Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives in Water
Abstract
:1. Introduction
2. Results
2.1. Characterization of SPION@CS-IL as a Heterogeneous Catalyst
2.2. Evaluation of the Catalytic Activity of SPION@CS-IL through the Synthesis of Pyrido[2,3-d] pyrimidine-dione
3. Materials and Methods
3.1. Chemical and Apparatus
3.2. Synthesis of SPION@CS
3.3. Synthesis of Tosylated SPION@CS
3.4. Synthesis of SPION@CS-IL
3.5. General Procedure for the Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives over SPION@CS-IL Catalyst in the Solvent under Reflux
3.6. General Procedure for the Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives over SPION@CS-IL Catalyst under Ultrasonic Irradiation in Water
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, A.Y.; Moores, A. Carbonyl reduction and biomass: A case study of sustainable catalysis. ACS Sustain. Chem. Eng. 2019, 7, 10182–10197. [Google Scholar] [CrossRef]
- Hutchings, G.J. Heterogeneous gold catalysis. ACS Cent. Sci. 2018, 4, 1095–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastas, P.T.; Kirchhoff, M.M.; Williamson, T.C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. A Gen. 2001, 221, 3–13. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Catalysis: Role and challenges for a sustainable energy. Top. Catal. 2009, 52, 948–961. [Google Scholar] [CrossRef]
- Lamb, A.C.; Lee, A.F.; Wilson, K. Recent Advances in Heterogeneous Catalyst Design for Biorefining. Aust. J. Chem. 2020, 73, 832–852. [Google Scholar] [CrossRef]
- Yang, C.; Wu, J.; Hou, Y. Fe3O4 nanostructures: Synthesis, growth mechanism, properties and applications. Chem. Commun. 2011, 47, 5130–5141. [Google Scholar] [CrossRef]
- Xu, C.; Sun, S. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton. Trans. 2009, 29, 5583–5591. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.; Ravoo, B.J. Magnetic Separation of Proteins by a Self-Assembled Supramolecular Ternary Complex. Angew. Chem. Int. Ed. 2014, 53, 12946–12950. [Google Scholar] [CrossRef]
- Xu, L.; Kim, M.J.; Kim, K.D.; Choa, Y.H.; Kim, H.T. Surface modified Fe3O4 nanoparticles as a protein delivery vehicle. Colloids Surf. A Physicochem. Eng. Asp. 2009, 350, 8–12. [Google Scholar] [CrossRef]
- Dehghani, F.; Sardarian, A.R.; Esmaeilpour, M. Salen complex of Cu(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: An efficient and recyclable catalyst for synthesis of 1- and 5-substituted-1H-tetrazoles. J. Organomet. Chem. 2013, 743, 87–96. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Nowroozi Dodeji, F. A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using a Fe3O4@SiO2-imid-PMA; magnetic nanocatalys. RSC Adv. 2015, 5, 26625–26633. [Google Scholar] [CrossRef]
- Bahadorikhalili, S.; Ashtari, A.; Ma’mani, L.; Ranjbar, P.R.; Mahdavi, M. Copper-supported β-cyclodextrin-functionalized magnetic nanoparticles: Efficient multifunctional catalyst for one-pot ‘green’ synthesis of 1,2,3-triazolylquinazolinone derivatives. Appl. Organomet. Chem. 2018, 32, e4212. [Google Scholar] [CrossRef]
- Bahadorikhalili, S.; Mahdavi, M.; Ma’mani, L.; Shafiee, A.; Mahdavi, H.; Akbarzadeh, T. Palladium functionalized phosphinite polyethyleneimine grafted magnetic silica nanoparticles as an efficient catalyst for the synthesis of isoquinolino[1,2-b]quinazolin-8-ones. New J. Chem. 2018, 42, 5499–5507. [Google Scholar] [CrossRef]
