 2021, 418, 113374. [Google Scholar] [CrossRef]
- Lin, J.; Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Wang, H.; Fang, Y.; Huang, Y.; Wang, S. Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes. J. Hazard. Mater. 2022, 434, 128866. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Huang, H.; Yu, S.; Zhang, D.; Huang, H.; Zhang, Y. Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. J. Energy Chem. 2021, 64, 214–235. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, L.; Yang, J.; Zhou, S.; Yuan, X.; Liang, J.; Wang, H.; Wang, H.; Bu, Y.; Li, H. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustain. Energy Rev. 2023, 173, 113110. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Chinthala, M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere 2022, 297, 134190. [Google Scholar] [CrossRef]
- Guo, R.T.; Wang, J.; Bi, Z.X.; Chen, X.; Hu, X.; Pan, W.G. Recent advances and perspectives of g-C3N4–based materials for photocatalytic dyes degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Nie, C.; Ao, Z.; Wang, S.; An, T. Recent progress in g-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A 2019, 8, 485–502. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, X.; Wang, C.; Wang, Z.; Wang, K.; Feng, Y.; Wang, J.; Zhai, Y.; Deng, J.; Wang, L.; et al. Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Appl. Catal. B Environ. 2021, 300, 120736. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Hao, S.; Zhang, X.; Ma, W.; Zhao, G.; Xu, X. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chin. Chem. Lett. 2021, 32, 13–20. [Google Scholar] [CrossRef]
- Huang, R.; Wu, J.; Zhang, M.; Liu, B.; Zheng, Z.; Luo, D. Strategies to enhance photocatalytic activity of graphite carbon nitride-based photocatalysts. Mater. Des. 2021, 210, 110040. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, J.; Ji, Q.; Cheng, H.; Komarneni, S. Visible-light-driven activation of sodium persulfate for accelerating orange II degradation using ZnMn2O4 photocatalyst. Chemosphere 2021, 278, 130404. [Google Scholar] [CrossRef]
- Al-Buriahi, A.K.; Al-Gheethi, A.A.; Kumar, P.S.; Mohamed, R.M.S.R.; Yusof, H.; Alshalif, A.F.; Khalifa, N.A. Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere 2022, 287, 132162. [Google Scholar] [CrossRef]
- Li, S.-S.; Liu, M.; Wen, L.; Xu, Z.; Cheng, Y.-H.; Chen, M.-L. Exploration of long afterglow luminescent materials composited with graphitized carbon nitride for photocatalytic degradation of basic fuchsin. Environ. Sci. Pollut. Res. 2023, 30, 322–336. [Google Scholar] [CrossRef]
- Tsvetkov, M.; Zaharieva, J. Milanova, Ferrites, modified with silver nanoparticles, for photocatalytic degradation of malachite green in aqueous solutions. Catal. Today 2020, 357, 453–459. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Li, Y.; Shu, S.; Huang, L.; Liu, J.; Liu, J.; Yao, J.; Liu, S.; Zhu, M.; Huang, L. Construction of a novel double S-scheme structure WO3/g-C3N4/BiOI: Enhanced photocatalytic performance for antibacterial activity. J. Colloid Interface Sci. 2023, 633, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Chen, Z.; Ding, E.; Yuan, R.; Liu, B.; Xu, B.; Zhang, P. High-yield production of g-C3N4 quantum dots as photocatalysts for the degradation of organic pollutants and fluorescent probes for detection of Fe3+ ions with live cell application. Appl. Surf. Sci. 2022, 586, 152812. [Google Scholar] [CrossRef]
- Basaleh, A.S.; Mohamed, R.M. Influence of doped silver nanoparticles on the photocatalytic performance of ZnMn2O4 in the production of methanol from CO2 photocatalytic reduction. Appl. Nanosci. 2020, 10, 3865–3874. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Zhang, Y.; Yan, Y.; Huo, P.; Wang, H. G-C3N4 quantum dots and Au nano particles co-modified CeO2/Fe3O4 micro-flowers photocatalyst for enhanced CO2 photoreduction. Renew. Energy 2021, 179, 756–765. [Google Scholar] [CrossRef]
- Preeyanghaa, M.; Vinesh, V.; Sabarikirishwaran, P.; Rajkamal, A.; Ashokkumar, M.; Neppolian, B. Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon 2022, 192, 405–417. [Google Scholar] [CrossRef]