- Sayahi, M.H.; Shamkhani, F.; Mahdavi, M.; Bahadorikhalili, S. Sulfonic Acid Functionalized Magnetic Starch as an Efficient Catalyst for the Synthesis of Chromeno[4,3-b]quinoline-6,8(9H)-dione Derivatives. Starch-Stärke 2021, 73, 2000257. [Google Scholar] [CrossRef]
- Tashrifi, Z.; Bahadorikhalili, S.; Lijan, H.; Ansari, S.; Hamedifar, H.; Mahdavi, M. Synthesis and characterization of γ-Fe2O3@SiO2-(CH2)3-PDTC-Pd magnetic nanoparticles: A new and highly active catalyst for the Heck/Sonogashira coupling reactions. New J. Chem. 2019, 43, 8930–8938. [Google Scholar] [CrossRef]
- Sayahi, M.H.; Bahadorikhalili, S.; Saghanezhad, S.J.; Miller, M.A.; Mahdavi, M. Sulfonic acid-functionalized poly(4-styrenesulfonic acid) mesoporous graphene oxide hybrid for one-pot preparation of coumarin-based pyrido[2,3-d]pyrimidine-dione derivatives. Res. Chem. Intermed. 2020, 46, 491–507. [Google Scholar] [CrossRef]
- Lee, Y.; Kang, I. Optimal Fabrication Conditions of Chitosan-Fe3O4-Gold Nanoshells as an Anticancer Drug Delivery Carriers. Bull. Korean Chem. Soc. 2017, 38, 313–319. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, H.; Wang, F.; Zeng, L. Design of yolk-shell Fe3O4@PMAA composite microspheres for adsorption of metal ions and pH-controlled drug delivery. J. Mater. Chem. A 2014, 2, 7065–7074. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Y.; Pan, S.; Xu, J. Fabrication of Fe3O4@cyclodextrin magnetic composite for the high-efficient removal of Eu (III). J. Mol. Liq. 2015, 206, 272–277. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Hayes, D.F.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Reuben, J.M.; Doyle, G.V.; Matera, J.; Allard, W.J.; Miller, M.C.; et al. Circulating tumor cells: A novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 2005, 23, 1420–1430. [Google Scholar] [CrossRef]
- Tran, H.V.; Dai Tran, L.; Nguyen, T.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater. Sci. Eng. C 2010, 30, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Dai Tran, L.; Nguyen, B.H.; Van Hieu, N.; Tran, H.V.; Le Nguyen, H.; Nguyen, P.X. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater. Sci. Eng. C 2011, 31, 477–485. [Google Scholar] [CrossRef]
- Naghipour, A.; Fakhri, A. Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan-Schiff base complex of Cu(II) supported on supramagnetic Fe3O4 nanoparticles. Environ. Chem. Lett. 2016, 14, 207–213. [Google Scholar] [CrossRef]
- Safari, J.; Javadian, L. Ultrasound assisted the green synthesis of 2-amino-4H-chromene derivatives catalyzed by Fe3O4-functionalized nanoparticles with chitosan as a novel and reusable magnetic catalyst. Ultrason. Sonochem. 2015, 22, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Bandi, S.; Hastak, V.; Pavithra, C.L.; Kashyap, S.; Singh, D.K.; Luqman, S.; Peshwe, D.R.; Srivastav, A.K. Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications. J. Mater. Res. 2019, 34, 3389–3399. [Google Scholar] [CrossRef]
- Azizi, K.; Esfandiary, N.; Karimi, M.; Yazdani, E.; Heydari, A. Imidazolium chloride immobilized on copper acetylacetonate-grafted magnetic chitosan as a new metal/ionic liquid bifunctional catalyst for selective oxidation of benzyl alcohols in water. RSC Adv. 2016, 6, 89313–89321. [Google Scholar] [CrossRef]
- Rakhtshah, J.; Yaghoobi, F. Catalytic application of new manganese Schiff-base complex immobilized on chitosan-coated magnetic nanoparticles for one-pot synthesis of 3-iminoaryl-imidazo[1,2-a]pyridines. Int. J. Biol. Macromol. 2019, 139, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int. J. Biol. Macromol. 2021, 186, 1003–1166. [Google Scholar] [CrossRef]