- He, L.; Fei, M.; Chen, J.; Tian, Y.; Jiang, Y.; Huang, Y.; Xu, K.; Hu, J.; Zhao, Z.; Zhang, Q.; et al. Graphitic C3N4 quantum dots for next-generation QLED displays. Mater. Today 2018, 22, 76–84. [Google Scholar] [CrossRef]
- Xu, C.; Li, D.; Liu, X.; Ma, R.; Sakai, N.; Yang, Y.; Lin, S.; Yang, J.; Pan, H.; Huang, J.; et al. Direct Z-scheme construction of g-C3N4 quantum dots/TiO2 nanoflakes for efficient photocatalysis. Chem. Eng. J. 2021, 430, 132861. [Google Scholar] [CrossRef]
- Yan, S.; Yanlong, Y.; Cao, Y. Synthesis of porous ZnMn2O4 flower-like microspheres by using MOF as precursors and its application on photoreduction of CO2 into CO. Appl. Surf. Sci. 2019, 465, 383–388. [Google Scholar] [CrossRef]
- Olusegun, S.J.; Larrea, G.; Osial, M.; Jackowska, K.; Krysinski, P. Photocatalytic Degradation of Antibiotics by Superparamagnetic Iron Oxide Nanoparticles. Tetracycline Case. Catalysts 2021, 11, 1243. [Google Scholar] [CrossRef]
- Papadas, I.T.; Galatopoulos, F.; Armatas, G.S.; Tessler, N.; Choulis, S.A. Nanoparticulate Metal Oxide Top Electrode Interface Modification Improves the Thermal Stability of Inverted Perovskite Photovoltaics. Nanomaterials 2019, 9, 1616. [Google Scholar] [CrossRef] [Green Version]
- Alhaddad, M.; Mohamed, R.M. Synthesis and characterizations of ZnMn2O4-ZnO nanocomposite photocatalyst for enlarged photocatalytic oxidation of ciprofloxacin using visible light irradiation. Appl. Nanosci. 2020, 10, 2269–2278. [Google Scholar] [CrossRef]
- Wu, X.; Xiang, Y.; Peng, Q.; Wu, X.; Li, Y.; Tang, F.; Song, R.; Liu, Z.; He, Z.; Wu, X. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 2017, 5, 17990–17997. [Google Scholar] [CrossRef]
- Ni, Q.; Cheng, H.; Ma, J.; Kong, Y.; Komarneni, S. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system. Front. Chem. Sci. Eng. 2020, 14, 956–966. [Google Scholar] [CrossRef]
- Iurilli, P.; Brivio, C.; Wood, V. On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: A critical review. J. Power Sources 2021, 505, 229860. [Google Scholar] [CrossRef]
- Schlumberger, C.; Thommes, M. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Adv. Mater. Interfaces 2021, 8, 2002181. [Google Scholar] [CrossRef]
- Deng, H.; Fei, X.; Yang, Y.; Fan, J.; Yu, J.; Cheng, B.; Zhang, L. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2020, 409, 127377. [Google Scholar] [CrossRef]
- Wang, A.; Guo, S.; Zheng, Z.; Wang, H.; Song, X.; Zhu, H.; Zeng, Y.; Lam, J.; Qiu, R.; Yan, K. Highly dispersed Ag and g-C3N4 quantum dots co-decorated 3D hierarchical Fe3O4 hollow microspheres for solar-light-driven pharmaceutical pollutants degradation in natural water matrix. J. Hazard. Mater. 2022, 434, 128905. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, M.; Shi, L.; Zhang, S.; Hirani, R.A.K.; Zhu, C.; Chen, C.; Yuan, A.; Duan, X.; Wang, S.; et al. Highly dispersive Ru confined in porous ultrathin g-C3N4 nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants. J. Hazard. Mater. 2022, 435, 128939. [Google Scholar] [CrossRef]
Sample | Surface Area (m2 g−1) | Mean Pore Diameter (nm) | Total Pore Volume (cm3 g−1) |
---|---|---|---|
CNDs | 12.03 | 27.73 | 0.08 |
ZnMn2O4 | 33.8 | 9.09 | 0.08 |
CNDs/ZnMn2O4 (20%) | 44.6 | 27.5 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahootifar, Z.; Habibi-Yangjeh, A.; Rahim Pouran, S.; Khataee, A. G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants. Catalysts 2023, 13, 346. https://doi.org/10.3390/catal13020346
Lahootifar Z, Habibi-Yangjeh A, Rahim Pouran S, Khataee A. G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants. Catalysts. 2023; 13(2):346. https://doi.org/10.3390/catal13020346
Chicago/Turabian StyleLahootifar, Zahra, Aziz Habibi-Yangjeh, Shima Rahim Pouran, and Alireza Khataee. 2023. "G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants" Catalysts 13, no. 2: 346. https://doi.org/10.3390/catal13020346
APA StyleLahootifar, Z., Habibi-Yangjeh, A., Rahim Pouran, S., & Khataee, A. (2023). G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants. Catalysts, 13(2), 346. https://doi.org/10.3390/catal13020346