- Safari, J.; Azizi, F.; Sadeghi, M. Chitosan nanoparticles as a green and renewable catalyst in the synthesis of 1,4-dihydropyridine under solvent-free conditions. New J. Chem. 2015, 39, 1905–1909. [Google Scholar] [CrossRef]
- Safari, J.; Tavakoli, M.; Ghasemzadeh, M.A. A highly effective synthesis of pyrimido[4,5-b]quinoline-tetraones using H3PW12O40/chitosan/NiCo2O4 as a novel magnetic nanocomposite. Polyhedron 2020, 182, 114459. [Google Scholar] [CrossRef]
- Mahé, O.; Brière, J.F.; Dez, I. Chitosan: An upgraded polysaccharide waste for organocatalysis. Eur. J. Org. Chem. 2015, 2015, 2559–2578. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; She, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem. 2012, 14, 654–660. [Google Scholar] [CrossRef]
- Safari, J.; Zarnegar, Z.; Sadeghi, M.; Azizi, F. Chitosan-SO3H: An Efficient and Biodegradable Catalyst for the Green Syntheses of 1,4-dihydropyridines. Curr. Org. Chem. 2016, 20, 2926–2932. [Google Scholar] [CrossRef] [Green Version]
- Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3+2] huisgen cycloaddition. Angew. Chem. Int. Ed. 2009, 48, 5916–5920. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Huang, W.; Zhou, Y.; Zhang, S.; Hua, D.; Zhu, X. Modification of chitosan with carboxyl-functionalized ionic liquid for anion adsorption. Int. J. Biol. Macromol. 2013, 62, 365–369. [Google Scholar] [CrossRef]
- Ayati, A.; Daraie, M.; Heravi, M.M.; Tanhaei, B. H4[W12SiO40] grafted on magnetic chitosan: A green nanocatalyst for the synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives. Micro Nano Lett. 2017, 12, 964–969. [Google Scholar] [CrossRef]
- Zang, H.; Wang, M.; Cheng, B.-W.; Song, J. Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm] OH. Ultrason. Sonochem. 2009, 16, 301–303. [Google Scholar] [CrossRef]
- Riadi, Y. Green, rapid and efficient synthesis of new antibacterial pyridopyrimidinone mediated by eutectic mixture of Urea/CuCl2. Sustain. Chem. Pharm. 2020, 15, 100233. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Zahmatkesh, S. One-pot synthesis of multisubstituted imidazoles catalyzed by Dendrimer-PWAnnanoparticles under solvent-free conditions and ultrasonic irradiation. Res. Chem. Intermed. 2017, 43, 163–185. [Google Scholar] [CrossRef]
- Mamaghani, M.; Tabatabaeian, K.; Araghi, R.; Fallah, A.; Hossein Nia, R. An Efficient, Clean, and Catalyst-Free Synthesis of Fused Pyrimidines Using Sonochemistry. Org. Chem. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Atarod, M.; Safari, J.; Tebyanian, H. Ultrasound irradiation and green synthesized CuO-NiO-ZnO mixed metal oxide: An efficient sono/nano-catalytic system toward a regioselective synthesis of 1-aryl-5-amino-1H-tetrazoles. Synth. Commun. 2020, 50, 1993–2006. [Google Scholar] [CrossRef]
- Elyasi, Z.; Ghomi, J.S.; Najafi, G.R. Ultrasound-Engineered fabrication of immobilized molybdenum complex on Cross-Linked poly (Ionic Liquid) as a new acidic catalyst for the regioselective synthesis of pharmaceutical polysubstituted spiro compounds. Ultrason. Sonochem. 2021, 75, 105614. [Google Scholar] [CrossRef] [PubMed]
- Kahriman, N.; Peker, K.; Serdaroğlu, V.; Aydın, A.; Usta, A.; Fandaklı, S.; Yaylı, N. Novel 2-amino-4-aryl-6-pyridopyrimidines and N-alkyl derivatives: Synthesis, characterization and investigation of anticancer, antibacterial activities and DNA/BSA binding affinities. Bioorg. Chem. 2020, 99, 103805. [Google Scholar] [CrossRef]
- Modi, S.J.; Modh, D.H.; Kulkarni, V.M. Insights into the structural features of anticancer 1,6-naphthyridines and pyridopyrimidines as VEGFR-2 inhibitors: 3D-QSAR study. J. Appl. Pharm. Sci. 2020, 10, 1–22. [Google Scholar]
- Yadav, P.; Shah, K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem. Biol. Drug. Des. 2021, 97, 633–648. [Google Scholar] [CrossRef]
- Holý, A.; Votruba, I.; Masojídková, M.; Andrei, G.; Snoeck, R.; Naesens, L.; De Clercq, E.; Balzarini, J. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with Antiviral Activity. J. Med. Chem. 2002, 45, 1918–1929. [Google Scholar] [CrossRef]
- Panchabhai, V.; Ingole, P.G.; Butle, S.R. Design, Synthesis and Antibacterial Studies of Some New Pyridopyrimidine Derivatives as Biotin Carboxylase Inhibitors. Bull. Fac. Pharm. Cairo Univ. 2020, 58, 40–52. [Google Scholar] [CrossRef]
- Dasari, S.R.; Tondepu, S.; Vadali, L.R.; Seelam, N. PEG-400 mediated an efficient eco-friendly synthesis of new isoxazolyl pyrido[2,3-d]pyrimidines and their anti-inflammatory and analgesic activity. Synth. Commun. 2020, 50, 2950–2961. [Google Scholar] [CrossRef]
- Rani, N.V.; Kunta, R. PEG-400 promoted a simple, efficient and eco-friendly synthesis of functionalized novel isoxazolyl pyrido[2,3-d]pyrimidines and their antimicrobial and anti-inflammatory activity. Synth. Commun. 2021, 51, 1171–1183. [Google Scholar] [CrossRef]
- Zarandi, M.; Panahi, M.; Rafiee, A. Simulation of a natural gas-to-liquid process with a multitubular fischer-tropsch reactor and variable chain growth factor for product distribution. Ind. Eng. Chem. Res. 2020, 59, 19322–19333. [Google Scholar] [CrossRef]
- Madar, J.M.; Shastri, L.A.; Shastri, S.L.; Holiyachi, M.; Naik, N.; Kulkarni, R.; Shaikh, F.; Sungar, V. Design, synthesis, characterization, and biological evaluation of pyrido[1,2-a]pyrimidinone coumarins as promising anti-inflammatory agents. Synth. Commun. 2018, 48, 375–386. [Google Scholar] [CrossRef]
- Quintela, J.; Peinador, C.; Botana, L.; Estévez, M.; Riguera, R. Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido [2,3-d]-pyrimidines. Bioorg. Med. Chem. 1997, 5, 1543–1553. [Google Scholar] [CrossRef] [PubMed]
- El-Kalyoubi, S.; Agili, F. Synthesis, in Silico Prediction and in Vitro Evaluation of Antitumor Activities of Novel Pyrido[2,3-d]pyrimidine, Xanthine and Lumazine Derivatives. Molecules 2020, 25, 5205. [Google Scholar] [CrossRef] [PubMed]
- El-Hag, F.A.A.; Abdel-Hafez, N.A.; Abbas, E.M.H.; El-Manawaty, M.A.; El-Rashedy, A.A. Synthesis and Antitumor Activity of Some New Fused Heterocyclic Compounds. Russ. J. Gen. Chem. 2019, 89, 128–137. [Google Scholar] [CrossRef]
- Aref, M.M.A. Synthesis of Some Pyridopyrimidine Derivatives of Potential Antitumor Activity. Cairo University Theses, 2018. Available online: http://erepository.cu.edu.eg/index.php/cutheses/article/view/7995 (accessed on 13 October 2022).
- Behalo, M.S.; Mele, G. Synthesis and Evaluation of Pyrido[2,3-d]pyrimidine and 1,8-Naphthyridine Derivatives as Potential Antitumor Agents. J. Heterocycl. Chem. 2017, 54, 295–300. [Google Scholar] [CrossRef]
- El-Sharkawy, K.A.; AlBratty, M.M.; Alhazmi, H.A. Synthesis of some novel pyrimidine, thiophene, coumarin, pyridine and pyrrole derivatives and their biological evaluation as analgesic, antipyretic and anti-inflammatory agents. Braz. J. Pharm. Sci. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Chaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R. A PANI-Fe3O4@ZnO nanocomposite: A magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Adv. 2020, 10, 15614–15621. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, C.; Nipate, A.; Chate, A.; Gill, C. Triethylammonium Hydrogen Sulfate [Et3NH][HSO4]-Catalyzed Rapid and Efficient Multicomponent Synthesis of Pyrido[2,3-d]pyrimidine and Pyrazolo[3,4-b]pyridine Hybrids. ACS Omega 2021, 6, 18215–18225. [Google Scholar] [CrossRef]
- Jolodar, O.G.; Shirini, F.; Seddighi, M. Efficient synthesis of pyrano[2,3-d]pyrimidinone and pyrido[2,3-d]pyrimidine derivatives in presence of novel basic ionic liquid catalyst. Chin. J. Catal. 2017, 38, 1245–1251. [Google Scholar] [CrossRef]
- Moavi, J.; Buazar, F.; Sayahi, M.H. Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Mamaghani, M.; Hossein Nia, R. Recent Developments in the MCRs Synthesis of Pyridopyrimidines and Spiro-Pyridopyrimidines. J. Heterocycl. Chem. 2017, 54, 1700–1722. [Google Scholar] [CrossRef]
- Zhang, F.; Li, C.; Liang, X. Solid acid-catalyzed domino cyclization reaction: Regio-and diastereoselective synthesis of pyrido[2,3-d]pyrimidine derivatives bearing three contiguous stereocenters. Green Chem. 2018, 20, 2057–2063. [Google Scholar] [CrossRef]
- El Sayed, M.T.; Hussein, H.A.; Elebiary, N.M.; Hassan, G.S.; Elmessery, S.M.; Elsheakh, A.R.; Nayel, M.; Abdel-Aziz, H.A. Tyrosine kinase inhibition effects of novel Pyrazolo[1,5-a]pyrimidines and Pyrido[2,3-d]pyrimidines ligand: Synthesis, biological screening and molecular modeling studies. Bioorg. Chem. 2018, 78, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Nurjamal, K.; Brahmachari, G. Sodium Formate-Catalyzed One-Pot Synthesis of Functionalized Spiro[indoline-3,5′-pyrido[2,3-d]pyrimidine]/Spiro[acenaphthylene-1,5′-pyrido[2,3-d]-pyrimidine] Derivatives. ChemistrySelect 2019, 4, 2363–2367. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Deb, P.K.; Kachler, S.; Akkinepalli, R.R.; Mailavaram, R.; Klotz, K.N. Synthesis and adenosine receptors binding studies of new fluorinated analogues of pyrido[2,3-d]pyrimidines and quinazolines. Med. Chem. Res. 2018, 27, 756–767. [Google Scholar] [CrossRef]
- Veeraswamy, B.; Madhu, D.; Dev, G.J.; Poornachandra, Y.; Kumar, G.S.; Kumar, C.G.; Narsaiah, B. Studies on synthesis of novel pyrido[2,3-d]pyrimidine derivatives, evaluation of their antimicrobial activity and molecular docking. Bioorg. Med. Chem. Lett. 2018, 28, 1670–1675. [Google Scholar] [CrossRef]
- Farahmand, T.; Hashemian, S.; Sheibani, A. Efficient one-pot synthesis of pyrano[2,3-d]pyrimidinone and pyrido[2,3-d]pyrimidine derivatives by using of Mn-ZIF-8@ZnTiO3 nanocatalyst. J. Mol. Struct. 2020, 1206, 127667. [Google Scholar] [CrossRef]
- Jalili, F.; Zarei, M.; Zolfigol, M.A.; Rostamnia, S.; Moosavi-Zare, A.R. SBA-15/PrN (CH2PO3H2)2 as a novel and efficient mesoporous solid acid catalyst with phosphorous acid tags and its application on the synthesis of new pyrimido[4,5-b]quinolones and pyrido[2,3-d]pyrimidines via anomeric based oxidation. Microporous Mesoporous Mater. 2020, 294, 109865. [Google Scholar] [CrossRef]
- Jahanshahi, P.; Mamaghani, M.; Haghbin, F.; Nia, R.H.; Rassa, M. One-pot chemoselective synthesis of novel pyrrole-substituted pyrido[2,3-d]pyrimidines using [γ-Fe2O3@HAp-SO3H] as an efficient nanocatalyst. J. Mol. Struct. 2018, 1155, 520–529. [Google Scholar] [CrossRef]
- Herrera, R.P.; Marqués-López, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar] [CrossRef]
- Sayahi, M.H.; Shamkhani, F.; Mahdavi, M.; Bahadorikhalili, S. Efficient synthesis of chromeno[4,3-b]pyrano[3,4-e]pyridine-6,8-dione derivatives via multicomponent one-pot reaction under mild reaction conditions in water. Res. Chem. Intermed. 2021, 47, 4101–4112. [Google Scholar] [CrossRef]
- Sayahi, M.H.; Afrouzandeh, Z.; Bahadorikhalili, S. Cu(OAc)2 Catalyzed Synthesis of Novel Chromeno[4,3-b]Pyrano[3,4-e]Pyridine-6,8-Dione Derivatives via a One-Pot Multicomponent Reaction in Water under Mild Reaction Conditions. Polycycl. Aromat. Compd. 2022, 42, 3391–3400. [Google Scholar] [CrossRef]
- Pati, S.S.; Singh, L.H.; Guimarães, E.M.; Mantilla, J.; Coaquira, J.A.H.; Oliveira, A.C.; Sharma, V.K.; Garg, V.K. Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: Synthesis and characterization. J. Alloys. Compd. 2016, 684, 68–74. [Google Scholar] [CrossRef]
- Bahadorikhalili, S.; Ansari, S.; Hamedifar, H.; Mahdavi, M. The use of magnetic starch as a support for an ionic liquid-β-cyclodextrin based catalyst for the synthesis of imidazothiadiazolamine derivatives. Int. J. Biol. Macromol. 2019, 135, 453–461. [Google Scholar] [CrossRef] [PubMed]
Entry | Solvent | Temp (°C) a | Catalyst Amount (mg) | Isolated Yield (%) | |
---|---|---|---|---|---|
Thermal b | Ultrasonic c | ||||
1 | DMSO | 70 | 5 | 31 | 14 |
2 | MeOH | 60 | 5 | 16 | 27 |
3 | H2O/EtOH | 70 | 5 | 77 | 60 |
4 | CH2Cl2 | Reflux | 5 | Trace | 45 |
5 | DMF | 70 | 5 | 30 | 32 |
6 | H2O | 70 | 5 | 14 | 92 |
7 | H2O | 50 | 5 | Trace | Non |
8 | H2O | 85 | 5 | 19 | Non |
9 | H2O | 70 | Non | Non | Non |
10 | H2O | 70 | 3 | Trace | 73 |
11 | H2O | 70 | 8 | 18 | 92 |
12 | EtOH | 70 | 5 | 89 | 85 |
13 | EtOH | 50 | 5 | 55 | Non |
14 | EtOH | Reflux | 5 | 89 | Non |
15 | EtOH | 70 | Non | Non | Non |
16 | EtOH | 70 | 3 | 66 | 68 |
17 | EtOH | 70 | 8 | 89 | 86 |
Entry | Compound | R | Isolated Yield (%) | |
---|---|---|---|---|
Thermal a | Ultrasonic b | |||
1 | 4a | H | 85 | 91 |
2 | 4b | 2-Cl | 82 | 88 |
3 | 4c | 3-Cl | 84 | 89 |
4 | 4d | 4-Cl | 80 | 92 |
5 | 4e | 2,4-Cl2 | 77 | 90 |
6 | 4f | 2-NO2 | 88 | 91 |
7 | 4g | 4-NO2 | 89 | 92 |
8 | 4h | 3-OMe | 79 | 85 |
9 | 4i | 4-CN | 84 | 84 |
10 | 4j | 4-Br | 85 | 89 |
Entry | Run | Isolated Yield (%) | |
---|---|---|---|
Thermal a | Ultrasonic b | ||
1 | 1 | 89 | 92 |
2 | 2 | 87 | 92 |
3 | 3 | 86 | 91 |
4 | 4 | 84 | 90 |
5 | 5 | 83 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayahi, M.H.; Sepahdar, A.; Bazrafkan, F.; Dehghani, F.; Mahdavi, M.; Bahadorikhalili, S. Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives in Water. Catalysts 2023, 13, 290. https://doi.org/10.3390/catal13020290
Sayahi MH, Sepahdar A, Bazrafkan F, Dehghani F, Mahdavi M, Bahadorikhalili S. Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives in Water. Catalysts. 2023; 13(2):290. https://doi.org/10.3390/catal13020290
Chicago/Turabian StyleSayahi, Mohammad Hosein, Asma Sepahdar, Farokh Bazrafkan, Farzaneh Dehghani, Mohammad Mahdavi, and Saeed Bahadorikhalili. 2023. "Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives in Water" Catalysts 13, no. 2: 290. https://doi.org/10.3390/catal13020290
APA StyleSayahi, M. H., Sepahdar, A., Bazrafkan, F., Dehghani, F., Mahdavi, M., & Bahadorikhalili, S. (2023). Ionic Liquid Modified SPION@Chitosan as a Novel and Reusable Superparamagnetic Catalyst for Green One-Pot Synthesis of Pyrido[2,3-d]pyrimidine-dione Derivatives in Water. Catalysts, 13(2), 290. https://doi.org/10.3390/catal13020290